Title page for ETD etd-12302008-063806

Type of Document Master's Thesis
Author Evans, Jonathan D.
URN etd-12302008-063806
Title Application of genetic algorithm to mixed-model assembly line balancing
Degree Master of Science
Department Industrial and Systems Engineering
Advisory Committee
Advisor Name Title
Eyada, Osmon K. Committee Chair
Sarin, Subhash C. Committee Member
Sumichrast, Robert T. Committee Member
  • genetic algorithm
  • mixed-model assembly line balancing
Date of Defense 1996-03-05
Availability restricted

The demand for increased diversity, reduced cycle time, and reduced work-inprocess has caused increased popularity of mixed-model assembly lines. These lines combine the productivity of an assembly line and the flexibility of a job shop. The mixedmodel assembly line allows setup time between models to be zero. Large lines mixedmodel assembly lines require a timely, near-optimal method. A well balanced line reduces worker idle time and simplifies the mixed-model assembly line sequencing problem.

Prior attempts to solve the balancing problem have been in-adequate. Heuristic techniques are too simple to find near-optimal solutions and yield only one solution. An exhaustive search requires too much processing time. Simulated Annealing works well, but yields only one solution per run and the solutions may vary because of the random nature of the Simulated Annealing process. Multiple runs are required to get more than one solution, each run requiring some amount of time which depends on problem size. If only one run is performed, the solution achieved may be far from optimal. In addition, Simulated Annealing requires different parameters depending on the size of the problem.

The Genetic Algorithm (GA) is a probabilistic heuristic search strategy. In most cases, it begins with a population of random solutions. Then the population is reproduced using crossover and mutation with the fittest solutions having a higher probability of being parents. The idea is survival of the fittest, poor or unfit solutions do not reproduce and are replaced by better or fitter solutions. The final generation should yield multiple near optimal solutions.

The objective of this study is to investigate the Genetic Algorithm and its performance compared to Simulated Annealing for large mixed-model assembly lines. The results will show that the Genetic Algorithm will perform comparably to the Simulated Annealing. The Genetic Algorithm will be used to solve various mixed-model assembly line problems to discover the correct parameters to solve any mixed-model assembly line balancing problem.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] LD5655.V855_1996.E936.pdf 2.46 Mb 00:11:23 00:05:51 00:05:07 00:02:33 00:00:13
[BTD] next to an author's name indicates that all files or directories associated with their ETD are accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.