Processing and Characterization of Device Solder Interconnection and Module Attachment for Power Electronics Modules

by

Shatil Haque

Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Materials Engineering and Science

© Shatil Haque and VPI&SU 1999

APPROVED:

______________________________________ ______________________________________
Dr. Guo-Quan Lu, Chairman Dr. Fred C. Lee

______________________________________ ______________________________________
Dr. Carlos Suchicital Dr. Dušan Borojević

______________________________________ ______________________________________
Dr. Steve Kampe Dr. Douglas J. Nelson

December 1999
Blacksburg, Virginia
This research is focused on the processing of an innovative three-dimensional packaging architecture for power electronics building blocks with soldered device interconnections and subsequent characterization of the module’s critical interfaces. A low-cost approach termed metal posts interconnected parallel plate structure (MPIPPS) was developed for packaging high-performance modules of power electronics building blocks (PEBB). The new concept implemented direct bonding of copper posts, not wire bonding of fine aluminum wires, to interconnect power devices as well as joining the different circuit planes together. We have demonstrated the feasibility of this packaging approach by constructing PEBB modules (consisting of Insulated Gate Bipolar Transistors (IGBTs), diodes, and a few gate driver elements and passive components). In the 1st phase of module fabrication with IGBTs with Si3N4 passivation, we had successfully fabricated packaged devices and modules using the MPIPPS technique. These modules were tested electrically and thermally, and they operated at pulse-switch and high power stages up to 6kW. However, in the 2nd phase of module fabrication with polyimide passivated devices, we experienced significant yield problems due to metallization difficulties of these devices.

The under-bump metallurgy scheme for the development of a solderable interface involved sputtering of Ti-Ni-Cu and Cr-Cu, and an electroless deposition of Zn-Ni-Au metallization. The metallization process produced excellent yield in the case of Si3N4 passivated devices. However, under the same metallization schemes, devices with a polyimide passivation exhibited inconsistent electrical contact resistance. We found that organic contaminants such as hydrocarbons remain in the form of thin monolayers on the surface, even in the case of as-received devices from the manufacturer. Moreover, in the case of polyimide passivated devices, plasma cleaning introduced a few carbon constituents on the surface, which was not observed in the case of Si3N4 passivated devices. X-Ray Photoelectron Spectroscopy (XPS) Spectra showed evidence of possible carbon contaminants, such as carbide (\(\sim 282.9\)eV) and graphite (\(\sim 284.3\)eV) on the surface at binding energies below the binding energy of the hydrocarbon peak (C 1s at 285eV). Whereas above the hydrocarbon peak energy level, carbon-nitrogen compounds, single bond carbon compounds (\(\sim 285.9\)eV) and double bond carbon compounds (\(\sim 288.5\)eV) were evident. The majority of the carbon composition on the pad surface was associated with hydrocarbons, which were hydrophobic in nature, thus making the device contact pad less wettable. XPS data showed that, after the plasma cleaning process, absorbed monolayers on the Si3N4 passivated and polyimide passivated surfaces consisted of different chemical compositions and accordingly, the attraction forces of these absorbed layers are also different, which affects the bonding properties of the subsequent metallization, resulting in different contact resistances. On the other hand, with an electroless Zn-Ni-Au deposition, it was found that the polyimide passivation on the devices degraded due to due alkaline exposure in the plating baths, thus lowering the device breakdown voltage significantly.

Furthermore, interfacial thermal resistances of solder preform, solder paste and silver epoxy (between the power module and the heat spreader) were characterized for process optimization. Void content at the resulting interface was found to be dependent on the flux content and flux activity. Solder preform with no-clean flux, reflowed in nitrogen results in the least resistant and minimized void-content interface. It is most likely that the flux added to the preform had a higher fluxing action than the flux contained in the solder paste. On the other hand, the outgassing of the entrapped flux profoundly affects the void formation and a lower void content indicates a lesser amount of trapped flux. In the case of a solder paste, the flux is in direct contact with the surface oxide of the powders and the surface to be soldered. Consequently, during reflow, any residual oxide can be expected to have some flux adhered to it. In the case of solder preform with added flux, the higher activity flux eliminated the oxide more rapidly and more thoroughly, thus leaving fewer spots for the flux to adhere to. Void contents in all cases of nitrogen reflow are consistently lower than the air-reflowed samples. Silver epoxy with a higher thermal conductivity (60W/mK) than Pb-Sn eutectic solder did not produce low-resistance interfaces. We found that thermal conductivity of the interface material is not the most crucial factor in reducing thermal resistance, rather it is the contact thermal resistance of the interfaces, which constitutes the largest part of the total interfacial thermal resistance. Process optimization with applied pressure and nitrogen reflow resulted in a significant lowering of contact resistance (from 0.55°C/W to 0.25°C/W) for the solder preform interfaces. We concluded that contact resistance needs to be duly accounted for in thermal modeling for an accurate representation of an interface; at the same time, the module attachment process must be tailored to reduce contact resistance for improved thermal management.
ACKNOWLEDGMENTS

