Appendix A

Generalized System Equations for a Linear Predictor

The block diagram of a linear predictor is shown in Figure A1. Here $\hat{x}(n)$ is the predicted value of $x(n)$ and $e(n)$ is the D step ahead forward prediction error. The delay D determines how many steps ahead the predictor is designed to predict $x(n)$.

![Figure A.1: Block Diagram of the General Prediction Filter.](image)

The predicted signal:

$$
\hat{x}(n) = -\sum_{k=1}^{M} a^M_k x(n-D-k+1)
$$

(A.1.1)

where M is the order of the predictor and $a_1^M - a_2^M - a_3^M \ldots - a_M^M$ are the predictor coefficients. The D step forward prediction error $e(n)$ is the difference between the desired signal $d(n)$ and the predicted signal, i.e.,

$$
e(n) = d(n) - \hat{x}(n)
$$

$$
= d(n) + \sum_{k=1}^{M} a^M_k x(n-D-k+1)
$$

(A.1.2)

The predictor coefficients are selected such that the mean square value of $e(n)$, i.e., $E\{e(n)^2\}$, is minimized. Therefore, for any set of predictor coefficients $a^M_k \ (1 \leq k \leq M)$,
\[
\frac{\delta}{\delta a_k^M} E\{e(n)^2\} = 0, \quad 1 \leq k \leq M \quad (A.1.3)
\]

Due to the linearity of the expectation and differentiation operators we can interchange these two operations and (A.1.3) can be written as:

\[
\frac{\delta}{\delta a_k^M} E\{e(n)^2\} = E\left\{\frac{\delta}{\delta a_k^M} e(n)^2\right\}
\]

\[
= E\left\{d(n) + \sum_{k=1}^{M} a_k^M x(n-D-k+1) a_k^M x^*(n-D-k+1) \right\} + \sum_{k=1}^{M} a_k^M x(n-D-k+1) a_k^M x^*(n-D-k+1) \right\}
\]

Since the predictor is estimating the present value of the input sample, the desired signal \(d(n) = x(n)\). Therefore, from (A.1.3) and (A.1.4) we can write,

\[
2 \Re \left[a_k^M \left\{ r_{xx}(D+l-1) + \sum_{k=1}^{M} a_k^M r_{xx}(l-k) \right\} \right] = 0 \quad , \quad l=1,2,...,L \quad (A.1.5)
\]

\[
\Rightarrow r_{xx}(D+l-1) + \sum_{k=1}^{M} a_k^M r_{xx}(k-l) = 0
\]

where \(r_{xx}(k)\) is the value of the auto-correlation sequence of \(x(n)\) for the \(k\)-th lag. The set of equations in (A.1.5) is known as the normal equations. Equation (A.1.5) indicates \(L\) distinct equations, each for a different value of \(l\). By solving these \(L\) equations, the predictor coefficients can be determined for the minimum mean square error criterion. Now by using the identity \(r_{xx}(-k) = r_{xx}^*(k)\) the \(L\) equations of (A.1.5) can be arranged in matrix format as shown below.

\[
\begin{bmatrix}
 r_{xx}(0) & r_{xx}(1) & \cdots & r_{xx}(M-1) \\
 r_{xx}^*(1) & r_{xx}(0) & \cdots & r_{xx}(M-2) \\
 \vdots & \vdots & \ddots & \vdots \\
 r_{xx}^*(L-1) & r_{xx}^*(L-2) & \cdots & r_{xx}^*(L-M) \\
\end{bmatrix}
\begin{bmatrix}
 a_1^M \\
 a_2^M \\
 \vdots \\
 a_M^M \\
\end{bmatrix}
= \begin{bmatrix}
 r_{xx}(D) \\
 r_{xx}(D+1) \\
 \vdots \\
 r_{xx}(D+L-1) \\
\end{bmatrix} \quad (A.1.6)
\]
Equation (A.1.6) can be expressed compactly as:

$$ \mathbf{Ra} = \mathbf{b} \quad (A.1.7) $$

where \mathbf{R} is the $(L \times M)$ correlation matrix and \mathbf{a} is the predictor coefficient vector to be determined. The vector \mathbf{b} contains elements of the auto-correlation of the input sequence $x(n)$ and the particular lags of the auto-correlation values depend on how many samples ahead we want to predict. The matrix \mathbf{R} has the special property that the (i,j)th element of the matrix

$$ r(i, j) = r_{xx}(i - j). $$

Again, since $r_{xx}(-k) = r_{xx}^*(-k)$, $r(i, j) = r^*(j, i)$. A matrix with these properties is called a Toeplitz matrix.
Appendix B

Let us consider an estimation process that is being used to estimate a desired signal A. To reduce the complexity of the problem, A will be considered to be a stationary signal with a constant value. Let the estimated value of the desired signal be V. Now V can be written as:

$$V = A + X$$ \hspace{1cm} (A2.1)

In (A2.1) X is the estimation error, which is a random variable (RV). For convenience, let us consider X to be a zero mean, white RV with variance σ_x^2. Let us consider a new random variable U generated by transforming the RV V in the following way:

$$U = \frac{1}{V} = \frac{1}{A + X}$$ \hspace{1cm} (A2.2)

