SCIENCE OF THE SMALL
NANOTECHNOLOGY RESEARCH LABORATORY IN WASHINGTON, DC

GREGORY T PORTER

THESIS SUBMITTED TO THE FACULTY OF
THE VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF ARCHITECTURE

APPROVED BY

JAAN HOLT, COMMITTEE CHAIR

DR. PAUL EMMONS, PH.D, COMMITTEE MEMBER

SUSAN PIEDMONT-PALLADINO, COMMITTEE MEMBER

WASHINGTON-ALEXANDRIA ARCHITECTURE CONSORTIUM
ALEXANDRIA, VIRGINIA

COLLEGE OF ARCHITECTURE AND URBAN STUDIES
BLACKSBURG, VIRGINIA

01/15/2010

KEYWORDS:
NANOTECHNOLOGY, LABORATORY, CLEANROOM, SCIENCE, SCALE, LAYERS, REVEALING,
INDUSTRY, MATERIALITY, INTERACTION, MICROPROCESSORS

© 2009 BY GREGORY T PORTER
ABSTRACT:

THIS THESIS IS AN ATTEMPT TO EXPLORE POST INDUSTRIAL SOCIETY AND HOW MODERN INDUSTRY CAN BECOME PART OF THE URBAN EXPERIENCE. THROUGH THE DESIGN OF A NANOTECHNOLOGY RESEARCH LABORATORY, I WAS ABLE TO DISCOVER A CONNECTION BETWEEN MODERN ARCHITECTURE AND NANOTECHNOLOGY WHICH REVOLVED AROUND THE TOPICS OF SCALE, LAYERING AND REVEALING.
ACKNOWLEDGEMENTS

I OWE A GREAT DEAL OF GRATITUDE TO THOSE IN MY LIFE.

MY PARENTS CATHERINE AND JOHN PORTER, MY SIBLINGS RICHARD, BRIDGET AND DANIEL, AND MY GRANDPARENTS. THANK YOU FOR YOUR UNWAVERING SUPPORT.

TO MY COMMITTEE JAAN HOLT, DR. PAUL EMMONS, PH.D, AND SUSAN PIEDMONT-PALLADINO THANK YOU FOR PUSHING ME, AND CHALLENGING ME TO THINK ABOUT ARCHITECTURE IN WAYS THAT I COULD HAVE NEVER CONCEIVED ON MY OWN. YOU REALLY HELPED ME CHANGE THE WAY THAT I SEE ARCHITECTURE AND THE WORLD, AND FOR THAT I AM ETERNALLY GRATEFUL.

ESPECIALLY TO ULRIKE ALTMÜLLER - WORDS CAN NOT BEGIN TO SAY HOW THANKFUL I AM TO YOU FOR ALL OF YOUR ENCOURAGEMENT, YOUR COMMITMENT, AND FOR NEVER LETTING ME GIVE UP. I TRULY DO NOT KNOW WHERE I WOULD HAVE BEEN WITHOUT YOUR GUIDANCE.

JONATHAN FOOTE, THANK YOU FOR HELPING ME TO DEVELOP MY PASSION FOR MATERIAL STUDIES, FOR YOUR CRITIQUES, AND FOR ALL OF YOUR HELP AND ENCOURAGEMENT.

MITSY CANTO-JACOBS OF CUH2A, THANK YOU FOR MEETING WITH ME TO REVIEW MY PROJECT AND HELP ME TO GAIN A BETTER UNDERSTANDING OF THE WORLD OF NANOTECHNOLOGY.

AND TO ALL THE WONDERFUL PEOPLE I HAVE MET AT WAAC:

CHERYL MOY <3 | RAMONA SONNTAG | MATTHEW VALENTINE | PO-HAO CHEN | JOANNE TRUMBO | GUSTAVO DE JONG | NASHWELL HAYES | EDGAR DEL ARCO

BENJAMIN BUTZ | BJORN STEUDTE | KYONGSIK JUN | MICHAEL RODRIGUEZ | RYOHEI SAITO | YANYAN LI | TANIA SARACHO-ROSALES | NEELUM KHALSA | YVES SIX | LEGARE ROBBIE HINDS | FLORENCIA CONALBI | PAOLA MERETTI | ELENA PARODI | CAROLINA DAYER | JOHN FOLEY | LAUREN SCHLATHER | HENDRIK KLEIN | GRZEGORZ WARTAK | ANDRO MAND | WERNER NERLICH | VALENTIN DIEZ | CHRISTINE BUTTNER-GRIFFENHAIN | ADAM PERRIS | CAROLYN PARRIS | KELVIN WEBSTER | THOMAS AND JJ CHEUNG | ALEC LUONG | BELITA ASFAW | BRIAN SYKES | DAWN PARKER | EMILY SCALI | JESSICA TURRIN | KERI KENNEDY | MARILYN SHEPPARD | PATRICK KNEE | RYAN PIPER | JOHN SCHIPPERS | KARISA DAVIES | KHALID KHRIESAT | MICHAEL FORD | RICHARDO VASQUEZ | DAFANG CHAI | DONG KEON KIM | MARIA ELENA GALVAN | PATRICIA JARA | BRIAN GAFFNEY | DENA KENNEDD
TO SEE A WORLD IN A GRAIN OF SAND
AND A HEAVEN IN A WILD FLOWER,
HOLD INFINITY IN THE PALM OF YOUR HAND
AN ETERNITY IN AN HOUR.

AUGURIES OF INNOCENCE
- WILLIAM BLAKE
TABLE OF CONTENTS

TITLE PAGE i
ACKNOWLEDGEMENTS iv
DEDICATION iii
TABLE OF CONTENTS v
INTRODUCTION 10
THE INDUSTRIAL BUILDING 12
INFLENCES & INSPIRATION 14
MATERIAL STUDIES - CUTTING 24
MATERIAL STUDIES - FERROCRETE 26
LAYERS 28
SCALE 30
NANOTECHNOLOGY 32
SITE ANALYSIS 42
EARLY THOUGHTS 54
I began the process of thesis, not really knowing where to begin, or what a thesis was. Instinctively, thoughts of my childhood came to mind. I remember having a fascination with the old industrial buildings in the city of Syracuse, NY, and also recall a personal drive to learn about science and technology. These industrial buildings I saw as a kid were technological relics that told the story of a strong industrial America. Although I was not fully aware at the time, I now realize that I was surrounded by a very rich history of manufacturing and early technologies.

Throughout my studies, I have learned that the landscapes of early America were originally thought of as utopian pastoral gardens. These ideas of the pastoral garden would change with the introduction of the industrial revolution, as trains and other machines started invading these gardens. There was no turning back, as the machine became a staple of the American life making work, travel and leisure time much easier. The first settlers of America had a general idea of what they were to expect and what was to come in time, but things changed so rapidly that the innovations were much greater than anything that could have been imagined.

Although the changes during this time were dramatic, in hindsight it is possible to see that these cycles of technological evolution have never ended. According to Moore’s Law, it states that technology doubles itself approximately every twenty-four months. Gordon E. Moore, who is the co-founder of Intel, was first to conceive this idea. In the world of technology, this is an important concept as this prediction has held true since it was stated in 1965. Even though it has only been forty-four years since this idea was conceived, it can be shown throughout modern history to be frequently consistent. This ability to predict technological achievements can help us look into the near future and calculate what kinds of hurdles we will jump and where we could be headed during the rest of this century.

Ultimately, I began to ask myself what the future in this post-industrial, technology-driven society would be like, and how it could help to shape modern America. This made me think about a technology which has the potential to start a modern day technological revolution, Nanotechnology. I have found this subject to be fascinating, and this is part of the reason I decided to design a Nanotechnology Research Laboratory. Through the development of my thesis, I looked at topics that I found to be closely related to both Nanotechnology and Architecture:

Scale, Revealing (of Information), and Layering
FORD FACTORY
BUFFALO, NY
BY ALBERT KAHN

ELECTRICAL SUBSTATION
WASHINGTON, DC
OWNED BY
DOMINION VIRGINIA
POWER

S EMPIRE ST GARMENT
FACTORY
WILKES BARRE, PA
20 FOOT INTERIOR BAYS
AFTER THE END OF THE INDUSTRIAL REVOLUTION, AS INDUSTRY BEGAN TO LEAVE THE UNITED STATES, EMPTY INDUSTRIAL BUILDINGS WERE LEFT BEHIND. MANY OF THE BUILDINGS LAY DORMANT, AS IT WAS COST PROHIBITIVE FOR THE BUILDINGS TO BE USED FOR THEIR INTENDED PURPOSE. AFTER MANY YEARS, PEOPLE HAVE STARTED TO SEE THE BEAUTY AND VALUE IN THESE UNIQUE BUILDINGS AND STARTED USING THEM FOR NEW INDUSTRY, COMMERCIAL AND RESIDENTIAL ENDEAVORS. OTHERS SIT EMPTY AND VANDALIZED, AS MONUMENTS TO OUR TECHNOLOGICAL PAST. I FIND SOMETHING VERY BEAUTIFUL ABOUT THE IDEA OF BUILDING SOMETHING OF QUALITY, WHICH HAS THE ABILITY TO LIVE ON FOR MULTIPLE GENERATIONS, AND POSSIBLY HAVE MULTIPLE USES THROUGHOUT ITS LIFE.