I extend my sincerest gratitude to my advisor, Dr. Guo-Quan Lu for his support in all phases of my research. It has been simply fascinating to work under his enthusiastic guidance. Dr. Lu has educated, advised and encouraged me in every possible way. He has always provided unlimited accessibility to technical discussion as well as immediate assistance in facilitating research work. He has helped me develop my professional skills and I will emulate his drive and work ethic throughout my career.

I sincerely thank the members of my thesis committee, Drs. Nelson, Suchicital, Borojevic, Lee and Kampe for their continued support and guidance. Dr. Nelson and Dr. Suchicital have offered technical assistance and moral encouragement all throughout the years. I have learnt extensively from the invaluable discussions and interactions I have had with them. I am grateful to Dr. Lee and Dr. Borojevic for giving me the opportunity to work for the Center for Power Electronics. I have gained invaluable lessons being exposed to their visions and leadership skills. I thank Dr. Kampe for contributing insights in my research.

I am grateful to my colleagues at the Power Electronics Packaging Laboratory, the Electro-Ceramic Processing Laboratory and the CPES lab for their unconditional supports. I am indebted to Kun Xing, who taught me the ABCs of power electronics during the early years of module fabrication. Sihua Wen helped me in numerous occasions in the module fabrication process. Thanks to Jess Calata and Xingsheng Liu for their helpful advise and support with different processing and characterization work. Bob Fielder helped me a great deal with his expertise in the laser machining of the sputtering masks. I thank Kalyan Siddabattula, Aaron Xue and Jing Xiukuan for their help in the electrical testing of the modules. Thanks to Mike Craven, Justin Gravatt and Trevor Paul, a few exceptionally bright students who I had the privilege to advise during their senior projects. Special thanks to Joe Price O’Brien and Dan Huff, the two lab managers, for their prompt and friendly support all year around. I am also grateful to Teresa Shaw, Ann Craig and Trish Rose at CPES and Amy Hill and Jan Doran at the MSE Dept. for their administrative and secretarial help. Most importantly, I will forever cherish their friendships.

I am also indebted to Dr. Li Voon Ng, Jeff Fishbein and Herb Fick at the Bergquist Company for their support in using their facility for the thermal resistance measurements. It was a pleasure working in their R&D facility on several occasions.

Special thanks to Mike Kearney, Jim Stradling, John Goings and Charles Federman at Sonix Incorporated for their help in the acoustic imaging of the samples. They have assisted me in every possible way to expedite my research. I thank them for letting me use their state-of-the-art scanning facility. I also thank Mac McCord at the MRG lab in the ESM department for teaching me the ultrasonic imaging system and numerous discussions in the data analysis phase.

Andrew Bass from Angstrom Engineering helped me a great deal during the set up and calibration of the sputtering machine. I cannot thank him enough for the numerous telephone discussions we have had over the last year.

Thanks to Frank Kromer at the surface chemistry lab at Virginia Tech for his support on the SEM, EDX, and XPS analyses of the power devices. I am grateful to him for the care he took in teaching me the analytical tools.

Special thanks to my friends -- Ashish Moondra, Basant Maheshwari, Sanjay Aggarwal, Vidyaran Jwala, Srabani Ghosh, Meeta Mehrotra and Lakshmi Vasudevan (who had left me alone in Blacksburg while they moved on with their professional lives) for their encouragement. I am also grateful to all my Bangladeshi friends in Blacksburg for their affection and friendship.

