STUDY TO IMPROVE THE PREDICTED RESPONSE OF FLOOR SYSTEMS DUE TO WALKING

by

Michael DeLancey Boice

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Civil Engineering

APPROVED:

Dr. Thomas M. Murray, Chairman

Dr. Mehdi Setareh

Dr. W. Samuel Easterling

February 2003

Blacksburg, Virginia 24061

natural frequency, floor vibrations, accelerations, acceptability
The scope of this study is divided into three topics. To begin, more accurate methods for estimating the fundamental natural frequencies of floors were explored. Improvements for predicting the behavior of floor systems using several criteria were also investigated. The final topic compared the AISC and SCI methods for analyzing vibrations acceptability.

Natural frequency prediction was studied by examining 103 case studies involving floor systems of various framing occupied or being constructed in the United States and Europe. Based on the results from these comparisons, it was reasonably concluded that the predicted bay frequency using Dunkerly’s estimate \(f_n^2 \) is not the most accurate method for predicting the system frequency using the AISC Design Guide for all types of framing analyzed. The predicted beam frequency using AISC methods provided sound correlations with the measured bay frequencies. On the other hand, with the exception of floor systems with joist girders and joists, the results showed that the SCI methods provided more accurate predictions of bay frequency despite a fair amount of data scatter.

Evaluations based on the AISC Design Guide 11, the SCI criteria Murray Criterion, and Modified Reiher-Meister scale were compared with subjective field analyses for each case study in the second part of this study. The AISC Design Guide criterion is the most consistent method for predicting floor behavior. The SCI criterion is
the next most consistent method for floor acceptability, followed by the Murray Criterion then the Modified Reiher-Meister scale.

In the final part of this study, predicted accelerations and floor behavior tolerability for 78 case studies were evaluated using the AISC and the SCI criteria. The two prediction methods are in agreement for 82 % (64 of 78) of the case studies, and strongly disagree for only 12 % (9 of 78) of the case studies.
ACKNOWLEDGMENTS

The road to obtaining a Masters degree is an arduous path. Many people deserve recognition and appreciation for helping me achieve my dreams. I would first like to extend my sincerest appreciation to Dr. Thomas M. Murray for his constant support and guidance. His patience and friendship will always be valued and sorely missed. In addition, my committee members, Dr. Mehdi Setareh and Dr. W. Samuel Easterling, deserve my deepest gratitude. I would also like to thank Dr. Stephen Hicks of the Steel Construction Institute for his cooperation in developing my thesis. I am also grateful to NUCOR Research and Development for their financial assistance.

Special appreciation goes to my parents and family for their constant encouragement and support all throughout my life. Their love has always inspired me to continue to succeed and always follow my dreams.

Finally, I would like to thank Mike Yahraus, Brad Fuller, Matt Engelmann, and Chris Brown for being my friends and staying by my side.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ACKNOWLEDGMENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
</tbody>
</table>

CHAPTER I – FLOOR VIBRATIONS BACKGROUND AND LITERATURE REVIEW

1.1 INTRODUCTION .. 1

1.2 SCOPE OF RESEARCH ... 2

1.3 TERMINOLOGY ... 2

1.4 LITERATURE REVIEW ... 6
 1.4.1 HISTORICAL FLOOR VIBRATIONS CRITERIA 6
 1.4.2 AISC STEEL DESIGN GUIDE SERIES 11 .. 10
 1.4.3 SCI FLOOR VIBRATIONS CRITERIA.. 15
 1.4.4 ADDITIONAL CURRENT RESEARCH .. 20

1.5 NEED FOR RESEARCH ... 21

CHAPTER II – NATURAL FREQUENCY STUDY

2.1 INTRODUCTION .. 23

2.2 AISC FREQUENCY COMPARISONS .. 24
 2.2.1 FLOORS WITH HOT-ROLLED SHAPES.. 25
 2.2.2 FLOORS WITH HOT-ROLLED GIRDERS AND JOISTS 28
 2.2.3 FLOORS WITH JOIST GIRDERS AND JOISTS................................... 30
 2.2.4 HOT-ROLLED GIRDERS AND CASTELLATED BEAMS 33
 2.2.5 SUMMARY OF AISC FREQUENCY COMPARISONS 35

2.3 SCI FREQUENCY COMPARISONS.. 37
 2.3.1 FLOORS WITH HOT-ROLLED SHAPES.. 37
 2.3.2 FLOORS WITH HOT-ROLLED GIRDERS AND JOISTS 40
 2.3.3 FLOORS WITH JOIST GIRDERS AND JOISTS................................... 43
 2.3.4 HOT-ROLLED GIRDERS AND CASTELLATED BEAMS 45
2.3.5 SUMMARY OF SCI FREQUENCY COMPARISONS .. 47

