Use of Response Surface Metamodels in Damage Identification of Dynamic Structures

by

Amanda L. Cundy

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Master of Science

in

Engineering Science and Mechanics

Daniel J. Inman, Co-Chair
Mahendra P. Singh, Co-Chair
Romesh C. Batra
François M. Hemez

January 7, 2003

Blacksburg, Virginia

Keywords: damage identification, reduced order modeling, response surface metamodels
The need for low order models capable of performing damage identification has become apparent in many structural dynamics applications where structural health monitoring and damage prognosis programs are implemented. These programs require that damage identification routines have low computational requirements and be reliable with some quantifiable degree of accuracy. Response surface metamodels (RSMs) are proposed to fill this need. Popular in the fields of chemical and industrial engineering, RSMs have only recently been applied in the field of structural dynamics and to date there have been no studies which fully demonstrate the potential of these methods. In this thesis, several RSMs are developed in order to demonstrate the potential of the methodology. They are shown to be robust to noise (experimental variability) and have success in solving the damage identification problem, both locating and quantifying damage with some degree of accuracy, for both linear and nonlinear systems. A very important characteristic of the RSMs developed in this thesis is that they require very little information about the system in order to generate relationships between damage indicators and measureable system responses for both linear and nonlinear structures. As such, the potential of these methods for damage identification has been demonstrated and it is recommended that these methods be developed further.
Acknowledgments

I would first like to thank my family for their support and encouragement. I would like to thank my advisor, Dr. Dan Inman, for his guidance and flexibility while I have studied at Virginia Tech. I would also like to thank the other Virginia Tech members of my committee Dr. M.P. Singh and Dr. R.C. Batra for their time and insight. I would like to acknowledge the National Science Foundation, from whom I received support in the Fall of 2002. I would also like to extend my thanks to my colleagues at Los Alamos National Laboratory, Dr. Francois Hemez, who is also serving on this committee and has provided valuable assistance, Dr. Gyuhae Park, formerly of Virginia Tech who wrote much of the simulation code used in this thesis and provided great insights, Dr. Chuck Farrar, who has been my mentor at Los Alamos and agreed to support me while at Virginia Tech, and the many others in ESA-WR who were so supportive of this venture. I would also like to express my appreciation to my Virginia Tech colleagues and friends, who helped to make Virginia feel a little more like home. Finally, I would like to express my love and appreciation to my fiancé, Dr. Steven W. Rutherford, for his unconditional support throughout. Without it, I never could have completed this work. Thanks, dear – we made it!

Mandy Cundy

Virginia Polytechnic Institute and State University
Blacksburg, VA
December 2002
Contents

Abstract ... ii
Acknowledgments ... iii
List of Figures ... vii
List of Tables ... viii

Chapter 1 INTRODUCTION TO RESPONSE SURFACE METAMODELS OF
DYNAMIC STRUCTURAL SYSTEMS ... 1

Chapter 2 BACKGROUND ... 6
 2.1 Introduction ... 6
 2.2 Model Reduction .. 6
 2.3 Damage Identification .. 9
 2.4 Response Surface Methods ... 11
 2.5 Application of Response Surface Methods to Structural Dynamics Problems 14

Chapter 3 LINEAR FIVE DEGREE OF FREEDOM SYSTEM 18
 3.1 Introduction .. 18
 3.2 Step 1: Definition of Structure of Interest 20
 3.3 Step 2: Selection of Input Parameters and Output Features 21
 3.3.1 Variable Screening ... 23
 3.3.1.1 General Sensitivity Analysis 24
 3.3.1.2 Significant Effects Variable Screening 26
 3.3.1.3 Variable Screening Conclusions 28
 3.4 Step 3: Construction of Response Surfaces and Error Characterization 28
 3.5 Step 4: Damage Identification 31
 3.5.1 Step 4a: Attempts to Solve the Inverse Problem Using Time Series Features 31
Appendix B ATTEMPTS TO SOLVE THE INVERSE PROBLEM USING TIME SERIES FEATURES. ... 70

Appendix C BEAM DESIGN POINT SIMULATION RUNS. 72

VITA. ... 74
LIST OF FIGURES

1.1 Conceptual plot of the types of metamodels. .. 2
2.1 Qualitative design space for a two parameter central composite design. 13
2.2 Qualitative design space for a two parameter face centered cubic design. 13
3.1 Four steps for performing damage identification using response surface metamodels. . 19
3.2 5DOF simulated system. .. 20
3.3 Typical displacement history and line fit to the positive peaks. 23
3.4 Results of general sensitivity analysis. ... 25
3.5 Significant effects screening results. ... 27
3.6 Response surface fit to CCD design points. ... 30
3.7 One of the five response surfaces generated for the damage identification problem. . 34
3.8 Results of solving the damage identification problem using optimization. 37
3.9 Relative errors of predictions of stiffness and location. 38
4.1 Upper and lower 95% confidence intervals on the mean of 3% noise realizations. 42
4.2 Stiffness predicted vs. actual. .. 46
4.3 Location predicted vs. actual. .. 47
4.4 Flowchart of protocol for use in choice of response surface metamodels. 48
5.1 Beam dimensions and mass spacing. .. 50
5.2 Photo of the experimental beam-mass setup. .. 50
5.3 Ansys™ 2D beam simulation with point masses. ... 51
5.4 Predicted and actual number of masses for the set of design points. 54
5.5 Percent of design points identified correctly. ... 55
5.6 Actual and predicted number of masses for simulated natural frequencies outside of the design set. ... 56
5.7 Location error for simulated natural frequencies outside of the design set. 57
5.8 Actual and predicted number of masses using experimentally measured frequencies. . 59
5.9 Location error when experimentally measured frequencies are used. 59
LIST OF TABLES

1.1 Advantages and disadvantages of various metamodeling techniques. 3
3.1 Input parameter identification for linear 5DOF system. ... 20
3.2 GSA input parameter values and corresponding output feature values. 24
3.3 Models of the 5DOF simulated system. ... 29
3.4 CCD design for simulation of the E feature. ... 29
3.5 FCC design used for damage identification of the 5DOF system. 34
3.6 Full factorial set of damage identification runs. ... 36
4.1 FCC design used for damage identification of the nonlinear 5DOF system. 45
5.1 Test analysis correlation for experimental setup and finite element model: all masses removed. ... 51
5.2 Test analysis correlation for experimental setup and finite element model: all masses present. ... 51
5.3 Adjusted R² for each model generated using the set of 32 design points....................... 53
5.4 Actual mass locations for points generated for simulated natural frequencies outside of the design set. ... 56
5.5 Mass locations for experimentally generated natural frequencies. 58
5.6 Percent error between experimental frequencies and simulated frequencies. 58
A1 Summary of error metrics for two-input-parameter designs. 69