I greatly appreciate the everlasting help and support of all my family members in Bangladesh and abroad. Special thanks to Dr. Reza Haque and Yasmeen Haque for making my life easy in the U.S. for the last eleven years. I also thank Dr. Aditi Huq and Barrister Aneek Haque, my ever-notorious siblings for their constant inquiries about the status of my Ph.D., which drove me crazy sometimes!

Most importantly, I extend my profound appreciation to my parents, Dr. M. Enamul Huq and Anamika Huq, and my wife, Mithila Rahman for their tremendous support, encouragement and patience all throughout the years. My parents have always been the biggest driving forces for all my accomplishments. I cannot thank them enough for their enormous trust that they have rendered upon me. Mithila has always understood me throughout the good times and the bad times of my research years and I deeply appreciate her unconditional love and support in my ventures. I offer my deepest thanks to her for brightening every single day of my life for the past three years and I look forward to the same for years to come.
TABLE OF CONTENTS

Acknowledgments ... iii
List of Figures .. vi
List of Tables ... ix
List of Acronyms .. x

Chapter I. Introduction ... 1

1.1 Motivation for Three-Dimensional Packaging of Power Modules ... 1
1.2 Introduction to Metal Posts Interconnected Parallel Plate Structure .. 2
1.3 Significance of Interface Engineering in Package Fabrication ... 3
 1.3.1 Processing and Characterization of Device Interconnection Interface .. 5
 1.3.2 Characterization of Interfacial Thermal Resistance .. 6
1.4 References ... 8

Chapter II. Packaging of Metal Posts Interconnected Parallel Plate Structure (MPIPPS) Modules 10

2.1 Introduction .. 10
 2.1.1 Converter Topology Selection .. 10
 2.1.2 Planar Wire-bonded Packaging vs. Three-Dimensional Multi-layer Packaging ... 11
 2.1.3 Advantages of Solder Interconnections over Wire-bonding .. 12
 2.1.4 Alternative Three-Dimensional Packaging Technologies for Power Modules .. 14
 2.1.4.1 GE's Power Overlay Technology .. 15
 2.1.4.2 Pressure Contact Technology ... 16
 2.1.4.3 Stud-Bump Technology .. 16
 2.1.4.4 Harris Thin Pack Technology .. 17
 2.2 Experimental Work .. 17
 2.2.1 MPIPPS Package Description ... 18
 2.2.2 Materials Research in MPIPPS Packaging .. 19
 2.2.3 Fabrication of MPIPPS Module ... 21
 2.3 Test Results on the Packaged Modules .. 22
 2.3.1 Parasitic Evaluation of an MPIPPS Module ... 22
 2.3.2 Thermal Test Results of the MPIPPS Module ... 23
 2.3.3 Power Stage Results .. 25
 2.3.3.1 Test Results of the 1st Phase Modules .. 25
 2.3.3.2 Test Results of the 2nd Phase Modules ... 27
 2.4 Summary ... 29
 2.5 References ... 29

Chapter III. Processing and Characterization of Solderable Interconnection of Power Devices 31

3.1 Introduction ... 31
 3.1.1 Significance of the Under-Bump-Metallurgy for Solderable Interconnection .. 31
 3.1.2 Available UBM Schemes for Solder Interconnection of Devices ... 33
 3.2 Experimental Work .. 38
 3.2.1 Metallization of Device Contact Pads by Sputtering Process ... 38
 3.2.1.1 Plasma Cleaning .. 38
 3.2.1.2 Sputtering ... 40
 3.2.2 Metallization of Device Contact Pads by Electroless Chemical Process .. 40
 3.2.2.1 Chemical Cleaning .. 41
 3.2.2.2 Zincate Plating .. 41
 3.2.3 Solder Bumping Process for Post Attachment .. 42
 3.3 Electrical Contact Resistance Test Results ... 44
LIST OF FIGURES

Chapter I.
Figure 1.1.1 Outside and inside of a commercial wire-bond module ... 1
Figure 1.2.1 MPIPPS cross-section structure .. 3
Figure 1.3.1 Components and interfaces of a commercial module ... 4
Figure 1.3.2 Cross-section view of critical interfaces: (a) device interconnection interface, (b) module to heat spreader attachment interface ... 4