2.4 AISC vs. SCI FREQUENCY COMPARISON .. 49

2.4.1 FLOORS WITH HOT-ROLLED SHAPES ... 49

2.4.2 FLOORS WITH HOT-ROLLED GIRDERS AND JOISTS 49

2.4.3 FLOORS WITH JOIST GIRDERS AND JOISTS 49

2.4.4 HOT-ROLLED GIRDERS AND CASTELLATED BEAMS 50

2.5 FREQUENCY EVALUATION OF BRITISH FLOORS 53

2.5.1 AISC FREQUENCY EVALUATION OF BRITISH FLOORS 53

2.5.2 SCI FREQUENCY EVALUATION OF BRITISH FLOORS 56

2.5.3 EXAMPLE EVALUATION OF A SCI TESTED FLOOR 57

2.6 SUMMARY .. 59

CHAPTER III – FLOOR VIBRATIONS CRITERIA COMPARISONS64

3.1 INTRODUCTION .. 64

3.2 CRITERIA COMPARISON RESULTS .. 65

3.2.1 FLOORS WITH HOT-ROLLED SHAPES ... 66

3.2.2 FLOORS WITH HOT-ROLLED GIRDERS AND JOISTS 66

3.2.3 FLOORS WITH JOIST GIRDERS AND JOISTS 70

3.3 SUMMARY .. 70

CHAPTER IV – AISC AND SCI ACCELERATIONS COMPARISON....72

4.1 INTRODUCTION .. 72

4.2 AISC VS. SCI ACCEPTABILITY COMPARISON.. 73

4.2.1 FLOORS WITH HOT-ROLLED SHAPES ... 74

4.2.2 FLOORS WITH HOT-ROLLED GIRDERS AND JOISTS 75

4.2.3 FLOORS WITH JOIST GIRDERS AND JOISTS 77

4.2.4 HOT-ROLLED GIRDERS AND CASTELLATED BEAMS 78

4.3 SUMMARY .. 78

CHAPTER V – CONCLUSIONS AND RECOMMENDATIONS80

5.1 SUMMARY .. 80

5.2 CONCLUSIONS ... 80

5.2.1 NATURAL FREQUENCY STUDY ... 80

5.2.2 FLOOR VIBRATION CRITERIA COMPARISON 81
LIST OF FIGURES

Figure 1.1 – Amplitude and Period.. 3
Figure 1.2 – Dynamic Loads (AISC Steel Design Guide Series 11 1997)................................. 4
Figure 1.3 – Typical Mode Shapes for a Beam and Floor System .. 5
Figure 1.4 – Frequency Spectrum.. 6
Figure 1.5 – Reiher-Meister Scale .. 7
Figure 1.6 – Modified Reiher-Meister Scale .. 7
Figure 1.7 – T-Beam Model... 8
Figure 1.8 – Recommended Peak Accelerations (Allen and Murray 1993)......................... 10
Figure 1.9 – Modal Deflection of Beams... 17
Figure 1.10 – Mode Shape Governed by (a) Secondary Beam Flexibility (b) Primary
Beam Flexibility (Hicks, et al. 2000).. 18
Figure 2.1 – Measured Bay Frequencies vs. AISC Predicted Frequencies for Floors with
Hot-Rolled Shapes .. 27
Figure 2.2 – Measured Bay Frequencies vs. AISC Predicted Frequencies for Floors with
Hot-Rolled Girders and Joists.. 29
Figure 2.3 – Measured Bay Frequencies vs. AISC Predicted Frequencies for Floors with
Joist Girders and Joists.. 32
Figure 2.4 – Measured Bay Frequencies vs. AISC Predicted Frequencies for Floors with
Hot-Rolled Girders with Castellated Beams.. 34
Figure 2.5 – Measured Bay Frequencies vs. AISC Predicted Frequencies for All Framing
Types.. 36
Figure 2.6 – Measured Bay Frequencies vs. SCI Predicted Frequencies for Floors with
Hot-Rolled Shapes ... 39
Figure 2.7 – Measured Bay Frequencies vs. SCI Predicted Frequencies for Floors with
Hot-Rolled Girders and Joists.. 42
Figure 2.8 – Measured Bay Frequencies vs. SCI Predicted Frequencies for Floors with
Joist Girders and Joists... 44
Figure 2.9 – Measured Bay Frequencies vs. SCI Predicted Frequencies for Floors with Hot-Rolled Girders and Castellated Beams .. 46

Figure 2.10 – Measured Bay Frequencies vs. SCI Predicted Frequencies for All Framing Types .. 48

Figure 2.11 – Measured Bay Frequency vs. Predicted AISC and SCI Bay Frequency for British Tested Floors .. 55

Figure 2.12 – First Floor Framing Plan SCI Headquarters (Hicks, et al. 2000) 58
LIST OF TABLES

