Title page for ETD etd-7597-22949

Type of Document Master's Thesis
Author Haramis, John Emmanuel II
Author's Email Address jharamis@vt.edu
URN etd-7597-22949
Title Investigation of Bond Strength and Watertightness of Asphalt Concrete Wearing Surfaces for Timber Bridge Decks
Degree Master of Science
Department Civil Engineering
Advisory Committee
Advisor Name Title
Dolan, James Daniel
Loferski, Joseph R.
Weyers, Richard E. Committee Chair
  • bond strength
  • watertightness
  • waterproof membranes
  • asphalt overlays
  • timber bridge decks
  • glulam
Date of Defense 1997-04-21
Availability unrestricted
Two different asphalt concrete systems were examined in this research study. The existing system, consistent with current timber bridge construction practice, uses a preformed waterproofing membrane placed on a preservative treated wood deck overlaid with a bituminous concrete wearing surface. The second system consists of a treated wood deck overlaid with a base course of bituminous concrete, a waterproofing membrane, and a bituminous concrete wearing surface.

The testing regime used in this research to evaluate watertightness and bond performance incorporated three parameters: three waterproofing membranes, two wood preservative treatments, and two environmental degradation conditions induced by temperature cycling in a moisture saturated condition. Control groups were evaluated for each study parameter and duplicate specimens were prepared and tested for each of the study parameters. A total of 160 specimens were constructed and tested.

Watertightness of each system was determined by measuring the electrical impedance across a test specimen perpendicular to the direction of bond orientation in the pavement. The bond strength between each material of the paving systems was assessed using a shear test apparatus designed and built for this study.

In addition to the laboratory constructed specimens, three drilled cores were taken from a bridge located on Creekside Drive in East Pennsboro Township, Pennsylvania. The deck was constructed using the new design proposed in this research and each core was tested for watertightness and bond strength.

Results of watertightness testing indicated that low temperature environments appear to be most detrimental to system integrity in both the existing and proposed paving system configurations examined in this research. In general, each membrane appeared to perform equally well in the proposed paving system configuration as well as with all of the wood preservative treatments used in the existing pavement system.

Bond strength between asphalt and wood with no membrane was observed to be nonexistent whether or not any preservative treatment was present. The placement of a membrane between these two layers did, however, result in a significant increase in bond strength because each membrane tested was able to adhere to the wood base better than the asphalt overlay. This gain is strength was significantly offset when petroleum solvent based preservative treatments were present in the wood substrate. Protectowrap M400 membrane performed slightly better than the other membranes when used with untreated wood, but all of the membranes performed equally when preservative treatments were present. The highest interlayer bond strengths (asphalt/asphalt or asphalt/wood) observed in this research occurred when asphalt concrete surface material was placed directly on top of asphalt concrete base material, however the addition of a membrane between the asphalt lifts consistently reduced this strength. The results of bond testing indicate that the proposed system will perform better in terms of shoving in the pavement overlay. Based on bond test results of cores taken from the Creekside Drive bridge, it appears that a shear strength greater than 25 psi after 200 low temperature exposure cycles will provide acceptable paving system performance in a low temperature (0-40ºF) environment.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  APPENDIXA.PDF 95.28 Kb 00:00:26 00:00:13 00:00:11 00:00:05 < 00:00:01
  APPENDIXB.PDF 48.02 Kb 00:00:13 00:00:06 00:00:06 00:00:03 < 00:00:01
  APPENDIXC.PDF 172.01 Kb 00:00:47 00:00:24 00:00:21 00:00:10 < 00:00:01
  APPENDIXD.PDF 82.50 Kb 00:00:22 00:00:11 00:00:10 00:00:05 < 00:00:01
  APPENDIXE.PDF 272.90 Kb 00:01:15 00:00:38 00:00:34 00:00:17 00:00:01
  APPENDIXF.PDF 364.40 Kb 00:01:41 00:00:52 00:00:45 00:00:22 00:00:01
  APPENDIXG.PDF 122.33 Kb 00:00:33 00:00:17 00:00:15 00:00:07 < 00:00:01
  APPENDIXH.PDF 93.33 Kb 00:00:25 00:00:13 00:00:11 00:00:05 < 00:00:01
  CHAPTER1.PDF 84.42 Kb 00:00:23 00:00:12 00:00:10 00:00:05 < 00:00:01
  CHAPTER2.PDF 523.00 Kb 00:02:25 00:01:14 00:01:05 00:00:32 00:00:02
  CHAPTER3.PDF 144.57 Kb 00:00:40 00:00:20 00:00:18 00:00:09 < 00:00:01
  CHAPTER4.PDF 29.19 Kb 00:00:08 00:00:04 00:00:03 00:00:01 < 00:00:01
  CHAPTER5.PDF 36.13 Kb 00:00:10 00:00:05 00:00:04 00:00:02 < 00:00:01
  ETD.PDF 56.43 Kb 00:00:15 00:00:08 00:00:07 00:00:03 < 00:00:01
  REFERENCES.PDF 26.27 Kb 00:00:07 00:00:03 00:00:03 00:00:01 < 00:00:01
  Vita1.pdf 18.83 Kb 00:00:05 00:00:02 00:00:02 00:00:01 < 00:00:01

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.