Chapter II.
Figure 2.1.1. Converter topologies .. 11
Figure 2.1.2. Top and bottom plates of a three-dimensional power module structure ... 11
Figure 2.1.3. Stacked solder-bump interconnection ... 14
Figure 2.1.4. A cross-section schematic of a GE-POL structure .. 15
Figure 2.1.5. A cross-section view of Semikron's SkiIPack with pressure contacts ... 16
Figure 2.1.6. SEM image of a stud bump .. 17
Figure 2.1.7. SEM image of a SBB cross-section .. 17
Figure 2.1.8. Schematic of a Harris Thin Pack with solderable contacts on both sides of the device 17
Figure 2.2.1. MPIPPS cross-section structure .. 18
Figure 2.2.2. Proposed circuit diagrams for two phases of packaged module ... 19
Figure 2.2.3. Comparison of contact geometries .. 20
Figure 2.2.4. Processing steps of an MPIPPS module .. 22
Figure 2.2.5. MPIPPS bottom layer with devices .. 22
Figure 2.2.6. Parasitic inductance in an MPIPPS layout .. 22
Figure 2.2.7. MPIPPS module with thermocouples attached for thermal testing .. 23
Figure 2.3.1. Time dependent temperature distribution of MPIPPS module; Power rating: 100V, 5A, 20kHz (natural convection air cooling) ... 24
Figure 2.3.2. Time dependent temperature distribution of MPIPPS module; Power rating: 150V, 9A, 20kHz (natural convection air cooling) ... 24
Figure 2.3.3. Time dependent temperature distribution of MPIPPS module; Power rating: 200V, 12A, 20kHz (convective air cooling) ... 25
Figure 2.3.4. (a): Test Circuit for the Low-Side Switch Test; (b): Inductor Charging Path (thick line) of the Low-Side Switch Test; (c): Inductor Discharging Path (thick line) of the Low-Side Switch Test ... 26
Figure 2.3.5. The measured results of the low-side IGBT in the MPIPPS module, f_c=20 kHz (Upper: V_c Voltage Waveform of the Low-Side IGBT, Bottom: Inductor Current Waveform) ... 26
Figure 2.3.6. (a): Test Circuit for the High-Side Switch Test (b): Inductor Charging Path of the High-Side Switch Test (c): Inductor Discharging Path of the High-Side Switch Path ... 27
Figure 2.3.7. The measured results of the high-side IGBT in the MPIPPS module, f_c=20 kHz (Upper: V_c Voltage Waveform of the middle point at the IGBT half-bridge, Bottom: Inductor Current Waveform) ... 27
Figure 2.3.8. Pulse-test waveforms on packaged polyimide passivated 1200V devices ... 28