Table 1.1 – L_{eff} and S Dimensions (Hicks, et al. 2000).. 20
Table 2.1 – AISC Frequency Comparison for Floors with Hot-Rolled Shapes............... 26
Table 2.2 – AISC Frequency Comparison for Hot-Rolled Girders and Joists............. 28
Table 2.3 – AISC Frequency Comparison for Floors with Joist Girders and Joists........ 31
Table 2.4 – AISC Frequency Comparison for Floors with Hot-Rolled Girders and
Castellated Beams ... 33
Table 2.5 – SCI Frequency Comparison for Floors with Hot-Rolled Shapes 38
Table 2.6 – SCI Frequency Comparison for Floors with Hot-Rolled Girders and Joists . 41
Table 2.7 – SCI Frequency Comparison for Floors with Joist Girders and Joists......... 43
Table 2.8 – SCI Frequency Comparison for Floors with Hot-Rolled Girders and
Castellated Beams ... 45
Table 2.9 – AISC vs. SCI Frequency Comparison for Floors with Hot-Rolled Shapes... 50
Table 2.10 – AISC vs. SCI Frequencies for Hot-Rolled Girders and Joists 51
Table 2.11 – AISC vs. SCI Frequencies for Floors with Joist Girders and Joists........... 52
Table 2.12 – AISC vs. SCI Frequencies for Hot-Rolled Girders with Castellated Beams52
Table 2.13 – System Frequency Comparison for British Floors Using AISC Method 54
Table 2.14 – System Frequency Comparison for British Floors Using SCI Method 54
Table 2.15 – AISC vs. SCI Comparison of Parameters for the SCI Headquarters Framing
.. 58
Table 2.16 – Summary of Results of Frequency Study ... 60
Table 3.1 – Acceptability Criteria Comparison for Floors with Hot-Rolled Shapes....... 67
Table 3.2 – Acceptability Criteria Comparison for Floors with Hot-Rolled Girders and
Joists .. 68
Table 3.3 – Acceptability Criteria Comparison for Floors with Joist Girders and Joist
Framing ... 69
Table 3.4 – Criteria Comparison Summary .. 71
Table 4.1 – AISC vs. SCI Acceptability for Framing Using Hot-Rolled Shapes............ 74
Table 4.2 – AISC vs. SCI Acceptability for Framing Using Hot-Rolled Girders and
Joists .. 76
Table 4.3 – AISC vs. SCI Acceptability for Framing Using Joist Girders and Joists 77
Table 4.4 – AISC vs. SCI Acceptability for Framing Using Hot-Rolled Girders and Castellated Beams .. 78
Table 4.5 – AISC vs. SCI Acceptability Comparison Summary 79
CHAPTER I – FLOOR VIBRATIONS BACKGROUND AND LITERATURE REVIEW

1.1 INTRODUCTION

Current trends in technology and construction practices have had an adverse effect on the structural dynamics of floor systems in buildings. Twenty-first century building designs are lightweight and high-strength and have longer spanning floor systems. As a result, the serviceability due to vibrations becomes problematic for floors with less live loading, damping, stiffness, and mass. Although floor vibrations do not affect the structural integrity of a building, occupants may feel anxiety and uneasiness due to the motion. Research into floor vibrations must continue to evolve to keep up with changing developments in design and materials.

Floors that are susceptible to occupant-induced vibrations are costly and tedious to retrofit. A number of criteria and design standards have been developed to predict the response of floor systems due to walking excitations. Each criterion has assumptions on the nature and relevant properties of floor systems. Due to the assorted techniques, predictions of floor behavior can be significantly different between the criteria. Examining case studies of floor systems currently being constructed and occupied in the United States and the United Kingdom may provide insight on the accuracy of the various prediction criteria.

The focus of this research is divided into three main topics in which case studies were evaluated. The first focuses on comparing predicted natural frequencies with field-measured frequencies. The second is a comparison between current acceptability criteria and subjective field analyses. A comparison between the acceptability criteria used in the United States and the United Kingdom is assessed in the final topic. The results of each topic are used to suggest methods to improve correlation between predicted and field behavior.
1.2 SCOPE OF RESEARCH

The objective of this research is to examine case studies of floor systems of various framing being constructed and occupied in the United States and the United Kingdom in an attempt to improve correlation between predicted and measured floor response. Analyses of existing floors are important for improving the accuracy of techniques for predicting the fundamental natural frequency of a floor. The first topic provides a comparison between predicted fundamental frequencies and measured field frequencies. The second topic involves evaluating currently occupied floor systems using the American Institute of Steel Construction Design Guide 11 *Floor Vibrations Due to Human Activity* (Murray, et al. 1997), the Modified Reiher-Meister scale, the Murray Criterion, and the Steel Construction Institute criteria. The results of the evaluations are then compared to subjective field analyses of the floor systems. The third focus of this study compares the predicted accelerations and acceptability criteria between the American Institute of Steel Construction (AISC) and Steel Construction Institute (SCI) methods for assessing floor behavior. Proposals for continued research and conclusions on each specific study are then given.

