Stability of Castellated Beams
During Erection

by

T. Patrick Bradley

Dr. Thomas M. Murray, Chairman

Department of Civil and Environmental Engineering

(ABSTRACT)

The increased depth of castellated beams presents stability problems, specifically during erection. During erection the castellated beam must support the weight of an erector and self-weight until the continuous bracing of the floor deck is in place. The stability of the unbraced member is based on its resistance to lateral-torsional buckling.

The cross-sectional properties that are related to lateral-torsional buckling, such as out-of-plane bending, warping constant, and torsional constant were calculated using three different approaches to model the unique geometry of castellated beams. These properties were used in various lateral-torsional buckling solutions to determine which procedure should be used to check for this mode of failure.

Two specimens were tested to evaluate the results of the analytical unbraced length determination process. The tests results were used to better model the contribution of the web-to-column flange double angle connection on the stability of the castellated beam.
ACKNOWLEDGEMENTS

I would like to express my appreciation to Dr. Thomas M. Murray for serving as my committee chairman and his valuable guidance with my research and this thesis. My thanks are also extended to Dr. Samuel Easterling and Dr. Raymond Plaut for serving as committee members. I would also like to acknowledge SMI who made this research possible.

I would also like to thank Emily Howard whom I met here at Virginia Tech, for her love, support, and understanding. Lastly, I would like to thank my mom, Marsha, and my sister, Sarah. Their love and support throughout my extended college career has been amazing. This is dedicated to them for the sacrifices they have made and the encouragement they have given me my entire life.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS... iii

LIST OF FIGURES... vii

LIST OF TABLES... ix

CHAPTER I INTRODUCTION AND LITERATURE REVIEW............ 1

1.1 Introduction... 1

1.2 Scope of Research... 3

1.3 Terminology... 4

1.4 Literature Review... 5

1.4.1 Castellated Beams... 5

1.4.2 Stability and Lateral-Torsional Buckling......................... 9

1.5 Need for Research... 12

1.6 Overview... 12

1.7 Section Designation.. 13

CHAPTER II REVIEW OF LATERAL-TORSIONAL BUCKLING DESIGN PROVISIONS.......... 16

2.1 Introduction... 16

2.2 Cross-Sectional Properties... 16

2.2.1 “Tee” Section Properties....................................... 17

2.2.2 Full Section Properties....................................... 19

2.2.3 Weighted Section Properties................................... 20

2.2.4 Comparison of Calculated Properties......................... 21

2.3 Classical Lateral-Torsional Buckling Solution................... 22
LIST OF FIGURES

- Figure 1.1 Fabrication Process of a Castellated Beam 2
- Figure 1.2 Components of a Castellated Beam 4
- Figure 1.3 Vierendeel Truss Analogy 7
- Figure 1.4 Location of Load Application 10
- Figure 1.5 Catalog Designation .. 13
- Figure 1.6 Critical Dimensions .. 14
- Figure 2.1 Tee Section Assumption 18
- Figure 2.2 Full Section Assumption 19
- Figure 2.3 Percentage and Geometry Description 20
- Figure 2.4 Moment Diagram and C_b Terms 24
- Figure 2.5 Load Location Effects .. 25
- Figure 2.6 C_2 Value Description .. 26
- Figure 2.7 “Tee” Truss Analogy .. 29
- Figure 3.1 Full Test Set-up .. 33
- Figure 3.2 Web to Column Flange Connection Detail 34
- Figure 3.3 Angle Detail .. 35
- Figure 3.4 Catch Bracing Detail (Elevation) 36
- Figure 3.5 Quarter Point Catch Bracing Detail (Plan) 37
- Figure 3.6 Midspan Catch Bracing Detail (Plan) 37
- Figure 3.7 Loading Plate .. 38
- Figure 3.8 Load Application Descriptions 39
- Figure 3.9 CB24x26 Test Lengths .. 42
LIST OF TABLES

Table 1.1 Measured Dimensions of Specimen CB24x26.................. 14
Table 1.2 Measured Dimensions of Specimen CB27x40.................. 15
Table 2.1 Comparison of Cross-sectional Calculation Assumptions . 22
Table 2.2 Evaluation of Classical Lateral-Torsional Buckling Solution...25
Table 2.3 Evaluation of Classical Lateral-Torsional Buckling Solution with Load Location Term.................................27
Table 2.4 Evaluation of Galambos Formula.. 29
Table 2.5 Comparison of Methods ("Tee" Properties)......................... 30
Table 2.6 Comparison of Methods (Full Properties)......................... 30
Table 2.7 Comparison of Methods (Weighted Properties).................. 30
Table 3.1 Summary of CB24x26 Test Data................................. 43
Table 3.2 Summary of CB27x40 Test Data................................. 44
Table 4.1 Comparison of Results ("Tee" Assumption)......................... 45
Table 4.2 Comparison of Results (Full Section Assumption).............. 46
Table 4.3 Comparison of Results (Weighted Assumption)................. 46
Table 4.4 Assumption that k_y and k_φ Are Both 1.0..................... 47
Table 4.5 Assumption k_y is 1.0 and k_φ is 0.5............................ 48
Table 4.6 Assumption k_y is 0.8 and k_φ is 0.5............................ 49
Table 4.7 Application of Various k Values in the Galambos Formula...50
Table 4.8 Evaluation where k_y is 1.0 or 0.8 and k_φ is Calculated....... 51
Table 4.9 L_b is Entered from Test Results and k is Calculated 51