STRUCTURAL AND SYNTHETIC STUDIES OF

BIOACTIVE NATURAL PRODUCTS

Shoubin Tang

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirement for the degree of

DOCTOR OF PHILOSOPHY

in

Chemistry

Dr. David G. I. Kingston, Chair

Dr. Richard D. Gandour

Dr. Paul R. Carlier

Dr. Felicia A. Etzkorn

Dr. Harry C. Dorn

December 8, 2005

Blacksburg, Virginia

Keywords: Cardenolides, Flavones, Alkaloids, Paclitaxel, Glycolipids, Anticancer
STRUCTURAL AND SYNTHETIC STUDIES OF

BIOACTIVE NATURAL PRODUCTS

By

Shoubin Tang

Dr. David G. I. Kingston, Chairman

Department of Chemistry

Virginia Polytechnic Institute and State University

ABSTRACT

As part of an ongoing investigation for anticancer agents from natural resources, four plant extracts were determined to contain interesting bioactivity. These extracts were separated by chromatography to afford a number of bioactive compounds that were characterized by spectral analysis.

Fractionation of the fruit extract of Cryptocarya crassifolia led to the isolation of two known flavonoids and two known cryptocaryalactones. Fractionation of the bark extract of the same plant also gave the same two cryptocaryalactones. All these compounds were weakly active in a cytotoxicity assay.

Two new isoflavones were isolated from the roots of an Egyptian lotus plant, Lotus polyphylllos. Both compounds were characterized by UV, NMR, and mass spectroscopic analysis.

The methanol extract from the leaves and bark of a Brexiella sp. were found to display significant cytotoxic activity versus the A2780 mammalian cell line. Two highly
active cardenolides, glucodigimetholide and xysmalogenin glucoside, were isolated and found to be responsible for the bioactivities. Both compounds were characterized by spectroscopic analysis and comparison to the known literature data.

Two marine extracts were also investigated. The pyridoacridine alkaloids, amphimedine and neoampimedine, were isolated from the marine sponge *Petrosia* sp., and three bromo-tyrosine alkaloids were isolated from the marine sponge *Porphyria flintae*. The structures of these known compounds were all elucidated by comparison to literature data.

Two 6′-amino-glycoglycerolipids had been previously isolated from a marine algae species and shown to inhibit the activity of the enzyme Myt-1 kinase. These compounds and some related compounds were synthesized and their bioactivities against Myt1 kinase were determined.

Two isotopically labeled paclitaxel analogs (2D, 19F) were prepared in preparation for studies of the tubulin-binding conformation of paclitaxel by REDOR NMR. A new macrocyclic A-nor-paclitaxel was also synthesized, and was found to have good cytotoxicity and improved tubulin-binding activity as compared with paclitaxel.