1.3 TERMINOLOGY

The terms listed below are used frequently within the text. The terms are defined with respect to the specific field of floor vibrations.

Vibration. Vibrations are periodic motions of an elastic body such as a floor system in alternately opposite directions from a position of equilibrium. Floor vibrations can be classified as free or forced. Free vibration occurs when the floor system is displaced and released, causing the structure to vibrate at a natural frequency. Forced vibration results when a floor system vibrates at a frequency caused by a continuous and dynamic excitation.

Cycle. A cycle is the motion of a floor system that recurs regularly and usually leads back to a starting position.
Amplitude. *Amplitude* is the extent of a vibratory motion measured from a mean position to an extreme. The amplitude throughout the text will often be expressed as a percentage of gravity for floor accelerations. See Figure 1.1.

Period. *Period, T,* is an interval of time required for an oscillating motion to complete a cycle, typically measured in seconds. See Figure 1.1.

![Diagram of Amplitude and Period](image)

Figure 1.1 – Amplitude and Period

Frequency. *Frequency* is the inverse of the period or the quantity of cycles that occur during a certain unit of time. Frequency is expressed in *Hertz* (Hz) or the number of cycles per second. *Natural frequencies* occur during free vibration of a system and exhibit considerable amplitudes. The *fundamental natural frequency* is the lowest natural frequency of a floor system.

Damping. *Damping* is the process through which the vibration of a floor system diminishes in amplitude due to loss in mechanical energy. Damping that is proportional to velocity, *viscous damping*, is assumed. *Critical damping* is the minimum viscous damping required to prevent oscillation of a system. Damping throughout the text will be expressed as a percent of the critical damping.
Resonance. Resonance is a state that results in vibrations with large amplitudes as a result of an excitation applied to a system at any natural frequency or multiple of any natural frequency to the system.

Loading. Dynamic loads are excitations that change with respect to time. Loads induced by walking excitations are transient loads. Loads caused by rhythmic human activities are periodic loads. Loads caused by sudden impacts such as single jumps are referred to as impulsive loads. See Figure 1.2.

![Dynamic Loads Diagram](image)

Figure 1.2 – Dynamic Loads (AISC Steel Design Guide Series 11 1997)

Heel Drop. A heel drop is an example of an impulsive load. The “standard heel drop” is defined as the force caused by the heels of a 170 lb person impacting the floor after a fall of approximately two and a half inches from a raised position.
Mode Shape. The *mode shape* represents the motion of a structure when vibrating at a natural frequency. See Figure 1.4 for mode shapes for beams and floor systems.

![Mode Shapes](image)

a) Beam

![Mode Shapes](image)

b) Floor System

Figure 1.3 – Typical Mode Shapes for a Beam and Floor System

Fast Fourier Transformation (FFT). The *FFT* is a mathematical method to transform a set of time dependent variables into a frequency spectrum. Spikes in the frequency spectrum represent the various modes of vibration for a floor system. See Figure 1.4.
1.4 LITERATURE REVIEW

The following section offers a historical perspective on the research involving floor vibrations. The basis for much of the current research, AISC Steel Design Guide Series 11, is then discussed in Section 1.4.2. The design criteria currently used in the United Kingdom is presented in Section 1.4.3. In Section 1.4.4, recent research relating to floor vibrations not involved directly with this study are discussed to emphasize the direction and growth of this particular science.

1.4.1 HISTORICAL FLOOR VIBRATIONS CRITERIA

Through the pioneering work by Reiher and Meister (1931), floor vibrations design criteria began to evolve. The research by Reiher and Meister was based on the human ability to perceive motion. A group of people were subjected to steady state vibration and were asked to rate their observations. The people experienced frequencies between 5 Hz to 100 Hz and amplitudes between 0.0004 in. and 0.4 in. A scale, shown in Figure 1.5, was produced base on the perceptions felt by this subject group. The scale begins with “not perceptible”, followed by “slightly perceptible”, “distinctly perceptible, and “strongly perceptible”, then “disturbing” and “very disturbing”.

![Figure 1.4 – Frequency Spectrum](image-url)
Figure 1.5 – Reiher-Meister Scale

Figure 1.6 – Modified Reiher-Meister Scale
Floor vibrations were further investigated when Lenzen (1966) realized that humans are less perceptive to transient vibrations than steady state vibrations. Lenzen discovered that when damped transient vibrations reduce to negligible amplitudes compared to the initial amplitude within five cycles of motion, only the original impact would be sensed. Conversely, steady state vibration could be perceived if the motion continued for twelve or more cycles. Lenzen created the Modified Reiher-Meister scale; shown in Figure 1.6, by multiplying the displacement axis of the original Reiher-Meister scale by a factor of ten. Lenzen based this revision on conclusions that adequate damping found in typical floors will limit the magnitude of vibrations caused by transient loads.