IN THESE BUILDINGS, MAN MADE MACHINE AND ARCHITECTURE WORKED TOGETHER TO FILL THE MANUFACTURING NEEDS OF SOCIETY. THE BUILDINGS HAD THE ABILITY TO CONTROL HEAT, LIGHT, AND VENTILATION, WHILE PROVIDING A STABLE FOUNDATION FOR MACHINERY AND A RIGID FRAMEWORK FOR ELECTRICAL TRANSMISSION AND MATERIALS HANDLING. IT IS THEREFORE NO SURPRISE THAT ARCHITECTS ARE DRAWN TO INDUSTRIAL BUILDINGS, AS MODERN ARCHITECTURE HAS BEEN DIRECTLY INFLUENCED BY THIS BUILDING TYPE AS WELL AS THE ACCUMULATED INFLUENCE OF THE MACHINE ENVIRONMENT.

I WANTED TO EXPERIENCE FIRST HAND WHAT DREW ME TO THIS TYPOLOGY, SO I DECIDED TO VISIT INDUSTRIAL SITES DURING MY TRAVELS. THE BUILDINGS I VISITED RANGED FROMfactories and coal processing facilities, to power plants and grain silos.

I REALIZED THAT THESE WERE VERY STRONG UTILITARIAN BUILDINGS, AND THE MATERIAL QUALITIES WERE SOMEHOW DIFFERENT THAN THE SURROUNDING BUILDINGS. THEY SEEMED TO HAVE THE ABILITY TO STAND THE TEST OF TIME.
ANTONIO SANT'ELIA
LA CITTA NUOVA
1914

TONY GARNIER
UNE CITE INDUSTRIELLE
(AN INDUSTRIAL CITY)
1918

LLOYDS OF LONDON
LONDON, ENGLAND
BY RICHARD ROGERS

-ASSEMBLY OF PARTS
-MACHINE AGE
-EXPOSED SYSTEMS
BEINECKE RARE BOOK & MANUSCRIPT LIBRARY
NEW HAVEN, CONNECTICUT

- BUILDING WITHIN A BUILDING
- SEPARATE ENVIRONMENTS
- STONE PANELS AS LIGHT FILTER

EASTERN STATE PENITENTIARY
PHILADELPHIA, PENNSYLVANIA

- ISOLATION CELLS
- IMPORTANCE OF INTERACTION
- VERY CONTROLLED ENVIRONMENT
- NEW MODEL FOR THE WORLD
- BUILDING SHOWS HOW IDEAS CHANGE WITH TIME
“WHEN I START, MY FIRST IDEA FOR A BUILDING IS WITH THE MATERIAL. I BELIEVE ARCHITECTURE IS ABOUT THAT. IT'S NOT ABOUT PAPER, IT'S NOT ABOUT FORMS. IT'S ABOUT SPACE AND MATERIAL.”

- PETER ZUMTHOR
I decided early on that I wanted my thesis to explore the idea of revealing, with a goal being set to create an architecture that was obvious and clearly understood through active or passive communication, while still leaving something to be desired or imagined.

This idea of how one reveals information about a subject matter was a constant theme in my thought process. I decided to start exploring this idea through material studies. Using unique materials I acquired during my travels, this idea came alive through cutting, breaking and illumination, as well creating materials that require tools, such as magnets or bush-hammers to reveal information. Through the use of these techniques, I started to reveal a world that was usually hidden from view.

(1) “REVEAL.” DICTIONARY.COM UNABRIDGED. RANDOM HOUSE, INC. 15 MAR. 2007. <DICTIONARY.COM HTTP://DICTIONARY.REFERENCE.COM/BROWSE/REVEAL>
Fractured Vein Quartz

shown above in its natural state, and below in its cut and polished form.

The quartz was cut to a thickness of 3/16" which allowed light to pass through the material. This was one of my first thoughts about how to filter light within my building, and had a direct relationship to my study of the Beinecke Rare Book & Manuscript Library in New Haven, Connecticut.
Fractured Vein Quartz
Cut and Polished

Close up view shows the fractured veins as well as multiple colors and veins composed of metallic ore. The process of cutting and polishing this very hard material help me to appreciate the amount of effort it takes to create a final product from a raw material.
Scoria - Basalt with Amygdaloidal Olivine Vesicles, cut and polished

The Scoria - Basalt was cut to a thickness of 3/16" to study how light can pass through this material, and to test whether this would be a practical building material.
SCORIA - COMPOSED OF BASALT WITH AMYGDALOIDAL OLIVINE VESICLES

A close up view shows a number of individual amygdaloidal vesicles filled part way with olivine deposits.

There is something very architectural about this stone in that cutting through it reveals the direction that the material laid within nature when it was formed.
BASALT

This image shows a piece of basalt that was cut into three sections to explore the different ways of working with basalt. In order from right to left, it shows the natural weathered igneous basalt, then a cut face of basalt, and lastly with a cut and polished surface.

RED SCORIA - VESICULAR BASALT

This image shows a piece of red scoria vesicular basalt. On the right is the naturally weathered surface, and on the left is a piece with a cut and polished surface.
This was about the time that Susan Piedmont-Palladino asked me the question:

How can you reveal beyond cutting?

And it got me thinking...
TOP LEFT: VERTICAL FRACTURED RIB CONCRETE WITH RED ORE.

BOTTOM LEFT: CYLINDRICAL FRACTURED CONCRETE WITH RED ORE.
TO EXPLORE THE IDEA OF REVEAL INFORMATION WITHOUT CUTTING, I DECIDED TO STUDY THE BREAKING OR FRACTURING OF A MATERIAL. I WAS ABLE TO EXPOSE THE INTERIOR AGGREGATE OF CONCRETE BY FRACTURING THE SURFACE USING SPECIALLY DESIGNED FORMWORK AND A BUSH-HAMMER.
FROM THE BEGINNING OF MY THESIS, I HAD SET A GOAL TO EITHER CREATING A NEW BUILDING MATERIAL OR TO FIND A WAY TO USE A MATERIAL THAT IS NOT COMMONPLACE IN THE BUILDING INDUSTRY.

THIS SPECIFIC EXPLORATION CAME ABOUT THROUGH A QUESTION ASKED BY SUSAN PIEDMONT-PALLADINO, WHICH WAS:

HOW CAN YOU REVEAL BEYOND CUTTING?

THIS MADE ME THINK ABOUT WAYS IN WHICH INFORMATION ABOUT AN OBJECT OR MATERIAL CAN BE HIDDEN, OR MADE NOT EASILY RECOGNIZABLE THROUGH GENERAL OBSERVATION.

THROUGH THE INFUSION OF IRON INTO CONCRETE* THE CONCRETE HAS TAKEN ON SOME OF THE PROPERTIES OF STEEL WHICH Allows MAGNETICS TO BE ATTACHED, YET BECAUSE OF THE SPECIFIC FORMULA, WILL NOT ALLOW THE STEEL TO CORRODE.

*Material Studies - Ferrocrete
ADDITIONAL STUDIES INTO THE ACT OF REVEALING PRODUCED A NEW BUILDING MATERIAL

FERROCRETE
Layering of the City:
A Collage of Washington, DC

On the left shows an early collage which is composed using multiple overlaying transparencies. Each transparency shows the same location within Washington DC, but from different points of view and angles. I was trying to show how things look different based on your point of reference, but also that every object and place in the universe has an infinite amount of information that can be extracted from it. We pick and choose what is important to us, from these layers of information, and move on. If one were to look at something hard enough, the object can reveal its true nature, or be lost within the layers of information.
Another constant theme through my research was the idea of layers and layering. Layering composes everything around us, whether it is in the form of the physical realm, to the mathematical and theoretical.

