INVESTIGATION OF ULTIMATE BENDING STRENGTH
OF STEEL BRACKET PLATES

by
Benjamin Alan Mohr

Thesis submitted to the Faculty of the Virginia Polytechnic Institute
and State University in partial fulfillment of the requirements for the degree of

MASTERS OF SCIENCE
IN
CIVIL ENGINEERING

Approved:

Thomas M. Murray, Chair

____________________________________ ______________________________________
W. Samuel Easterling Kamal Rojiani

February 2005
Blacksburg, Virginia

Keywords: Bolted Bracket Plate, Web Splice, Flexural Rupture, Net Section
INVESTIGATION OF ULTIMATE BENDING STRENGTH
OF STEEL BRACKET PLATES

by

Benjamin Alan Mohr

(ABSTRACT)

Currently, the design model for flexural rupture of an eccentrically loaded bracket plate is based on the material tensile rupture strength times the net elastic section modulus. Different bolt and plate sizes were tested to determine if this model is correct. It was found that the current model is conservative and that the material tensile rupture strength times the net plastic section modulus is a superior design model. Also, limited finite element modeling was performed to predict the elastic stiffness of such connections. The resulting data correlates well with test results, and confirms that most of the connection ductility comes from bolt plowing. These results can be used for splice plate connections in cantilever construction, as well.
ACKNOWLEDGEMENTS

Funding for this research was provided by Cives Steel Company, a comprehensive steel fabrication company with offices in Maine, Mississippi, Indiana, Georgia, Virginia and New York. Their generous donation of funding and material is greatly appreciated.

I would like to thank Dr. Thomas M. Murray for his guidance and mentorship during my time at Virginia Tech. I've learned a great deal over the past 18 months, due in large part to his teaching and support. My sincere thanks also go to Dr. W. Samuel Easterling and Dr. Kamal Rojiani, both for their service on my graduate committee and for their valuable classroom instruction.

In addition to those listed above, this project would have been much more difficult without the help of everyone at the VT Structures and Materials Research Laboratory. Thanks go to Brett Farmer and Dennis Hoffman for their input and assistance, as well as my fellow students for giving me a hand. Special thanks go to David Martin for showing me how to run the equipment, and for helping me with setup.

Lastly, I would like to thank my wife and family for their support and encouragement over the years. None of this would have been possible without them.
Table of Contents

Abstract .. ii

Acknowledgements .. iii

List of Figures .. vi

List of Tables .. vii

Chapter 1 - Introduction ... 1

1.1 - Overview .. 1

1.2 - Analysis of Bracket Plate and Bolted Web Splice Connections 2

1.3 - Current Design Model .. 3

1.4 - Overview of Study ... 4

Chapter 2 - Experimental Investigation .. 6

2.1 - Overview ... 6

2.2 - Testing Program .. 8

2.2.1 - Test Specimens ... 8

2.2.2 - Test Setup ... 11

2.2.3 - Instrumentation ... 12

2.2.4 - Testing Procedure ... 13

2.2.5 - Test Results .. 13

2.2.6 - Strain Measurement Results ... 16

2.3 - Summary ... 21

Chapter 3 - Finite Element Analysis ... 22

3.1 - Introduction .. 22

3.2 - Finite Element Model ... 23

3.3 - Comparison of Results ... 25

3.4 - Summary ... 28

Chapter 4 - Comparison of Test Results and Design Model Predictions 29

4.1 - First Yield Comparisons ... 29

4.2 - Comparison of Maximum Applied Moment with Current Design Models .. 32

4.3 - Comparison of Maximum Applied Moment with Proposed Design Models .. 34

4.4 - Overall Evaluation ... 37

4.5 - Summary ... 39
Chapter 5 - Summary, Recommendations and Conclusions

5.1 - Summary

5.2 - Design Recommendations

5.3 - Recommendations for Future Research

References

Appendix A - Load vs. Deflection Plots

Appendix B - Sample Calculation

Appendix C - Design Calculations

Vita
LIST OF FIGURES

Figure 1.1: Bracket Plate Connection ... 1
Figure 1.2: Schematic Representation of Web Splice Plate 2
Figure 2.1: Schematic Diagram of Test Setup .. 6
Figure 2.2: Photograph of Test Setup ... 7
Figure 2.3: Elevation of Specimen Design .. 8
Figure 2.4: Strain Gage Locations for Test 5-3/4-H1-3/8-B 12
Figure 2.5: Strain Gage Locations for Test 5-1-H3-3/8-B 12
Figure 2.6: Photograph of Plate Failure by Excessive Deflection 15
Figure 2.7: Photograph of Plate Failure by Flexural Rupture 16
Figure 2.8: Load vs. Strain for Test 5-3/4-H1-3/8-B 17
Figure 2.9: Position vs. Strain for Test 5-3/4-H1-3/8-B 17
Figure 2.10: Load vs. Strain for Test 5-1-H3-3/8-B 19
Figure 2.11: Position vs. Strain for Test 5-1-H3-3/8-B 20
Figure 2.12: Load vs. Neutral Axis Location for Test 5-1-H3-3/8-B 20
Figure 3.1: Load vs. Deflection Chart for Test 5-1-H3-3/8-B 22
Figure 3.2: Elevation of SAP Model ... 23
Figure 3.3: Isometric View of Splice Plates .. 23
Figure 3.4: Detail of Splice Plate Showing Joint Connectivity 24
Figure 3.5: Plate Under Load, Deflections x 100 .. 26
Figure 3.6: Plate Stresses in X-Direction, Deflections x 100 27
Figure 3.7: Figure 5.22 from Ashakul, 2004 ... 28
Figure 4.1: Load vs. Deflection Plot for Test 3-3/4-H1-3/8-A 30
Figure 4.2: Terms Used in Calculation of Z_{new} 35
Figure 4.3: Plate Stress Distributions ... 39
LIST OF TABLES

Table 1.1: Typical Values for Possible Limit States .. 4
Table 2.1: Steel Properties ... 9
Table 2.2: Specimen Matrix ... 10
Table 2.3: Test Results .. 14
Table 4.1: Comparison of Test Data with Predicted First Yield Moment Values 31
Table 4.2: Comparison of Test Data with Existing Design Models 33
Table 4.3: Comparison of Test Data with Proposed Design Models 36
Table 4.4: Statistical Summary of First Yield Model 37
Table 4.5: Statistical Summary of Maximum Applied Moment Design Models 37
Table 4.6: Comparison Between $F_y \times Z_{\text{gross}}$ and $F_u \times Z_{\text{net}}$ for Different Plate Configurations .. 40