In addition, Lenzen introduced methods for estimating floor system properties such as stiffness, frequency, and displacement. Lenzen used a T-beam model as shown in Figure 1.7 for the joists, assuming full composite action. The effective width for the model was the sum of half of the distances to adjacent joists. The system natural frequency, \(f \), was found by

\[
f = 1.57 \sqrt{\frac{gEI_i}{WL^3}}
\]

where \(g = 386 \text{ in/sec}^2 \); \(E \) = modulus of elasticity for steel, ksi; \(I_i \) = sum of transformed moment of inertias for all joists, in.\(^4\); \(W \) = total weight supported by the T-beam, kips; and \(L \) = span of beam, in. The displacement, \(\Delta \), for use in Figure 1.6, is valid for spans up to 24 ft and is approximated by

\[
\Delta = \frac{PL^3}{48EI_i}
\]

(a) Actual
(b) Model

Figure 1.7 – T-Beam Model
where $P = 300$ lb for floors that have partitions; I, E, and L are as previously described. This displacement equation was based on impulsive loads such as heel drops and developed for use with the Modified Reiher-Meister scale.

The work of Murray (1975) contributed to further development of the Modified Reiher-Meister criteria. Murray concluded “steel beam, concrete slab systems, with relatively open areas free of partitions and damping between 4 and 10 percent, which plot above the upper one-half of the distinctly perceptible range, will result in complaints from the occupants”. The dashed line on Figure 1.6 represents this amendment to the Modified Reiher-Meister scale. Furthermore, Murray recommended using an effective depth, d_e, for I, calculations. The effective depth for a slab in the direction parallel to the beam is taken as the depth of the concrete above the deck. The effective depth for a slab in the direction perpendicular to the beam is taken as the sum of concrete depth and one-half the deck height.

Murray (1981) proposed the Murray Criterion by setting a minimum damping as a requirement for acceptability. The required percent critical damping, D, is given by

$$D > 35A_o f + 2.5$$

where f = first natural frequency, Hz, and A_o = initial amplitude based on heel drop approximations suggested by Murray (1975). Only floor systems that experienced frequencies less than 10 Hz and with spans less than 40 ft were applicable to the criteria. Murray based his recommendation on a statistical analysis of 91 field tests and concluded that considerable disagreement between various floor vibrations criteria was a result of discrepancies in damping.

Design criteria for floor vibrations based on walking excitations rather than heel drop excitations were first initiated through the work of Allen and Rainer (1976). The criterion developed was integrated into the Canadian Standards Association Standard, CSA S16.1 (CSA, 1989).

In 1989, The International Standards Organization (ISO) suggested limits in terms of root-mean-square (rms) acceleration as a multiple of the baseline curve, shown in Figure 1.8. Allen and Murray (1993) recommended peak accelerations, as shown in Figure 1.8, for offices, residences, malls, and footbridges in the publication Design Criterion for Vibrations Due to Walking. In addition, Allen and Murray developed
design techniques and approaches for estimating required floor properties based on walking excitations. Many of the same procedures used in the AISC Steel Design Guide Series 11 *Floor Vibrations Due to Human Activity*, referred henceforth as the Design Guide, is based on the work of Allen and Murray. The Design Guide is the most current criteria used by engineers in North America and was written by Murray, Allen, and Ungar (1997). Since most of this study is primarily based on the methods introduced in the Design Guide, the following section will provide a more detailed discussion of the walking criterion in this publication.

![Recommended Peak Accelerations](image)

Figure 1.8 – Recommended Peak Accelerations (Allen and Murray 1993)

1.4.2 AISC STEEL DESIGN GUIDE SERIES 11

The dynamic response of steel beam and joist supported floor systems to walking excitations provides the foundation for the criterion in Chapter 4 of the Design Guide. The Design Guide criterion can be used to investigate structural systems of footbridges,
offices, residences, and malls made of steel and concrete. This section will explain the walking criterion and summarize the important procedures for calculating floor system properties.

Acceptability. The criterion states that a floor system is satisfactory “if the peak acceleration, \(a_p \), due to human walking excitation as a fraction of the acceleration of gravity, \(g \), determined from

\[
\frac{a_p}{g} = P_o \exp(-0.35 f_n) \leq \frac{a_o}{g}
\]

where \(P_o \) = a constant force representing the excitation, \(f_n \) = fundamental natural frequency of a beam or joist panel, a girder panel, or combined panel, as applicable, \(\beta \) = modal damping ratio, and \(W \) = effective weight supported by the beam or joist panel, girder panel, or combined panel, as applicable, does not exceed the acceleration limit \(a_o/g \) for the appropriate occupancy”. The scope of this research covers the behavior of floors in office environments. Therefore, the acceleration limit, as shown in Figure 1.8, for office occupancies is taken as 0.5 % of gravity. The recommended value of \(P_o \) is 65 lbs for the same occupancy. Actual dead and live loads rather than design dead and live loads are assumed for weight calculations. A typical office super-imposed dead load of 4 psf, which accounts for ceiling and mechanical loads, is generally assumed in floor vibrations calculations. Damping and live loading values vary for different types of offices. This research investigates “paper” offices and “electronic” offices. The typical fit-out in a “paper” office includes heavy filing cabinets, desks, furniture, computers, and technical equipment. Consequently, typical assumed values for damping and live loading are 3 % and 11 psf, respectively. Lighter floor systems in “electronic” offices have typical assumed values for damping between 2 % to 2.5 % and live loads of 8 psf. The typical fit-out in an “electronic” office includes only desks and computers.