In the physical realm, no matter how large or small an object is, it is composed of layer upon layer of natures’ building block, the atom. To look at something that is more in scale with architecture, we can look at our building systems. The walls and floors of our buildings are created by adding layers of material, until there is a finished product. We even create double pane glass for our curtain wall systems, where air (or lack of air) acts as an additional layer. We can even go as far as to look at the macro sized particles within the paint on our walls, or the nano sized layers within a microchips, we use to design our buildings.

If something is looked at in the right way, there can be an infinite amount of information. This can be manifested in the form mathematics, atomic make up, visual spectrum, ultraviolet spectrum, weight, composition or context. We pick and choose the information we need from our surroundings, for too much information would overload our systems.

Throughout the thesis, layers have become an important part of my design, and my thinking.
LEFT IMAGE:
"MICROMEGAS SKILLFULLY PICKS UP THE SHIP WHICH WAS CARRYING THESE GENTLEMEN",
ENGRAVED BY:
GERARD VIDAL (1742-1801)
ARTIST:
MONNET, CHARLES (1732-1808).
BIBLIOTHEQUE NATIONALE,
PARIS, FRANCE

RIGHT IMAGE:
EARLY DENSITY / SCALE STUDIES OF WASHINGTON DC. THESE DRAWINGS SHOW THE DENSITY OF BUILDINGS WITHIN DIFFERENT PARTS OF THE CITY. THE SCALE IS BASED UPON WHERE ONE LOOKS IN THE CITY AND THE POSITION FROM WHERE THEY LOOK.
How does your position, in relation to what you are looking at, influence your perceptions? The easy answer to this question is scale, but what really is scale and what does it tell us about the environments around us?

Scale is a word that is used in many contexts and covers a wide range of topics, but its origins relate to measurement and indicate a change from one physical size to another. As a whole, we tend to take scale for granted in everyday life, processing scale and shifts in scale automatically, usually without conscious thought. Everything we observe in the natural environment, from the extreme of an extrasolar planet to the minute scale of an atomic nucleus, is put into perspective based on what we know best, the human scale.

Many of us can not fully grasp the extreme differences of scale between our world and the atomic world, so when we actively decide to alter our position so that we may observe this alternative scale, our vision of reality may need to shift to be able to accept what we observe.

When it comes to architecture, the main function of scale is to communicate facts and ideas about a building that are not revealed by other aspects of its physical form. In turn, scale acts as the defining feature in architecture that tells us how we should relate to a building. Relation can be based on the materials, the natural world, or the human body. One other great aspect of scale is its ability to convey complementary sets of information about an object at different distances. For example, as a person approaches a building from a great distance, the increasing resolution reveals different information in stages. In turn, the perceived scale of a building has a direct correlation to the observers distance from the building.

Since I am designing a Nanotechnology research laboratory, which deals with the manipulation of materials at the atomic scale, it seems quite appropriate to explore how scale can work to enhance a users experience within the realm of architecture. Ultimately, a persons position within the building will have to play a large role in this, as well as working with the monumentality and diminutiveness of key spaces.

Throughout my thesis, scale has been the most important and influential topic I have looked at, and this has had a profound effect on my thinking about architecture and my project.
On the left is a concrete model of a bucky ball, which is the first nanoparticle ever discovered. This carbon molecule was named after the architect R. Buckminster Fuller who designed a geodesic dome with a similar geometry. This model is approximately 50 million times larger than an actual buckyball.
NANOTECHNOLOGY

THE PROPOSED BUILDING FOR MY THESIS IS A NANOTECHNOLOGY RESEARCH LABORATORY, BUT WHAT GOES ON IN A BUILDING LIKE THIS? WHAT EXACTLY IS NANOTECHNOLOGY?

By definition, nanotechnology is the willful manipulation of atoms and molecules. This technology can change materials at the atomic and molecular level to build things not before possible. In fact, this technology has the potential to be able to make anything that can be imagined. The first person to envision the concept of nanotechnology was the Nobel-laureate physicist Richard Feynman during his 1959 speech titled "There's Plenty of Room at the Bottom", but it was not until 1986 that the term nanotechnology was created by Eric Drexler, in his 1986 book, Engines of Creation. The great thing about this technology is that it can be developed for use in design, for electronic applications, medicine, manufacturing, and to even create energy. Not just that, but nanotechnology will play a crucial role in the development of high speed computers and artificial intelligence. According to Monica Lundquist, "it will make possible computers a million times more powerful than today and much smaller." Really, this technology has the potential to spawn a new industrial revolution, and change the world as we know it.

One thing that drew me to this topic was the discovery of a few building materials that use nanotechnology to enhance their existing qualities, such as adhesives with enhanced tensile strengths, UV coatings on a magnitude of surfaces, coatings that provide antimicrobial protection, and self cleaning super strong glass. It made me start to wonder how big of a role this new technology will play on the construction site. I think this has the ability to take the industry by storm, and to eventually saturate the market. Before we know it, it could be hard to find a building product without nanotechnology somehow incorporated into its design, whether we know it or not. One downside to the current trends of this being an emerging product is the high cost. Because of this, manufactures have only been able to use small amounts of nanomaterial in their products, usually on the outside layer of the object. If one can get past the current costs, one can see that the best part about using these nanolayers is that they can improve an object, without changing its dimensions in any noticeable way, since it is only changing the surface on an atomic scale. This technology has helped create surfaces that resist scratching, wear, chemicals, and dirt. Imagine a toilet seat or countertop that always has an antibacterial quality, or a paint that fixes scratches as they are made. It could even go as far as to make stronger wall panels, microscopic fireproof barrier in building materials, new types of concrete that does not need any internal metal reinforcement, or even glass which is more transparent, to let solar panels receive and make use of more sunlight.

The more I learned about this topic, the more dreams I have about the future and all the possibilities of what could be. Even though this is a technology that is still very much in its infancy, it has potential to dramatically alter our idea of reality.
WHAT IS THE SCALE OF NANOTECHNOLOGY?

When measuring an object at the atomic scale, the length is most often measured using the nanometer, or NM. The nanometer is a unit of length in the metric system, equal to one billionth of a meter. This measurement system is so much smaller than what we are used to seeing on a daily basis, that it is difficult to wrap our minds around how tiny this really is. It is also very hard to grasp the concept that we as humans are able to manipulate materials at such a small scale.

It is commonly known that nanoparticles are things that can not be seen by the human eye. Because of the tiny nature of the atom, we must use tools such as the electron microscope to reveal information through framed and controlled view. The framed views are really only glimpses into a much larger world. It is sort of like trying to understand the earth by looking at one plant, animal, building, or mountain. Even though this is may seem somewhat ineffective, scientists are able to gain a great understanding of the atomic world through these glimpses.

In thinking about the scale of nanotechnology, I can’t help but be brought back to architecture and thought of materials. In some of my readings, there has been talk of the future and the idea of nanobots creating building through self replication of nanomaterials. If this were ever the case, what would happen to our building materials which would then be too small to be seen with the naked eye? Would the relationship between materials changes? The idea of “truth in materials” will no longer be correct. As Frank Lloyd once said “Each material speaks a language of its own”, but I must ask the question, what is the language of nanotechnology?

This may not be something that can be answered at the present, but in using my thesis as a tool to study this subject matter, I have given my best shot at trying to create an architecture that can allow man and machine to work together, while meshing the ideas of architecture and nanotechnology.
1
THE WIDTH OF A BUCKY BALL IN NANOMETERS

2
THE WIDTH OF DNA IN NANOMETERS

6
THE NUMBER OF BONDED CARBON ATOMS IN A SINGLE NANOMETER

22-100
THE WIDTH OF A SINGLE TRANSISTOR IN A MICROPROCESSOR -IN NANOMETERS-

75-100
THE WIDTH OF A TYPICAL VIRUS IN NANOMETERS

1,000-10,000
THE WIDTH OF TYPICAL BACTERIA IN NANOMETERS

10,000
THE WIDTH OF A WHITE BLOOD CELL IN NANOMETERS
20,000

The approximate number of researchers currently working in nanotechnology

100,000

The width of a human hair or a piece of paper in nanometers

25,400,000

The number of nanometers in one inch

100,000,000

The number of transistors in a typical microprocessor

1,000,000,000,000

The number of nanometers in one meter

1,727,200,000

The height of myself (Gregory Porter) in nanometers

443,090,000,000

The height of the Empire State Building in nanometers
A microprocessor is a miniaturized integrated circuit that is capable of arithmetic, logic and control operations, for our many computing needs. They are currently used in everything from our computers, to our cars, and cell phones. These are very complex and highly sensitive pieces of electronics, and are the result of countless hours of research at nanotechnology laboratories throughout the US.

