Surface Modification With Plasma Reaction For Materials Integration

by

Brian Thurmond
Research Advisor: Dr. Ravi Saraf
Department of Chemical Engineering
Virginia Tech

ABSTRACT

Surface modification of polystyrene thin films was achieved using a plasma process with reactive gases to form functional groups. Advancing contact angles were measured after modification. Polystyrene surfaces were observed to reach a minimum average wetting contact angle of 7°. The time required to achieve this contact angle decreased significantly by increasing the power of the discharge or by lowering the discharge source closer to the polymer substrate. Characterization studies of power, height, and corona exposure time versus contact angle led to the formation of surface energy gradients across the substrate.

Photoluminescent tagging agents were used to quantify the degree of carboxyl modification achieved with water plasma and amine modification achieved with ammonia plasma. AMCA (7-amine-4-methyl coumarin hydrazide) was used to show that surface modification reaches a maximum functionalization before degradation of the polymer substrate occurs with water vapor. A parallel study with OPA (O-phthaldialdehyde) yielded similar results when ammonia was ionized over the surface.

Additionally, stable surfaces were created by chemical reaction of zinc acetate with the freshly modified polymer. Zinc sulfide particles were formed within the polymer surface by reaction with hydrogen sulfide gas. Fluorescence spectroscopy was used to verify the formation of zinc sulfide.
ACKNOWLEDGMENTS

First, I thank Dr. Ravi Saraf for his direction and time. I also thank him for the opportunity to work in his laboratory in an interesting and dynamic field. I also thank my thesis committee members: Dr. David Cox and Dr. David Dillard.

I must also acknowledge the generous financial support of Du Pont, the Graduate School of Virginia Tech, and the GEMS Fellowship program in my studies here at the chemical engineering department. I would also like to thank Dr. James Glanville and the Department of Chemistry for additional financial support.

And I thank the other students in my lab, Jean Huie, Maria Weese, Sanjun Niu, Guarav Singh, and Jeff Ward for additional experimental work and companionship during my stay here.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter 1: Plasma Reactor Characterization</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Experimental</td>
<td>6</td>
</tr>
<tr>
<td>1.3 Results and Discussion</td>
<td>9</td>
</tr>
<tr>
<td>1.4 Conclusions</td>
<td>18</td>
</tr>
<tr>
<td>1.5 References</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2: Quantification of Surface Modification</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>20</td>
</tr>
<tr>
<td>2.2 Experimental</td>
<td>23</td>
</tr>
<tr>
<td>2.3 Results and Discussion</td>
<td>25</td>
</tr>
<tr>
<td>2.4 Conclusions</td>
<td>31</td>
</tr>
<tr>
<td>2.5 References</td>
<td>32</td>
</tr>
</tbody>
</table>
Chapter 3: Applications

3.1 Introduction

3.2 Experimental

3.2.1 Experimental I: Zinc Sulfide Synthesis in Polystyrene

3.2.2 Experimental II: DNA Binding to Polystyrene

3.3 Results and Discussion

3.4 Conclusions

3.5 References

Path Forward
List of Figures

Chapter 1: Plasma Reactor Characterization

1.1 Contact Angle of Water Versus Discharge Distance for 30 Second Water Plasma Exposures on Polystyrene
1.2 Contact Angle of Water Versus Discharge Distance for 1 Minute Water Plasma Exposures on Polystyrene
1.3 Contact Angle of Water Versus Discharge Distance for 2 Minute Water Plasma Exposures on Polystyrene
1.4 Contact Angle of Water on Polystyrene vs. Water Plasma Exposure Time
1.5 Surface Energy of Polystyrene vs. Discharge Height
1.6 Surface Energy of Polystyrene vs. Water Plasma Exposure Time
1.7 Contact Angle on Polystyrene Versus Amine Plasma Exposure Time
1.8 Contact Angle Versus Discharge Distance For 1 Minute Water Plasma Exposures on Polybutadiene

Chapter 2: Quantification of Surface Modification

2.1 O-phthaldialdehyde (OPA) Chemical Structure
2.2 7-Amino-4-Methylcoumarin (AMCA) Chemical Structure
2.3 Photoluminescence Spectra of Silicon and Polystyrene on Silicon at Excitation Wavelength of 360 nm
2.4 Photoluminescence Calibration Curve of AMCA Solution
2.5 Photoluminescence Calibration Curve of OPA Solution
2.6 Photoluminescence Spectra of AMCA on 18% Polystyrene After Varying Water Plasma Exposure Times
2.7 Photoluminescence Spectra of OPA on 18% Polystyrene After Varying Amine Plasma Exposure Times
2.8 Estimation of Carboxylic Surface Concentration Resulting From Water Plasma Exposure as a Function of Distance From the Discharge Electrode
Chapter 3: Applications of Surface Modification

3.1 Photoluminescence Spectra of Cleaned Silicon, Polystyrene, and Zinc Sulfide at an Excitation Wavelength of 332 nm

3.2 AFM Image of Zinc Sulfide in Polystyrene.

3.3 Maximum Photoluminescence Intensity of Zinc Sulfide as a Function of Water Plasma Exposure Time on the Polystyrene Thin Film

3.4 Photoluminescence Spectra of Single Strand DNA on Polystyrene