Fundamental Frequency. To begin evaluating a floor, the fundamental frequency of the joists and girders need to be ascertained. The fundamental frequency, \(f \), for each framing member is estimated from

\[
f_j = f_s = 0.18 \sqrt{\frac{g}{\Delta_{ss}}}
\]
where $f_j = \text{frequency of beam or joist, Hz}; f_g = \text{frequency of girder, Hz}; g = \text{acceleration due gravity (386 in./s^2)}$ and $\Delta_{ss} = \text{deflection of the joist, beam, or girder, in., due to the weight supported, w}$. Framing members in floor systems are assumed to be simply-supported. Therefore, the maximum deflection, Δ_{ss}, at midspan of a simply supported member is estimated by

$$\Delta_{ss} = \Delta_b = \Delta_g = \frac{5wL^4}{384E_sI} \tag{1.6}$$

where $w = \text{total supported weight including an estimation of live loading, kips/ft}; E_s = \text{modulus of elasticity for steel, ksi}; L = \text{member span, in.}; \text{ and } I = \text{composite moment of inertia, in.}^4$. When calculating I, the Design Guide advises that the effective width of the concrete slab be taken as the member spacing, but not more than 40% of the member span. Also, when determining I, the concrete modulus of elasticity may be increased by 35% to account for greater stiffness of the slab during dynamic loading. In addition, the type of beam is important when calculating I. The full composite moment of inertia is used if the beam is a hot-rolled section. However, joists experience considerable shear deformations unlike hot-rolled sections during loading, thus reducing the full composite moment of inertia. The smaller effective composite moment of inertia, I_{eff}, is estimated by

$$I_{eff} = \frac{1}{\gamma} \left(\frac{1}{I_{chords}} + \frac{1}{I_{comp}} \right) \tag{1.7}$$

where $I_{chords} = \text{moment of inertia of the chords of the joist, in.}^4; I_{comp} = \text{transformed moment of inertia of the chords and slab, in.}^4$. The reduction factor, γ, was proposed by Band and Murray (1996) and is calculated by

$$\gamma = \frac{1}{C_r} - 1 \tag{1.8}$$

where, for joists or joist girders with angle web members and a span-to-depth ratio satisfying $6 \leq L/D \leq 24$, C_r is estimated by

$$C_r = 0.90 \left(1 - e^{-0.28(L/D)} \right)^{2.8} \tag{1.9}$$

and for joists with rod web members a span-to-depth ratio satisfying $10 \leq L/D \leq 24$, C_r is estimated by
\[C_r = 0.721 + 0.00725(L/D) \] (1.10)

where \(L \) = span length and \(D \) = nominal depth of joist.

When calculating girder properties, the full transformed moment of inertia, \(I_{\text{comp}} \), is used in the deflection equation (1.6) when girders are in direct contact with the slab and hot-rolled shapes are used as the secondary framing. However, when girders or joist-girders are supporting open web joists, an effective moment of inertia, \(I_{\text{eff}} \), is used to account for the lack of stiffness provided by joist seat connections. The effective moment of inertia is calculated by

\[I_{\text{eff}} = I_g + \frac{(I_{\text{comp}} - I_g)}{4} \] (1.11)

where \(I_g \) = the moment of inertia of the bare girder and \(I_{\text{comp}} \) = full composite moment of inertia, in.4.

Once the beam and girder frequencies are determined, the combined frequency of the floor system can be calculated using Dunkerly’s relationship given by

\[\frac{1}{f_n^2} = \frac{1}{f_j^2} + \frac{1}{f_g^2} \] (1.12)

where \(f_n, f_j, \) and \(f_g \) are the bay system, beam, and girder frequencies, Hz, respectively. The system frequency can also be calculated by

\[f_n = 0.18 \sqrt{\frac{g}{\Delta_j + \Delta_g}} \] (1.13)

which is another form of Dunkerly’s equation.