Microprocessors are made from silicon wafers that have many atomic sized transistors printed onto its substrate. This can be thought of as a miniaturized version of a circuit board.

Top left: Circuit board from an outdated fax machine, scanned at 300 DPI.

Bottom left: College of multiple IC microprocessor schematics, made early on in the thesis process.

Bottom right: Intel Pentium I microprocessor, cut in half and polished to show the interior copper layers of the microprocessor. Scanned at 2400 DPI.
4" DIAMETER SILICON WAFFERS WITH INTEGRATED CIRCUITS PRINTED FROM AN IC DIE. THE INTEGRATED CIRCUITS ON THESE SILICON WAFERS ARE EXAMPLES OF THE NANO SCALED CIRCUITS THAT CAN BE RESEARCHED AND CREATED USING A NANOTECHNOLOGY RESEARCH LABORATORY.
The site is located in northwest Washington, DC in the heart of the George Washington University campus. This map shows its context in relation to the southern portion of the district.
SITE ANALYSIS

ON THE SOUTHEAST CORNER AT THE INTERSECTION OF 23RD STREET NW AND H STREET NW IS A SMALL PARKING LOT LOCATED IN THE HEART OF THE GEORGE WASHINGTON UNIVERSITY. THIS SITE IS RATHER SMALL, BUT GIVES A GOOD AMOUNT OF LIMITATION IN WHAT CAN BE BUILT WITHIN THE URBAN SPACE. THE SITE CAN VERY REASONABLY ACCOMMODATE A NANOTECHNOLOGY RESEARCH LABORATORY, AND WOULD BE ABLE TO BE ASSOCIATED TO THE SCHOOLS ENGINEERING AND APPLIED SCIENCES BUILDING, TOMPKINS HALL. THE SITE ALSO SITS ADJACENT TO AN ALLEY WHICH LEADS TO AN UNDERGROUND PARKING GARAGE. THE YELLOW BUILDINGS SHOWN BELOW ARE OWNED AND OPERATED BY THE GEORGE WASHINGTON UNIVERSITY, AND MY SITE IS REPRESENTED BY A MICROCHIP WITH AN ORANGE SQUARE PAINTED ON TOP.
NIGHTTIME VIEW OF SITE FROM 23RD STREET NW LOOKING EAST
Aerial view of the site from the top of the parking garage opposite the site, on H St NW. View looks south / southwest.
AERIAL VIEW OF SITE FROM INSIDE OF THE GEORGE WASHINGTON UNIVERSITY'S ENGINEERING BUILDING, TOMPKINS HALL. VIEW LOOKS NORTH / NORTHWEST.
AN IMPORTANT PART OF THE SITE ANALYSIS WAS TO EXPLORE AND DOCUMENT THE EXISTING TOMPKINS HALL OF ENGINEERING AND APPLIED SCIENCES. THIS BUILDING IS THE HOME OF GEORGE WASHINGTON UNIVERSITY'S SCHOOL OF ENGINEERING AND APPLIED SCIENCE. THE BUILDING ITSELF IS A LIMESTONE CLAD BUILDING, WHICH WAS CONSTRUCTED IN 1956, ABUTS MY THESIS SITE.

SINCE THIS SITE IS SO SMALL, IT WAS DECIDED EARLY ON THAT MY BUILDING WOULD CONNECT TOMPKINS HALL, SO THAT THE TWO BUILDINGS COULD SHARE SERVICES, AND TAKE ADVANTAGE OF EACH OTHER'S AMENITIES. ULTIMATELY, THIS ADDED ANOTHER LAYER OF COMPLEXITY AND LIMITATION TO MY SITE, WHICH ALLOWED FOR A MORE FOCUSED DESIGN IN THE END.
PLAN REPRESENTING THE CIRCULATION OF STUDENTS AROUND THE SITE AREA. THE STUDY WAS CREATED THROUGH OBSERVATION DURING NORMAL CLASS HOURS.

1910 LAW:
NO BUILDING CAN BE MORE THAN 20 FEET TALLER THAN THE DISTANCE BETWEEN BUILDINGS ACROSS A STREET OR AVENUE. (DCOZ.DC.GOV)

TOTAL BUILDING HEIGHT CAN BE 115'-0" HIGH + MECH EQUIPMENT
CONCEPTUAL PERSPECTIVE
DRAWING OF THE SITE ON THE
CORNER OF H ST NW AND 23
ST NW. THE DRAWING REP-
RENTS THE NUMBER OF
PEOPLE PROJECTED TO USE
THE BUILDING, AND LISTS
SOME OF THE SPACES THAT
WILL MAKE UP THE BUILDING.
TOP LEFT:
EARLY ENVIRONMENTAL IMPACT SKETCH

BOTTOM LEFT:
EARLY CONCEPTUAL NANO ASSEMBLER PERSPECTIVE
Early Thoughts

Early on I realized that my preconceived notions about research laboratories gave me the idea that many of these places are somewhat secretive and dull places to work. In many of the laboratories I had seen in the past, I had realized that the architectural qualities were not as significant as the fascinating subject matter being researched inside. I believe that this may be because many of these buildings were designed around the machines they housed, and not the humans who were the real inhabitants.

During my design process, I decided that I had to be careful not to make the main focus on the machine environment. I started to ask myself what steps I could make to make the labs human. The main driving force behind the design had to be the occupants. Ultimately, I decided that the building could work as a machine for socialization and interaction, and that the tools and machines that it housed would be there to complement the architectural spaces and to allow the users to reach the goals of their research.

When I started thinking about the architectural and environmental qualities that made up a nanotechnology research laboratory, the first thought that came to mind was how much of an impact my building would have on the world around it. I was well aware that these buildings require incredible amounts of energy, and so I decided to explore and document this idea by creating a pictorial representation of what was required to create and run this building. This drawing is located in the upper right, and included topics such as mining, energy production and distribution, concrete use, the vast amounts of water and air being used by my building, and distribution of the final nano-products throughout the public and private sectors.

Ultimately, this led me to the conclusion that I needed to take into consideration ways that would make the building more efficient and responsible. Passive solar systems, and double skins were two of the things I decided must be included in my building design.

The bottom image on the left was inspired by an article I read by Lance Hosey in the June 2002 Architectural Record called "Why the Future of Architecture Doesn't Need Us." In this article, Hosey put forth a profound idea suggesting that "within the next few decades, large-scale objects, including buildings, could be fabricated using microscopic robots called assemblers, which would join to make a cybernetic glue, able to assume any shape and size." I found this idea fascinating, but very much in the realm of science fiction. The idea of a building being built atom by atom is very foreign to me, but at the same time shows the extreme of what this technology could be capable of in the future.
AS A PRIMER TO MY SPATIAL STUDIES, I EXPLORED THE IDEAS OF POSITIVE AND NEGATIVE SPACE, IN-BETWEEN SPACE, AND EXPANSION / CONTRACTION. I DID THIS THROUGH THE USE OF AN INTERACTIVE CONCRETE AND STEEL STUDY MODEL, CREATED USING COMPUTER PARTS AS CONCRETE MOLDS.
LIGHT SCREEN STUDY

THIS WAS ANOTHER CONCRETE STUDY CREATED USING FORMWORK FROM OLD COMPUTER PARTS. I USED THESE STUDIES TO EXPLORE THE IDEA OF A LIGHT SCREEN WHICH IN TURN HELPED ME START THINKING ABOUT THE WAY LIGHT WOULD ENTER MY BUILDING.
Spatial Study #02

This study filled the entire building constraints of the site and looked at the idea of layering as well as making me start thinking about the relationship between dark and light within the building and how much of the site I wanted the building to consume.

Spatial Study #01

This study explored the idea of a tall building, but more importantly, was a study in how there can be slot and places to escape or get lost within the building, for both man and air. This was my first approach at defining interior and exterior space.
SPATIAL STUDY # 03

A BUILDING CAN GET LOST IN ONE MONOLITHIC MASS, AS IN STUDY NUMBER TWO. THIS STUDY IS STILL A MASS, BUT IS MORE OF AN ASSEMBLY THAN A CAST, AND WAS USED TO START DEFINING SPACE. THE WESTERN SIDE OF THE BUILDING [THE SIDE CLOSEST TO THE OBSERVER] IS DESIGNATED AS OFFICES. THE CENTER MASS IS DESIGNATED AS LABORATORY AND CLEANROOMS, AND THE TALLER MASS WAS AS EARLY THOUGHT FOR AN EXPOSED MECHANICAL SYSTEM.

