Title page for ETD etd-52598-204111

Type of Document Master's Thesis
Author Pickett, Peter Brown Jr.
Author's Email Address pickett@vt.edu
URN etd-52598-204111
Title An Investigation of Active Tonal Spectrum Control as Applied to the Modern Trumpet
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Bachelder, Allen
Beex, A. A. Louis
Burdisso, Ricardo A.
Saunders, William R. Committee Chair
  • Trumpet
  • Active Noise Control
  • Spectrum Shaping
  • Adaptive Control
Date of Defense 1998-06-08
Availability unrestricted
Techniques are available today to attenuate the output sound of the trumpet. All of these techniques involve using passive mutes. Due to the limitations in the sound one can obtain with passive mutes, another solution, using active noise control, is proposed to predictably attenuate the output sound of the trumpet. With the new system, it is theorized any desired output sound can be obtained.

Within this thesis a model of the trumpet physics is derived and an investigation of the implementation of two analog feedback controllers and two digital LMS controllers is performed. The model of the trumpet mechanics is studied to understand the trumpet system before applying the control systems. Analysis is performed on the type and the location of the acoustic control actuator and the error sensor to be used. With the chosen actuator and sensor, the two types of controllers are designed and realized. The farfield spectrum of the trumpet's response to a single note is analyzed for each controller and the resulting attenuations compared. The model of the trumpet system is then used to demonstrate the coupling of the trumpet and the player and to show the effects of the controllers on the behavior of the player's embouchure.

With the inclusion of the controllers in the trumpet system, the farfield spectrum was successfully attenuated at two harmonics of the tone passed through the trumpet. Testing was not performed with an actual trumpet player due to the high sound pressure levels (160 dB SPL) required from the control actuator. From a derived model of the control actuator, specifications for an acoustic driver capable of delivering the high sound pressure level were calculated. Design and fabrication of the proposed actuator will be completed during future work.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  thesis.pdf 988.81 Kb 00:04:34 00:02:21 00:02:03 00:01:01 00:00:05

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.