Panel Weights. The effective panel weight for a beam panel mode, \(W_j \), is estimated from

\[W_j = w_j B_j L_j \] (1.14)

and similarly the effective panel weight for a girder panel mode, \(W_g \), is estimated from

\[W_g = w_g B_g L_g \] (1.15)

where \(w \) = supported weight, kips/ft²; \(B \) = effective width of panel, ft; \(L \) = span length of the member, ft. For the beam or joist panel mode, the effective width is calculated from

\[B_j = C_j \left(\frac{D_j}{D_j} \right)^{\alpha} L_j \] (1.16)
where $C_j = 2.0$ for joists and beams in most areas or $C_j = 1.0$ when joists or beams are parallel to an interior edge; $D_j = \text{joist or beam transformed moment of inertia per unit width, in.}^4/\text{ft}$; $D_s = \text{transformed slab moment of inertia per unit width, in.}^4/\text{ft}$; $L_j = \text{span length of the member, ft.}$ The effective width of the beam or joist panel mode cannot be greater than two-thirds of the floor width in the direction perpendicular to the beam or joist span. For the girder mode, the effective width is calculated by

$$B_g = C_g (D_j/D_g)^{1/2} L_g$$ \hspace{1cm} (1.17)$$

where $C_g = 1.6$ for girders supporting joists connected to the girder flange through joist seats or $C_g = 1.8$ for girders supporting beams connected to the girder web; $D_j = \text{joist or beam transformed moment of inertia per unit width, in.}^4/\text{ft}$; $D_g = \text{girder transformed moment of inertia per unit width, in.}^4/\text{ft}$; $L_g = \text{span length of the girder, ft.}$ The effective width of the girder panel mode cannot be greater than two-thirds of the floor length in the direction perpendicular to the girder span. The effective panel weight, W_j or W_g, may be increased by 50% when beams, joists, or girders are continuous over their supports and a neighboring span is greater than 0.7 times the span under consideration. This increase in weight applies to hot-rolled sections shear-connected to girder webs and joists that are connected by both top and bottom chords.

The equivalent panel weight, W, when considering the combined mode is estimated by

$$W = \frac{\Delta_j}{\Delta_j + \Delta_g} W_j + \frac{\Delta_g}{\Delta_j + \Delta_g} W_g$$ \hspace{1cm} (1.18)$$

where $\Delta_j, \Delta_g, W_j, \text{and} W_g$ are as described previously. The deflection of the girder, Δ_g, can be reduced if the girder span, L_g, is less than the joist panel width, B_j. The floor system is stiffened and the combined mode is constrained, thus justifying the reduction. The reduced girder deflection, Δ_g', is approximated by

$$\Delta_g' = \frac{L_g}{B_j} (\Delta_g)$$ \hspace{1cm} (1.19)$$

where L_g/B_j is taken as not less than 0.5 nor greater than 1.0. The predicted natural frequency is increased with a reduction in the deflection of the girder. The deflection Δ_g...
in Equations 1.5 or 1.13 is replaced by $\Delta g'$ in order to calculate the fundamental natural frequencies of girders or system frequencies.

1.4.3 SCI FLOOR VIBRATIONS CRITERIA

The SCI Publication *Design Guide on the Vibration of Floors*, authored by Wyatt (1989), provides the techniques and criterion used in the United Kingdom for analyzing floor response. In this section, the acceptability criteria used to rate a floor system, the methods used to calculate the fundamental natural frequencies of floor systems, important procedures for calculating floor system properties, and a summary of the different floor system assumptions currently used by AISC and SCI techniques, are presented.

Acceptability Criteria. Using estimated peak acceleration, the root-mean-square acceleration or a_{rms} is then

$$a_{rms} = a_{peak} / \sqrt{2} \quad (1.20)$$

The limiting acceleration is given by the baseline acceleration, a_{base}, shown as the ISO baseline curve in Figure 1.8 multiplied by a response factor, R, for the specific office environment. The limiting acceleration is also a function of the fundamental frequency, f_o, of the floor system. The limiting accelerations of floors are dictated by

$$a_{rms} \leq 0.005R \quad \text{for } 3.0 \, \text{Hz} \leq f_o \leq 8.0 \, \text{Hz} \quad (1.21)$$

and

$$a_{rms} \leq 0.005R \left(\frac{f_o}{8} \right) \quad \text{for } f_o > 8.0 \, \text{Hz} \quad (1.22)$$

The SCI guide recognizes three types of office environments. The “special office” is “appropriate for floors where technical tasks that require concentration and precision operations on computers are performed”. The “general office” is “appropriate for floors where normal activities and text operations on computers are performed”. The “busy office” is “appropriate for floors that are available to many people, with both visual and audible distractions”. The response factors for “special office”, “general office”, and “busy office” are 4, 8, and 12, respectively.