SPATIAL STUDY # 04

THIS STUDY STARTS TO LOOK AT THE IDEA OF THE CLEANROOM BEING SEPERATE FROM THE REST OF THE BUILDING, BY CREATING A BUILDINGS WITHIN A BUILDING. IT ALSO STARTS TO ADDRESS A POSSIBLE COLUMN SYSTEM, AND HOW THE BUILDING WILL FIT CONTEXTUALLY WITH THE OTHER BUILDINGS.
This sun study was conducted to give an idea of what the sun conditions would be like for the nanotech building. Because of this sun study, I realized that the site would be somewhat dark in the mornings and mid-afternoon. Because of this, I decided to use an all glass facade to help bring in as much ambient light as I could.
CONCEPTUAL STUDY MODEL.

THIS MODEL WAS CONSTRUCTED TO HELP STUDY HOW THE FLOORS BETWEEN TOMPKINS HALL, THE SPIRAL FLOOR PLAN AND THE CLEAN ROOM INTERACT. IT ALSO HELPED GIVE AN IDEA OF WHAT THE SPACIAL QUALITIES OF THE BUILDING WOULD BE LIKE. CONSTRUCTED OUT OF WHITE MATTE BOARD.
Early conceptual sketch showing the idea of a building within a building, and the mechanical system sitting on the roof. This drawing also conveyed the idea that the veil of secrecy which occurs at most nanotechnology facilities could be lifted to create a building that is welcoming for all people.
FEATURES OF THE BUILDING

The next section of this book shows some of the multiplicity of forces that helped to produce this nanotechnology research laboratory. The features and components of the building are broken down into multiple sections, each organized by scale, starting at the larger city level and scaling down to the level of the detail.

Throughout the project, I questioned how to get the materials to match the scale of the city, the human and the nano-world, all simultaneously. My solution was to play with the idea of monumentality vs. diminutiveness, in both the scale of space, structure, and material.

To accomplish this, I started with the idea of having the exterior perimeter represent the city, and the center of the building (within the cleanroom) represents the atom. The manifestation of this idea created scale shifts within the building which are intended to make a person feel larger or smaller. For example, the materials and the columns on the exterior perimeter were designed to be small, but would grow in size as one moves towards center of building. In addition, the scale of the exterior spaces are larger and become smaller as one moves toward center of building. The larger scale of the materials and structure, and at the same time the shrinking of the space creates a feeling that the person is getting ready to enter the atomic world. The opposite is true of the exterior perimeter. These ideas of monumentality and diminutiveness are things that will carry though this next section.

It may also be worth noting that this building was designed more as an educational exploration rather than a true laboratory or production facility. Typical nanotechnology buildings are designed to be adaptable with time and the changing needs of the tenant. Through the thesis process, I decided to create a set of self imposing limitations, which in turn created the building on a very small site that would limit the ability of the building to be expanded in the future. As a result, I imagine that the building would start to take on the role of the more traditional industrial buildings of the past, where they have second and third lives, as technology changes.
TOP LEFT:
This image shows a perspective from one of the urban gardens looking northwest.

BOTTOM LEFT:
This image shows a perspective of the same urban garden above, but looking southwest.

AXON DRAWING SHOWING THE IDEA OF DARK VS. LIGHT & GARDEN VS. LAB
A GARDEN IS A PLACE OF ESCAPE - ESCAPE FROM ONES WORK, AND ALSO A PLACE THAT ENCOURAGES REFLECTION.

THE GARDENS IN THIS BUILDING ARE A DESIGNED AS A PLACE THAT BREAKS THE RULES SET UP FOR THE BUILDING. FOR EXAMPLE, A TYPICAL BUILDING HAS WALLS THAT ARE OPAQUE, REQUIRING A PERSON TO LOOK FOR THE LIGHT OF GLASS WINDOWS AND DOOR, TO GAIN ACCESS TO NATURE.

IN THE CASE OF THIS BUILDING, THIS NOTION OF HOW TO ACCESS OUTDOOR SPACE IS REVERSED. SINCE THE BUILDING'S PRIMARY FAÇADE IS GLASS, IT SEEMED LOGICAL TO CREATE THE OUTDOOR SPACES AS A SOLID DARK WOOD MATERIAL. THIS DOES TWO THINGS; IT CREATES A FOCAL POINT ON THE FAÇADE WHICH DRAWS THE USER TO THE SPACE, BUT ALSO IS A PHYSICAL BARRIER TO THE SCHOOL WORK OCCURRING WITHIN THE BUILDING. THIS BARRIER BETWEEN THE WORKING WORLD AND THE OUTDOOR SPACE ALLOWS A SENSE OF ESCAPE AND LETS ONE TAKE IN THE SIGHTS AND SOUNDS OF THE CITY.

ON THE RIGHT IS THE BONSAI FOREST. THIS IS A PLACE FOR THE STUDENTS AND PROFESSORS TO ESCAPE TO TAKE IN THE CITY, BUT ALSO TO REFLECT ON THE WORK THEY ARE DOING BY IMMERSING THEMSELVES IN A SCALE CHANGING SCENARIO. THE SCALE OF AN OBJECT IS RELATIVE TO WHAT YOU ARE LOOKING AT, AND FROM WHERE YOU ARE LOOKING.
Final Layer Study

The many layers of glass within the building work together to make the building function effectively and efficiently. As a person moves from the outside perimeter towards the center of the building, the air gets gradually cleaner until there are only ten dust particles per million in the cleanroom vent hood.

Layer Diagrams

These are conceptual layer diagrams which start to define different spaces within the building.
AIR FLOW DIAGRAM

This is a conceptual drawing showing the double skin on the exterior of the building and the double skin plenum for the cleanroom. In total, there are eight different environments associated with this project, and representing different environmental air qualities.

The different air environments include: city air, double skin, hallway, laboratory, atrium, cleanroom plenum, cleanroom, and cleanroom tool (which includes a laminar flue hood).
TOP LEFT: CONCEPTUAL SKETCH SHOWING INTERSECTING BRIDGES. THIS REPRESENTS SOME OF MY FIRST THOUGHTS ABOUT USING CIRCULATION AS A TOOL FOR INTERACTION.

MIDDLE LEFT: EARLY 3D STUDY OF THE SPIRAL FLOOR PLAN. THIS THOUGHT CAME ABOUT THROUGH A DISCUSSION WITH PAUL EMMONS ABOUT THE IDEA OF "ONE STAIR THAT COULD TAKES YOU TO DIFFERENT PLACES".

BOTTOM LEFT: FACADE STUDY LOOKING AT HOW THE SPIRAL PLAN WAS EXPRESSED ON THE EXTERIOR OF THE BUILDING, AND HOW THAT COULD RELATE INTERACTION. THIS HELP LEAD ME TO CREATE CIRCULATION ON THE EXTERIOR PERIMETER OF THE BUILDING.
CIRCULATION

The design of the circulation is a vital part of the organization of this building. The path through the building was set up as a way to encourage interaction between the buildings occupants. It could be looked at as a sort of forced interaction. The idea being that getting people to bump into each other would encourage communicate and the exchange ideas, resulting in more inspired and creative solutions to the work at hand. This is accomplished by having three different ways to move through the building - spiral floor plan, stairs, and elevators.

The floor plan spirals around the cleanroom in the center of the building, creating a sort of cloister walk with controlled views through the laboratory spaces, to the center atrium and clean room.

The stairs inhabit the exterior perimeter of the building and give the user multiple options for how to ascend to their desired floor. In addition, there are two elevators in the building, which are designed to be able to access each of the floors that make up the spiral.

There are countless numbers of ways to move through the building, but whether a person is working in the cleanroom, a laboratory, the library, or wandering through the building, there is always a line of site that allows people to spot one another, and interact.

In addition, I set the floor plan up with an idea that goes against the more traditional layout for an educational tower. Typically, the freshman would be in the lower floors of the building, and the graduate level would be on the higher floors. In this building however, it seemed more appropriate for the nanotechnology program to start at the top of the building, after the library. The student would then work their way downward through the spiral floor plan, and would gradually get closer to the cleanroom, culminating their learning experience by creating their final "atomic scaled" project. This allows a situation where not all things are revealed at once but in stages until there is a clear picture, allowing a more complete understanding. At the end of the student's curriculum, the student is then able to leave the building by continuing along the spiral path. They leave the building, degree in hand.