Chapter III.
Figure 3.1.1. Cratering in silicon .. 32
Figure 3.1.2. Si cratering due to thick plated copper bump ... 33
Figure 3.1.3. UBM on over-travelled probe marks on the device pad ... 33
Figure 3.1.4. Process flow of IBM C4 technology .. 34
Figure 3.1.5. Delco Electronics and Flipchip Technologies’ UltraCSP package ... 35
Figure 3.1.6. Thick plated Cu bump used in Motorola, TI, National Semiconductor and UMC ... 35
Figure 3.1.7. Fujitsu’s SuperCSP package ... 35
Figure 3.1.8. Electroplated solder in a NuCSP package from EPS .. 36
Figure 3.2.1. Cross-section schematic of IXYS IGBTs .. 38
Figure 3.2.2. Die-maps of IXYS IGBTs .. 38
Figure 3.2.3. Sputtering process inside the chamber ... 40
Figure 3.2.4. Sputtering fixture .. 40
Figure 3.2.5. Calibration curves for the sputtering parameters ... 40
Figure 3.2.6. Electroless plating process flow .. 41
Figure 3.2.7. Stencil printing process for solder deposition...43
Figure 3.2.8. Soldering fixture for post attachment ..44
Figure 3.2.9. Post-attached IGBTs ...44
Figure 3.2.10. Cross-section view of a solder-bump on a device pad.................................44
Figure 3.3.1. Comparison of forward bias characteristics of a sputtered and a plated IXGD40N60A IGBTs45
Figure 3.3.2. Contact resistance measurement scheme for polyimide passivated IGBTs45
Figure 3.4.1. SEM image of a delaminated interface ...46
Figure 3.4.2. SEM cross-section of an soldered interface ...46
Figure 3.4.3. SEM cross-section of a Ti-Ni-Cu-Ag sputtered films on Si..46
Figure 3.4.4. EDX scans at different locations of a sputtered-soldered polyimide passivated IGBT ..47
Figure 3.4.5. Microscope image of a soldered post ..48
Figure 3.4.6. SEM image of a soldered post ...48
Figure 3.4.7. SEM of a polyimide passivated IGBT ...48
Figure 3.4.8. EDX plot of a polyimide passivated IGBT ...48
Figure 3.4.9. SEM of silicon nitride passivated IGBT ...49
Figure 3.4.10. EDX plot of a silicon nitride passivated IGBT ..49
Figure 3.4.11. Groove pattern on the Al metallization ..49
Figure 3.4.12. SEM image of the surface contour of a silicon nitride passivated device49
Figure 3.4.13. Cell patterns on an polyimide passivated IGBT ..50
Figure 3.4.14. SEM of run-off cell surfaces ..50
Figure 3.4.15. Si-Si$_3$N$_4$ interface of a IXGD40N60A device ..50
Figure 3.4.16. EDX scan at the Si-Si$_3$N$_4$ interface ..50
Figure 3.4.17. Ti-Ni-Cu-Ag sputtered films on Si ...51
Figure 3.4.18. EDX scan for determining layer thicknesses ...51
Figure 3.4.19. SEM cross-section of a Cu sputtered Al$_2$O$_3$ substrate ..51
Figure 3.4.20. Zn-Ni-Au plated polyimide passivated ...52
Figure 3.4.21. EDX mapping of Al-Zn-Ni-Au ..52
Figure 3.4.22. Sputtered Cr-Cu on polyimide passivated device ..52
Figure 3.4.23. EDX mapping of Cr-Cu-Al-Si ...52
Figure 3.4.24. EDX mapping of plated Zn-Ni ..52
Figure 3.4.25. Sample EDX images of sputtered Ti-Ni-Cu on IGBTs ...52
Figure 3.4.26. XPS wide-scan on the Al pad of an IXGD40N60A IGBT ...54
Figure 3.4.27. XPS wide-scan on the Si$_3$N$_4$ passivation of an IXGD40N60A IGBT55
Figure 3.4.28. XPS wide-scan on the Al pad of an IXSD35N120A IGBT ..55
Figure 3.4.29. XPS wide-scan on the polyimide passivation of an IXSD35N120A IGBT ..55
Figure 3.4.30. Multiplex scan on Al (IXGD40N60A) ..57
Figure 3.4.31. Multiplex scan on Al (IXSD35N120A) ..57
Figure 3.4.32. Multiplex scan on carbon (IXGD40N60A) ..57
Figure 3.4.33. Multiplex scan on carbon (IXSD35N120A) ...57
Figure 3.4.34. XPS wide-scan on a 50Å etched Al pad of an IXGD40N60A IGBT58
Figure 3.4.35. XPS wide-scan on a 50Å etched Al pad of an IXSD35N120A IGBT58
Figure 3.4.36. Narrow scan on 50Å Al-IXGD40N60A ..59
Figure 3.4.37. Narrow scan on 50Å etched Al-IXSD35N120A ..59
Figure 3.4.38. Narrow scan on 50Å C-IXGD40N60A ..60
Figure 3.4.39. Narrow scan on 50Å etched C-IXSD35N120A ..60
Figure 3.4.40. Multiplex scan on carbon of the polyimide passivation (IXSD35N120A)61
Figure 3.4.41. XPS wide-scan on the Al pad of a 100Å etched IXSD35N120A IGBT61
Figure 3.4.42. Al scan with 100Å etched pad (IXSD35N120A) ..62
Figure 3.4.43. Carbon scan with 100Å etched pad (IXSD35N120A) ...62
Figure 3.5.1. Reactions at the polymer surface during an oxygen-CF$_4$ plasma65

Chapter IV.