If there were no estimation error in the system, U would be a constant with a value of $1/A$. Therefore the desired value of U is $1/A$. In the presence of the estimation error X, U will be a random variable with a constant component. To analyze the effect of the estimation error X, U will be divided into two parts: the first part is the desired value of U and the second part is the error signal resulting from the estimation error, i.e.,

$$U = \frac{1}{A} + e$$ \hspace{1cm} (A2.3)

Now if we assume that the estimation error X is less than the desired value A, (A2.2) can be expanded by using the Maclaurin series as follows:

$$U = \frac{1/A}{1 + X/A} = \frac{1}{A} \sum_{n=0}^{\infty} \left(-\frac{X}{A} \right)^n, \quad |X| < |A|$$ \hspace{1cm} (A2.4)

Comparing (A2.3) and (A2.4) the error term of (A2.3) can be written as:
To analyze the effect of the estimation error on U, the first and the second order moments of the error term e (in (A2.5)) will be determined.

First Order Moment

To determine the moments of the error signal we will always start with (A2.4), the expression for U. The first order moment or the mean of the random variable U, can be expressed as

$$\mu_u = E\{U\} = E\left\{ \frac{1}{A} \sum_{n=1}^{\infty} \left(-\frac{X}{A} \right)^n \right\}$$

(A2.6)

Exploiting the linearity of the expectation and summation operations, (A2.6) can be written as:

$$\mu_u = E\{U\} = \frac{1}{A} \sum_{n=0}^{\infty} E\left\{ \left(-\frac{X}{A} \right)^n \right\}$$

(A2.7)

Since X is assumed to be zero-mean and white, and A is assumed to be constant, the expected value of the terms in (A2.7) with odd power n will be zero. Again, the expected values of $(X/A)^{2m}$, for $m=2n$, are negligible compared to $E\{(X/A)^2\}$, when $\frac{X}{A} << 1$. Therefore, the mean value of the error term e can be expressed compactly as follows:

$$\mu_u = E\{U\} = \frac{1}{A} + \frac{1}{A} E\left\{ \left(\frac{X}{A} \right)^2 \right\} = \frac{1}{A} + \frac{\sigma_x^2}{A^3}$$

(A2.8)

In (A2.8), the $1/A$ term represents the desired value of U in the absence of the estimation error. Therefore, the mean value of the estimation error can be written as:
\[\mu_e = E\{e\} = \frac{\sigma_x^2}{A^3} \]

(A2.9)

From (A2.9) it can be said that, even though \(X \) is a zero mean random variable, the mean of \(e \) is not zero and the mean value depends on the variance of \(X \) and the magnitude of \(A \).

Second Order Moment

According to the assumption of a stationary desired amplitude \(A \), the second order central moment of \(U \) should be zero in the absence of estimation error. Therefore, any non-zero value of the second order central moment of \(U \) will be the result of the estimation error. To find the central moment we will first determine the second order moment of \(U \), which is given by:

\[
E\{U^2\} = \frac{1}{A^2} E\left\{ \sum_{n=0}^{\infty} \left(-\frac{X}{A} \right)^n \sum_{m=0}^{\infty} \left(-\frac{X}{A} \right)^m \right\}
\]

\[
= \frac{1}{A^2} E\left\{ \left[1 - \frac{X}{A} + \frac{X^3}{A^3} + \cdots \right] \times \left[1 - \frac{X}{A} - \frac{X^3}{A^3} + \cdots \right] \right\}
\]

\[
= \frac{1}{A^2} E\left\{ 1 - \frac{2X}{A} + \frac{3X^2}{A^2} - \frac{4X^3}{A^3} + \frac{5X^4}{A^4} - \cdots \right\}
\]

(A2.10)

By using the same assumptions that were used to simplify (A2.7), (A2.10) can be written as:

\[
E\{U^2\} = \frac{1}{A^2} + \frac{1}{A^2} \frac{3\sigma_x^2}{A^2} = \frac{1}{A^2} + \frac{3\sigma_x^2}{A^4}
\]

(A2.11)

To find the effect of the estimation error, the second order central moment of \(U \) will be calculated about the value of \(U \) in the errorless case. Therefore,

\[
\sigma_u^2 = E\{U^2\} - \frac{1}{A^2} = \frac{1}{A^2} + \frac{3\sigma_x^2}{A^4} - \frac{1}{A^2}
\]

\[
= \frac{3\sigma_x^2}{A^4}
\]

(A2.12)
From (A2.12) it can be concluded that the variance of U is greater than the variance of the estimation error σ^2_x, if $A \leq \frac{4}{\sqrt{3}} \approx 1.3161$. Figure B. 1 shows the effect of A and the variance of the estimation error $\sigma^2_{\hat{X}}$ on the variance of U, σ^2_U. In Figure B. 1, all the values of σ^2_U above 40 were truncated to 40. X was considered a zero-mean Gaussian random process while generating Figure B. 1. It is clear from Figure B. 1 that for the smaller values of σ^2_x, the values of A below which $\sigma^2_{\hat{U}} > \sigma^2$, pretty much coincide with the bound derived in (A2.12). For higher values of σ^2, the higher order statistics of X are not negligible and thus the assumptions made to derive (A2.12) are no longer valid. In this situation the value of A, below which $\sigma^2_{\hat{U}} > \sigma^2$, will not be 1.3161. Figure B. 1 shows that this value of A starts to increase with an increase in σ^2_x.

![Figure B. 1: Variance of U as a Function of A and the Variance of X.](image-url)