As mentioned by Paul Emmons at my final defense, the building has a correlation to the tower of Babel, but in a way, has the opposite effect of the tower. Since a student has a downward progression through the building, the student leaves the building at its' base, grounded and with a greater understanding of the world, be it at the atomic world.
The scale of columns is small on exterior perimeter and larger as one moved towards the center of building. This idea came about by creating a relationship between the city the atom and the columns.

As a person moves towards the center, they move closer to the scale of the atom. To make a person feel as if they have entered the world of the atom, I had to take the atypical approach of making the person feel the monumentality and diminutiveness of the space at the same time. The idea is that the person would feel disproportionately large compared to the space around them, but at the same time would be overwhelmed by the size of the materials and structure representing large atomic building blocks.

In this space, one conceptually enters the world of the atom.
The structure is composed of waffle slabs throughout the building for strength, and to also allow the essence and purity of the structural system to be exposed throughout the building.

Relationship / Scale of structural members. The scale of the column increases as one moves from the city, towards the cleanroom.
Biofilter Garden Wall

Section through the Atrium
Looking south at the indoor air biofilter garden wall.
This garden wall is a physical barrier between Tompkins Hall and the nanotechnology research laboratory, and brings life and greenery to the atrium, while providing a way to filter the air.
SKETCH OF A SECTION THROUGH THE BIOFILTER GARDEN WALL. THIS SYSTEM IS DESIGNED TO BE VERY LOW MAINTENANCE, AND TO USE THE VEGETATION GROWING THROUGHOUT THE WALL AS AN AIR FILTER, CLEANSING THE AIR IN THE ATRIUM AND AROUND THE CLEAN ROOM.

VIEW OF THE ATRIUM AT THE FRONT ENTRANCE. THIS SHOWS THE GARDEN WALL, THE BRIDGES ABOVE, AND THE STAIRS THAT CONNECT TO TOMPKINS HALL.
TOP RIGHT:
LIBRARY GREAT ROOM LOOKING TOWARDS THE READING ROOM IN THE DISTANCE.

MIDDLE RIGHT:
GROUP LOUNGE, LOOKING TOWARDS THE GREAT ROOM.

BOTTOM RIGHT:
VIEW INTO LIBRARY'S GREAT ROOM FROM UPPER ROOF GARDEN.
THE NANO-SCIENCE LIBRARY IS LOCATED ON THE PENTHOUSE OF THE BUILDING AND IS THE STARTING POINT FOR ALL OF THE SCHOOL’S DEGREE PROGRAMS. THIS IS THE PLACE WHERE ALL OF THE SCHOOL’S CUMULATIVE KNOWLEDGE ON THE TOPIC OF NANOTECHNOLOGY IS HOUSED, AND IS DESIGNED AS A PLACE FOR STUDENTS AND PROFESSORS TO MEET AND EXCHANGE IDEAS.

ONE MUST PASS THROUGH THE LIBRARY TO GET TO THE UPPER URBAN GARDENS AND THE BONSAI FOREST. THE READING ROOM ALLOWS DIRECT ACCESS TO THESE GARDENS, AS WELL AS PROVIDES AN OUTDOOR READING SPACE.
It is important for a laboratory space to allow interaction of scientists, while also being reminded of the goals set for their work. Some of the greatest scientific achievements are the result of collaboration with peers. Many laboratory buildings have been designed in a way that excludes this important feature, and the buildings become sterile environments that are less than inspiring places to work.

In this building, the larger laboratories, with higher ceilings, were designed as think tank areas for group work and interaction, whereas the smaller laboratories are more prone to one on one work. These spaces were also conceived of as in-between space for the scientists, amid the machine and the human worlds. On one side is the public circulation areas and the other is the cleanroom in the center atrium. The laboratories are built around the scale of the humans who inhabit them, and allow the user views into the cleanroom and out to the city, so that they can escape from the rigor of their work and experience multiple scales at once.

Top Left: Study of laboratory with circulation on exterior perimeter.

Middle Left: Section through the electrical characterization laboratory showing circulation on one side and the cleanroom on the other.

Bottom Left: Perspective of the electrical characterization laboratory.

Right: Perspective down Eastern corridor showing the electrical characterization laboratory on the right.
The curriculum for the nanotechnology program starts at the top of the building and follows a linear path through to completion of the program. The laboratories that are located within this building, in order of use, are as follows:

1. Instructional Laboratory
2. Optical Characterization Devices and Fluidics Laboratory
3. Molecular Electronics Laboratory
4. Optical and Surface Analysis Laboratory
5. TEM Prep

6. TEM I
7. TEM II
8. TEM III
9. Nanostructures I
10. Nanostructures II
11. Nanostructures III
12. Chemical Vapor Deposition I
13. Chemical Vapor Deposition II
14. Instructional Laboratory
15. Electrical Characterization
16. RF/Microwave Characterization
17. Computer Lab / Instructional Laboratory
18. Nanomechanical - MEMS Laboratory
19. Molecular Beam Epitaxy
MECHANICAL SYSTEM

THE MECHANICAL SYSTEM IS AT THE HEART OF THE CLEANROOM, AND IS WHAT TRULY MAKES IT CLEAN.

THE TYPICAL MECHANICAL SYSTEM OF A CLEANROOM IS MUCH LARGER THAN WHAT IS NEEDED FOR A TYPICAL BUILDING, BECAUSE OF THE FACT THAT ALL OF THE AIR NEEDS TO CIRCULATE ALL OF THE AIR IN THE CLEANROOM UP TO NINE TIMES EACH MINUTE. DEPENDING ON WHAT IS BEING PRODUCED WITHIN THE CLEANROOM, THE MECHANICAL SYSTEM WILL CYCLE THE AIR UNTIL THERE ARE 10, 100, OR 1000 FOREIGN PARTICLES PER MILLION. THIS IS EXTREMELY CLEAN AIR, AND IT HAS TO BE BECAUSE OF DUST FALLS ON ANY OF THE RESEARCH PROJECT, THE WORK CAN BE DESTROYED.

BECAUSE THE CLEANROOM IS VERY SENSITIVE TO VIBRATION, I DECIDED TO MOVE THE MECHANICAL SYSTEM DIRECTLY ABOVE IT, AND ALLOWED THE UNITS TO REST ON THE STRUCTURE FOR THE LABORATORIES. THIS WILL HELP PREVENT ANY VIBRATIONS FROM BEING TRANSFERRED TO THE CLEANROOM, AND ENSURE A PRODUCTIVE ENVIRONMENT FOR ANYONE USING THE CLEANROOM.

TOP LEFT:
EARLY CONCEPTUAL MODEL OF MECHANICAL SYSTEM MADE FROM PIPE CLEANERS. THIS DESIGN WAS INSPIRED FROM A PIECE OF EQUIPMENT AT A FACTORY THAT PRODUCES CIRCUIT BOARD. THIS DIAGRAM CAN REPRESENT THE FLOW OF HOT AND COLD WATER, OR SUPPLY AND RETURN AIR.

BOTTOM LEFT:
EARLY CONCEPTUAL DRAWING EXPLORING THE IDEA OF AN EXPOSED MECHANICAL SYSTEM.
ON TOP OF THE CLEAN ROOM, IN THE CENTER OF THE ATRIUM SHOWS THE EXPOSED DUCTWORK WHICH RISES TO THE MECHANICAL SYSTEM SUPPORTED ABOVE.
CLEANROOM: CONCEPTUAL IDEAS

THE CLEANROOM IS THE DEFINING FEATURE OF THIS NANOTECHNOLOGY RESEARCH LABORATORY. IT IS THE PLACE WHERE ALL OF THE RESEARCH CUMULATES, AND WHERE SOMETHING IS PRODUCED. IT COULD BE A PRODUCT, AN ELECTRONIC CIRCUIT, A NEW MATERIAL, OR MAYBE EVEN A NANOBOT.

THE DEFINING MOMENT FOR ME WAS WHEN I DECIDED TO SEPARATE THE CLEANROOM FROM THE REST OF THE BUILDING, ESSENTIALLY CREATING A BUILDING WITHIN A BUILDING. I HAD SPENT A GREAT DEAL OF TIME DOING RESEARCH ABOUT THE TYPES OF SYSTEMS, SPACES, STRUCTURES, AND MATERIALS THAT WERE NEEDED IN A CLEANROOM, AND DURING THE PROCESS NOTICED THAT EVERY PICTURE I SAW OF A WINDOW IN A CLEANROOM WAS ORANGE. I CAME TO LEARN THAT THIS WAS A FILM THAT WAS USED TO BLOCK STATIC AND UV LIGHT. ULTIMATELY THIS EVOLVED INTO AN IDEA TO CONTAIN THE ENTIRE CLEANROOM IN AN ORANGE GLASS CUBE. ESSENTIALLY A GLOWING JEWEL IN THE CENTER OF THE BUILDING.