Figure 4.1.1. Increase of loss power density in the last decade in electronic packages72
Figure 4.1.2. A cross-section schematic of a typical module substrate to heat spreader interface structure ..74
Figure 4.1.3. Percent contribution of package thermal resistance components74
Figure 4.1.4. Solder interface of a power module ...75
Figure 4.1.5. Epoxy interface of a power module ...75
Figure 4.1.6. Factors contributing to void formation...76
Figure 4.2.1. Package thermal resistance using various interface materials...79
Figure 4.2.2. Optimized profile for solder reflow process...81
Figure 4.2.3. A schematic of a thermal chip TO-220 test technique...84
Figure 4.2.4. Cross-section view of the sample test structure for thermal resistance measurement...86
Figure 4.2.5. Schematic of the test setup (courtesy: The Bergquist Company, Edina, Minnesota) ...87
Figure 4.2.6. Reflection from an air-gap and at a bonded interface...88
Figure 4.2.7. Die-attach layer characterization by AMI ...89
Figure 4.2.8. A comparison of the available three acoustic microscopy techniques...90
Figure 4.2.9. Block diagram of the C-SAM technique...90
Figure 4.2.10. A typical A-Scan image (with the selected gates) of a device on a substrate...91
Figure 4.2.11. Schematic of the C-SAM TAMITM technique...93
Figure 4.2.12. Gating scheme with TAMI feature...93
Figure 4.2.13. Acoustic image of an epoxy interface...94
Figure 4.3.1. Effects of added weight and reflow environment on (a) thermal resistance and (b) defect content (solder-preform). ...96
Figure 4.3.2. Effects of added weight and reflow environment on (a) thermal resistance and (b) defect content (solder-paste) ...97
Figure 4.3.3. Effects of added weight and reflow environment on (a) thermal resistance and (b) defect content (silver-epoxy)...99
Figure 4.3.4. Comparison of thermal resistance components (conventional processing vs. tailored processing) ...100
Figure 4.3.5. Comparison of volume % of thermal resistance components (conventional processing vs. tailored processing) ...100
Figure 4.3.6. Thermal resistance as a function of defect content (solder) ...101
Figure 4.3.7. Thermal resistance as a function of defect content (silver epoxy) ...102
Figure 4.3.8. Acoustic images of Pb-Sn eutectic solder interfaces...103
LIST OF TABLES

Chapter I.
Table 1.3.1. Parameters of the three different interconnections..5

Chapter II.
Table 2.1.1. Comparison of common interconnection technologies ..13
Table 2.2.1. Performance goals and packaged components for 1st phase MPIPPS modules ...19
Table 2.2.2. Steps and issues of MPIPPS processing ...21
Table 2.3.1. Pulse-test results on packaged devices ...28
Table 2.3.2. Testing results for commercial and MPIPPS module ..29

Chapter III.
Table 3.1.1. A few common UBM schemes used in flipchip applications ...37
Table 3.3.1. Process parameters of the electroless deposition scheme ...42
Table 3.2.2. Measured contact resistance results of a few polyimide passivated IGBTs ..45
Table 3.4.1. Volume percentage of elemental compositions of IGBT surfaces ..56
Table 3.4.2. Volume percentage of elemental compositions of non-etched and 50Å etched IGBT surfaces ..59
Table 3.4.3. Volume percentage of aluminum compositions of non-etched and 50Å etched IGBT surfaces ..60
Table 3.4.4. Volume percentage of carbon compositions of pure polyimide, non-etched and 50Å etched Al surfaces60
Table 3.4.5. Volume percentage of elemental compositions of 100Å etched IGBT surfaces ...62
Table 3.4.6. Volume % of aluminum and carbon compositions of pure polyimide, non-etched, 50Å etched, and 100Å etched Al surface62
Table 3.5.1. Properties of PIQ Polyimide and a some inorganic materials ...64
Table 3.5.2. Applications of common gases used for plasma etching ..67

