Title page for ETD etd-12312002-181024

Type of Document Master's Thesis
Author Mukherjee, Joy
Author's Email Address jmukherj@vt.edu
URN etd-12312002-181024
Title A Compiler Directed Framework for Parallel Compositional Systems
Degree Master of Science
Department Computer Science
Advisory Committee
Advisor Name Title
Varadarajan, Srinidhi Committee Chair
Arthur, James D. Committee Member
Ramakrishnan, Naren Committee Member
  • language independence
  • compositional
  • parallel
  • adaptive
  • State sharing and separation
  • reconfigurable
  • position independence
Date of Defense 2002-12-17
Availability unrestricted
This research proposes a language independent intra-process framework for object based composition of unmodified code modules. Intuitively, the two major programming models - threads and processes - can be considered as extremes along a sharing axis. Multiple threads through a process share all global state, whereas instances of a process (or independent processes) share no global state. Weaves provide the generalized framework that allows arbitrary (selective) sharing of state between multiple control flows through a process. In the Weaves framework a single process has the same level of complexity as a workstation, with independent "sub-processes", state sharing and scheduling, all of which is achieved without requiring any modification to existing code bases. Furthermore, the framework allows dynamic instantiation of code modules and control flows through them.

In effect, weaves create intra-process modules (similar to objects in OOP) from code written in any language. Applications can be built by instantiating Weaves to form Tapestries of dynamically interacting code. The Weaves paradigm allows objects to be arbitrarily shared - it is a true superset of both processes as well as threads, with code sharing and fast context switching time similar to threads. Weaves do not require any special support from either the language or application code - practically any code can be weaved. Weaves also include support for fast automatic checkpointing and recovery with no application support. This paper presents the elements of the Weaves framework and results from our implementation that works by reverse-analyzing source-code independent ELF object files. The current implementation has been validated over Sweep3D, a benchmark for 3D discrete ordinates neutron transport [Koch et al., 1992], and our Open Network Emulator project. Performance results show that the context switch overhead in the Weaves framework is almost identical to threads.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Joy_Mukherjee_MSThesis.pdf 2.34 Mb 00:10:50 00:05:34 00:04:52 00:02:26 00:00:12

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.