BECAUSE OF THIS IDEA OF THE GLOWING JEWEL, I WANTED TO HAVE THE CLEANROOM FLOATING BY ITSELF IN THE CENTER OF THE BUILDING. WITH THE HELP OF ULRIKE ALTENMÜLLER, AND MY COMMITTEE, THIS IDEA EVOLVED INTO THE IDEA OF LIFTING THE SPACE ONTO COLUMNS. THIS MOVE ALLOWED A PERSON TO INHABIT THE SPACE ABOVE AND BELOW THE CLEANROOM.

TOP LEFT: CONCEPTUAL PAINTING EXPLORING THE IDEA OF THE CLEANROOM AS A GLOWING ORANGE JEWEL.

MIDDLE LEFT: CONCEPTUAL MODEL EXPLORING THE IDEA OF AN ORANGE GLOWING MASS SURROUNDED BY THE SPIRAL FLOOR PLAN.

BOTTOM LEFT: CONCEPTUAL PHOTOGRAPH SHOWING WHAT A CORNER OF THE GLOWING ORANGE CLEANROOM COULD LOOK LIKE.
BOUND COMPLEXITY.

CONCEPTUAL DRAWING LISTING MANY OF THE THINGS THAT A CLEANROOM IS COMPOSED OF. ALSO SHOWS THE IDEA OF THE CLEANROOM BEING SUPPORTED FROM BELOW, BOTH STRUCTURALLY AND SYSTEMICALLY.
CLEANROOM: GLASS

The glass of the cleanroom is one of the most important parts of the cleanroom, for both architectural reasons, and for the function of the space. This glass system was designed to block all external environmental factors that could potentially disrupt or destroy any work that is occurring in the cleanroom. The system is broken down as follows:

1. UV light, and static are blocked through films that are applied to the glass facade.
2. Radio waves and electromagnetic fields are shielded from a copper wire mesh overlay, which gives the cube its unique diamond pattern.
3. Sound vibrations are reduced through the use of a double wall and double pane glass system.
4. Detailed views into the cleanroom are obscured through a series of plastic tubes in the panelite double pane glass system.

It is a complex system, but each piece works together to create an isolated environment inside the cleanroom, which is ideal for the study and manipulation of objects at the atomic scale.

Panelite Clearshade IGU Series Glass Panels

The panelite system that is used to limit views into the cleanroom is a very interesting system because as one views the cleanroom from a distance, the overall context of the activity inside can be seen, but in limited detail. As one moves closer to the cleanrooms’ exterior wall to try and observe more detail, the tubes within the glass creates a perspective which obscures the line of site at an oblique angle, limiting how much information can be seen at once. This system gives full disclosure of the events occurring in the cleanroom, yet helps protect sensitive information, by not reveal all of its secrets at once. The user is given unobstructed views into the cleanroom, but is limited to how much they can see at a time. At the atomic scale.
One can see the overall context but must look closer to find the truth of that which is not first revealed.
TOP LEFT:
EARLY CONCEPTUAL IDEA FOR THE RELATIONSHIP OF THE CLEANROOM TO THE LABORATORY, WITH EARLY MECHANICAL SYSTEM STUDY.

MIDDLE LEFT:
GLASS BRIDGE CONNECTION THE GOWNING AREA TO THE CLEANROOM.

BOTTOM LEFT:
ENTRANCE TO CLEANROOM FROM GOWNING AREA. THE GLASS TUBEULAR BRIDGE HAS A SECONDARY FUNCTION AS AN AIR SHOWER.

BOTTOM RIGHT:
CONCRETE COLUMNS HAVE ANTI-VIBRATION TECHNOLOGY IN THE FORM OF A RUBBER VIBRATION DAMPENER.
The cleanroom is divided into itself is broken into a few different categories. Support space, works space, and mechanical space. In the basement is the storage space for the volatile gasses and liquids that are used in the clean room. They are stored here until need, and then transported to the first floor of the cleanroom, known as the subfab. The subfab is the floor right below the fab area (or cleanroom). This is essentially a utility space where it is ok not to have the highly filtered air of the cleanroom.

The cleanroom itself is made mostly of concrete and glass. Concrete is used in large scales here, because it is able to absorb vibrations quite well. This makes it an ideal material for cleanroom construction. The floors of the cleanroom are made from unusually large three feet deep waffles slabs with the cavities set at two foot three inches on center. The columns are made of tapered concrete and act as ducts to transfer some of the filtered air into the cleanroom spaces.

The area between the orange glass wall and the interior wall is a chase space, which doubles as a plenum. This plenum creates a place for the air from within the cleanroom to escape to before it is re-circulated through the mechanical system up above the cleanroom. It is important to note that the mechanical system is attached to the main laboratory building to prevent vibrations being transferred to the cleanroom.

Right: Section though the cleanroom from the anti-vibration damoeners through to the mechanical system

Far Right: Space study diagram to help understand the many ways that a cleanroom is used, based on which type of experiment is taking place.
The gas and liquid storage room is located under the cleanroom, in the sub-basement. Since many of the items stored in this room are unstable, the room was designed to absorb potential explosions. This idea was inspired from an unlikely source; a metro trash can. You see, the trash cans in the metro system are designed to absorb explosions, and the fascinating part of it is that they use a mixture of volcanic stones called perlite and pumice, surrounded with plastic wrapping, to absorb blasts. This material is very porous, with many vesicles, which allows the material to compress under force, and absorb the blast. Ultimately this ties back to my early material studies involving scoria and igneous stones.
Since the interior portion of the blast storage room is composed of volcanic pumice, I decided to face the interior and exterior of the room in scoria composed of basalt with amygdaloidal olivine vesicles. Each piece of stone would be laid so that the olivine deposits were at the bottom of the vesicle to show how the stones were when they were formed by the earth.

The drawing on top shows a reflected ceiling plan of the blastproof storage room with the waffle slab design. Each of the cavities within the slab would be filled with the perlite/pumice mixture. The bottom drawing shows a section which gives the overall idea of the room, as well as showing the cavity for the cleanroom columns rubber vibration dampening system.
BUCKYBALL SPACE FRAME CONNECTOR

This buckyball shaped connector would be cast of steel and threaded to receive the space frame’s structural components.

BUCKYBALL AS A CONNECTOR
- BEAUTIFUL IDEA - ULRIKE

RECYCLED SILICON WAFTER GLASS WALL

Broken waste silicon wafers are recycled and used as light screens and visual barriers within the nanotechnology laboratory building.
CLEAN THRESHOLD

LOCATED AT THE ENTRANCES TO THE BUILDING, THE GRILL IS MADE OF BRONZE, AND IS SET INTO A CONCRETE FRAME WITH A RAINWATER DRAIN BELOW. WHEN IT RAINS OUTSIDE THE DRAIN WASHES AWAY THE DIRT AND DEBRIS WHICH FALLS FROM PEOPLES SHOES.

LOW VOLTAGE LIGHTING SYSTEM

ACRYLIC CYLINDER AND FIBER OPTIC CABLES. CAN BE HUNG FROM CEILING OR EMBEDDED INTO WALLS / FLOOR FOR ACCENT LIGHTING.
Iteration 01

This iteration shows two divots which indicate an on and off position for a low voltage lighting system.
FERROCRETE LIGHT SWITCHES

AFTER MY EARLY EXPERIMENTS WITH THE FERROCRETE, I STARTED LOOKING FOR A WAY TO USE THE MATERIAL WITHIN MY BUILDING. THE FERROCRETE DID NOT SEEM LIKE THE RIGHT MATERIAL FOR THE LABORATORY OR CLEANROOM AREAS, BECAUSE IT HAS A LARGE AMOUNT OF IRON EMBEDDED WITHIN AND IT COULD AFFECT SOME OF THE SENSITIVE EQUIPMENT. AS A RESULT, I DECIDED THAT WHATEVER WAS CREATED FROM THE MATERIAL WOULD HAVE TO BE LOCATED IN THE WESTERN WING OF THE BUILDING, WHERE THE OFFICE AND GROUP MEETING AREAS ARE LOCATED.