Chapter IV.
Table 4.2.1. Properties of selected interface materials ..79
Table 4.2.2. Curing conditions of the silver epoxy ...81
Table 4.2.3. Acoustic Impedance of Common Packaging Materials ...89
Table 4.2.4. Resolution and Penetration at Common Operating Frequencies ..92
LIST OF ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlSiC</td>
<td>Aluminum Silicon Carbide</td>
</tr>
<tr>
<td>AMI</td>
<td>Acoustic Micrography Imaging</td>
</tr>
<tr>
<td>BGA</td>
<td>Ball Grid Array</td>
</tr>
<tr>
<td>C4</td>
<td>Controlled Collapse Chip Connection</td>
</tr>
<tr>
<td>CASING</td>
<td>Crosslinking via Activated Species of Inert Gases</td>
</tr>
<tr>
<td>CGA</td>
<td>Ceramic Column Grid Array</td>
</tr>
<tr>
<td>CCMD</td>
<td>Chip Carrier Mounting Device</td>
</tr>
<tr>
<td>CFC</td>
<td>Chlorofluorocarbon</td>
</tr>
<tr>
<td>CGA</td>
<td>Column Grid Array</td>
</tr>
<tr>
<td>CPES</td>
<td>Center for Power Electronics Systems</td>
</tr>
<tr>
<td>C-SAM</td>
<td>C-mode Scanning Laser Acoustic Microscope</td>
</tr>
<tr>
<td>CSP</td>
<td>Chip Scale Packaging</td>
</tr>
<tr>
<td>CTE</td>
<td>Coefficient of Thermal Expansion</td>
</tr>
<tr>
<td>DBC</td>
<td>Direct Bond Copper</td>
</tr>
<tr>
<td>DCA</td>
<td>Direct Chip Attach</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy Dispersive X-Ray</td>
</tr>
<tr>
<td>FC</td>
<td>Flipchip</td>
</tr>
<tr>
<td>GE</td>
<td>General Electric</td>
</tr>
<tr>
<td>HDI</td>
<td>High Density Interconnect</td>
</tr>
<tr>
<td>HTP</td>
<td>Harris Thin Pack</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>IGBT</td>
<td>Insulated Gate Bipolar Transistor</td>
</tr>
<tr>
<td>IMS</td>
<td>Insulated Metal Substrate</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>LSI</td>
<td>Large Scale Integrated</td>
</tr>
<tr>
<td>MCM-HDI</td>
<td>Multichip Module - High Density Interconnect</td>
</tr>
<tr>
<td>MCM-L</td>
<td>Multichip Module - Laminated</td>
</tr>
<tr>
<td>MIL-STD</td>
<td>Military Standard</td>
</tr>
<tr>
<td>MMC</td>
<td>Metal Matrix Composite</td>
</tr>
<tr>
<td>MOSFET</td>
<td>Metal Oxide Semiconductor Field Effect Transistor</td>
</tr>
<tr>
<td>MPIPPS</td>
<td>Metal Posts Interconnected Parallel Plate Structure</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed Circuit Board</td>
</tr>
<tr>
<td>PEBB</td>
<td>Power Electronics Building Block</td>
</tr>
<tr>
<td>PFG</td>
<td>Polymer Flipchip</td>
</tr>
<tr>
<td>PIQ</td>
<td>Polymide Isoindoloquin Azolidione</td>
</tr>
<tr>
<td>POI</td>
<td>Power Overlay</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>SAM</td>
<td>Scanning Acoustic Microscopes</td>
</tr>
<tr>
<td>SBB</td>
<td>Stud Bump Bonding</td>
</tr>
<tr>
<td>SCSP</td>
<td>Super Chip Scale Packaging</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscope</td>
</tr>
<tr>
<td>SLAM</td>
<td>Scanning Laser Acoustic Microscope</td>
</tr>
<tr>
<td>SMT</td>
<td>Surface Mount Technology</td>
</tr>
<tr>
<td>SOIC</td>
<td>Small Outline Integrated Circuit</td>
</tr>
<tr>
<td>TAB</td>
<td>Tape Automated Bonding</td>
</tr>
<tr>
<td>TAMI</td>
<td>Tomographic Acoustic Micrography Imaging</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscope</td>
</tr>
<tr>
<td>TOF</td>
<td>Time of Flight</td>
</tr>
<tr>
<td>TSP</td>
<td>Temperature Sensitive Parameter</td>
</tr>
<tr>
<td>UBM</td>
<td>Under Bump Metallurgy</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>VSI</td>
<td>Voltage Source Inverter</td>
</tr>
<tr>
<td>XPS</td>
<td>X-Ray Photoelectron Spectroscopy</td>
</tr>
</tbody>
</table>