THE PROPERTIES OF THE MATERIAL INDICATED TO ME THAT MY SOLUTION SHOULD USE MAGNETS, TO REALLY SHOW THE UNIQUE NATURE OF THE MATERIAL. THE FIRST IDEA I HAD WAS TO CREATE A TYPE OF LOW VOLTAGE LIGHT SWITCH, WHICH WAS ACCOMPLISHED BY CREATING A CONCRETE FORM WITH TWO DIVOTS: ONE FOR THE ON POSITION, AND ONE FOR OFF. AS THE MAGNET IS SET TO THE ON POSITION, A CHROME PLATED NEODYMIUM MAGNET TOUCHES TWO CONNECTOR PLATES, WHICH COMPLETES A LOW VOLTAGE CIRCUIT. THIS WOULD ULTIMATELY POWER AN LED LIGHTING SYSTEM, OR A SIMILAR LOW VOLTAGE SYSTEM. ANOTHER ALTERNATIVE WOULD BE TO HAVE AN EMBEDDED SWITCH THAT WAS SWITCHED THROUGH THE ACT OF PLACING THE MAGNET INTO THE DIVOT. THE DIVOT FOR THE OFF POSITION IS SIMPLY A PLACE HOLDER FOR THE NEODYMIUM MAGNET.

I CREATED TWO ITERATIONS OF THIS IDEA WHICH CAN BE SEEN ON EACH OF THE PAGES ON THIS SPREAD.

ITERATION 02

THIS ITERATION SHOWS A CHANNEL CONNECTING THE TWO DIVOTS. THIS ALLOWS THE USER TO ROLL THE MAGNET FROM THE OFF POSITION TO THE ON POSITION, WITHOUT HAVING TO REMOVE THE MAGNET FROM THE SWITCH. THE ACT OF ROLLING WILL TURN THE LOW VOLTAGE
[this page intentionally left blank]
NANOTECHNOLOGY RESEARCH LABORATORY

FINAL PROJECT
FOURTH, FIFTH AND SIXTH LEVELS
SIXTH, SEVENTH AND EIGHTH LEVELS
NINTH, TENTH AND ELEVENTH LEVELS
URBAN ROOF GARDEN AND BONSAI FOREST
MY BUILDING REMINDS ME OF THE ARCHITECTURE OF A MICROPROCESSOR: INFORMATION HANDLING IN THE CORE, AND CONNECTION AROUND THE EXTERIOR. WHEN ONE CUTS THROUGH THE PROCESSOR, ONE SEES MANY LAYERS, THAT DON’T EASILY REVEAL THEIR ORGANIZATION.
"THESIS IS ABOUT LIFE. IF YOU WANT THE PEOPLE TO DANCE, YOU LET THEM DANCE"

- RAMONA SONNTAG
THINGS CAN BE REVELED IN ONE DIRECTION THAT CAN NOT BE IN OTHERS
The nighttime renderings were important tools to look at how the building could appear at nighttime, but it is also a way to put the building into context.

The cleanroom can be seen through the layers of the facade, and is a constant reminder of the atomic scale, and the work that occurs within this building. In contrast, the building is set within the city, and is surrounded by a sky of constellations. The sky show the human influence applied to the cosmos, to help us relate and to also give a scale to vastness of space.

In a way these were some of my most rewarding and meaningful images, as they represent scale from the far reaches of space, all the way to the atom.
EXTERIOR PERSPECTIVES

These exterior perspectives help to show the relationship of the nanotechnology research laboratory while also allowing additional layers of information to be revealed through the transparent nature of the drawings. The drawing on the left shows a view from the raised concrete patio, located on the back side of Tompkins Hall, looking North towards H Street NW.

The image on the top right is an aerial perspective showing the surrounding urban landscape, and how this building fits in contextually. The final image on the bottom right shows a view of the building from the intersection of 23rd Street NW and H Street NW, looking south east.
EXTERIOR PERSPECTIVE - DAYTIME

TOP LEFT:
The perspective shows pedestrian circulation on the sidewalk in front of Tompkins Hall, looking North towards the nanotechnology research laboratory.

MIDDLE LEFT:
The perspective shows the context and relationship between the new nanotech building and Tompkins Hall. The atrium space between the two buildings is the location of the main entrance.

BOTTOM LEFT:
This perspective shows a closer view of the main entrance. Through the entrance, one can see the offices to the upper right, the clean-room in the center of the building, and the garden wall as they enter the atrium.
This rendered exterior perspective shows the existing trees in the front of the building, and how they relate to the surroundings. This helps to give a good idea of what it would feel like at the entrance to the building.
LABORATORY INTERIOR PERSPECTIVES

These interior perspectives help to define the laboratories architecturally and help to show how each of the laboratories looks into the atrium. This allows views of the cleanroom, the circulation of friends and colleagues on the bridges and stairs, and of the city beyond.
Interior rendering of the center atrium from one of the introductory laboratories.
TOP LEFT:
THIS PERSPECTIVE IS OF THE LIBRARY, WITHOUT ANY OF ITS FURNITURE.

MIDDLE LEFT:
THIS PERSPECTIVE IS OF THE EASTERN CIRCULATION, NEXT TO THE LABORATORIES.

BOTTOM RIGHT:
PERSPECTIVE OF THE BRIDGE UNDER THE CLEANROOM. THIS BRIDGE ALLOWS FOR EXPANSION AND COMPRESSION OF SPACE, WHILE ALLOWING THE USER TO FEEL THE PRESENCE OF THE CLEAN ROOM ABOVE. THIS IS THE MAIN WAY THAT PEOPLE ENTERING THE BUILDING WILL USE TO START ON THE SPIRAL CIRCULATION, AND ACCESS THE REMAINING PORTIONS OF THE BUILDING.
THIS PERSPECTIVE SHOWS THE CLEAN ROOM AND THE ATRIUM FROM A WORMS EYE VIEW. THE TRANSPARENCY OF THE DRAWING HELPS REVEAL THE MANY LAYERS OF INFORMATION THAT MAKES UP EACH PORTION OF THIS BUILDING.

1/16" = 1'-0" MODEL
LOOKING SOUTHEAST

TOP: 1/16" = 1'-0" MODEL
LOOKING SOUTHWEST

BOTTOM: 1/16" = 1'-0" MODEL
LOOKING SOUTH
The 3D model helps bridge the gap between the imagined and the real world. Form gives shape to an idea.
1/4" = 1'-0" MODEL
INTERIOR VIEW OF MODEL, FROM ATRIUM LOOKING TOWARD THE LABORATORIES AND LIBRARIES

1/4" = 1'-0" MODEL
PARTIAL ELEVATION OF THE NORTH SIDE OF THE BUILDING LOOKING SOUTH INTO THE ATRIUM TOWARD THE CLEANROOM.
1/4" = 1'-0" MODEL
PARTIAL SECTION CUT THROUGH OFFICE WING AND PART OF THE CLEANROOM. THE LABORATORIES, LIBRARY AND ELEVATOR CAN BE SEEN IN THE BACKGROUND.

1/4" = 1'-0" MODEL
PARTIAL ELEVATION OF THE WEST SIDE OF THE BUILDING, LOOKING TOWARD THE OFFICE WING, AND THE CLEANROOM.
NANOTECHNOLOGY IS THE WILLFUL MANIPULATION OF ATOMS...
ARCHITECTURE IS THE WILLFUL MANIPULATION OF SPACE...
REMEMBER
ONLY YOU CAN PREVENT GRAY GOO
NEVER RELEASE NANOBOT ASSEMBLERS WITHOUT REPLICATION LIMITING CODE

SMOKY THE NANOBOT
JIM LEFTWICH
1995
SELECTED READINGS:

IMAGE CREDITS:

Note: Unless otherwise noted, the images herein are the original work of the author.

FAIR USE: This thesis is a non-commercial, academic study that is directed towards making a contribution to human knowledge. Images used in this thesis have been evaluated according to fair use criteria included in Title 17, Section 107 of the United States Code.

page 14 “Une Cité Industrielle (An Industrial City)” from “Une Cité Industrielle” by Tony Garnier (1869-1948), Published 1918. Paris, France, Public Domain.

page 30 “Micromegas skillfully picks up the ship which was carrying these gentlemen”, from “Les Contes” by Francois Marie Arouet de Voltaire (1694-1778) engraved by Gerard Vidal (1742-1801). Artist: Monnet, Charles (1732-1808). Bibliotheque Nationale, Paris, France, Public Domain. http://1.bp.blogspot.com/_35NQjH-Rek/SnYPJRcTVCI/AAAAAAAAAPk/ep1VCZdkBi0/s400/Charles+Monnet++Micromegas.jpg

page 42 Map of City of Washington, DC. Provided by city. Public domain.

page 44-45 Map of City of Washington, DC. Provided by city. Public domain.