Fundamental Frequency. Many of the same procedures and calculations are used by both SCI and AISC. The Steel Construction Institute also uses Equations 1.5 and
1.6 to calculate the fundamental natural frequency of floors. However, SCI has subtle differences in the assumptions of floor system properties. For example, when calculating the weight carried by a beam, SCI assumes a load corresponding to the self-weight, services, ceiling, and 10% of the imposed load. The imposed value of 10% represents “a sensible permanent load for furnished floors designed in office environments”. The AISC and the SCI also differ in the definition of effective width for secondary and primary framing members. The SCI takes the effective breadth of slab to be the summation of one-eighth of the member spans either side of the beam providing that this value does not exceed \(b \) or the summation of \(0.8b/2 \), where \(b \) is the spacing of the secondary and primary framing, respectively.

The AISC and SCI guide allows for a reduction in the deflection of composite beams that have dissimilar spans and are continuous over supports. According to the AISC publication *Floor Vibrations Due to Human Activity* (1997), the reduced deflection, \(\bar{\delta} \), of the main span for a floor with two continuous spans being considered is estimated by

\[
\bar{\delta} = 0.4 + \frac{k_m}{k_s} \left(1 + 0.6 \frac{L_s^2}{L_M^2} \right) \Delta_{ss} \left(1 + \frac{k_m}{k_s} \right) \tag{1.23}
\]

The reduced deflection, \(\bar{\delta} \), of the main span for a floor with three continuous spans being considered is estimated by

\[
\bar{\delta} = 0.6 + 2 \frac{k_m}{k_s} \left(1 + 1.2 \frac{L_s^2}{L_M^2} \right) \Delta_{ss} \left(3 + 2 \frac{k_m}{k_s} \right) \tag{1.24}
\]

where \(k_m = I_M/L_M \), \(k_s = I_S/L_S \), \(I \) = moment of inertia, in.\(^4\); \(L_M \) and \(L_S \) are defined in Figure 1.9. The deflection \(\Delta_{ss} \) in Equation 1.5 can be replaced by \(\bar{\delta} \) to calculate the fundamental natural frequencies of beams or girders.
Another difference between the AISC and SCI techniques is that SCI considers
the deflection of the composite slab when calculating the fundamental frequency of the
entire floor system. Dunkerly’s approximation becomes

\[\frac{1}{f_n^2} = \frac{1}{f_j^2} + \frac{1}{f_g^2} + \frac{1}{f_{slab}^2} \] \hspace{1cm} (1.25)

where \(f_{slab} \) = frequency of composite slab, Hz; and \(f_n, f_j, \) and \(f_g \) are as described previously.

In composite construction, the slab is much stiffer than the beam or girder. Therefore, in
many analyses of floor systems, the frequency of the slab may be neglected.

The Steel Construction Institute considers two modes of vibration when
investigating a structural floor system. As shown in Figure 1.10(a), when a floor system
is controlled by the secondary beam mode, primary beams behave as nodal lines allowing
no deflection. The secondary framing vibrates as simply-supported beams. Fixed-ended
boundary conditions are assumed for slab frequency estimations. When floor systems are
controlled by the primary beam mode, as shown in Figure 1.10(b), primary framing
members vibrate about columns as simply-supported beams. Fixed-ended boundary
conditions are assumed for secondary framing and slab frequency estimations. When the
primary beam mode is considered, the deflection of the secondary beam, \(\Delta_b \), is calculated by

\[\Delta_b = \frac{WL^3}{384EI} \] \hspace{1cm} (1.26)
where \(W \) = total weight supported by the framing member, kips; \(E \) = modulus of elasticity for steel, ksi; \(L \) = member span, in.; and \(I \) = composite moment of inertia, in.\(^4\). Deflection of the primary beam, \(\Delta_g \), is calculated by Equation 1.16.

Figure 1.10 – Mode Shape Governed by (a) Secondary Beam Flexibility (b) Primary Beam Flexibility (Hicks, et al. 2000)

Peak Acceleration. The acceptability of vibrations induced by walking excitations is based on predicting the peak acceleration. Methods for calculating the peak acceleration are outlined in the *Design Guide for Vibrations of Long Span Composite Floors* (Hicks, et al. 2000). The peak acceleration, \(a_{\text{peak}} \), measured in meters per second (m/s) assumes resonant response and is calculated by

\[
a_{\text{peak}} = \frac{\alpha_n P}{2M\zeta} R_1
\]

where \(\alpha_n \) = Fourier coefficient of the \(n \)th harmonic component of the walking activity and \(P \) = person’s weight take as 76 kg. The only Fourier coefficient that needs to be considered when the fundamental frequency of a floor system is greater than or equal to 3.55 Hz is \(\alpha_n = 0.10 \). This Fourier coefficient is “appropriate for walking frequencies greater than the first harmonic”. When evaluating floors with predicted frequencies of less than 3.55 Hz, the first harmonic is considered and \(\alpha_n = 0.40 \). The resonance build-up factor, \(R_1 \), is given by

\[
R_1 = 1 - e^{-2\pi f_0 T_W}
\]

where \(f_0 \) = fundamental frequency of floor, Hz, and \(T_W \) = the walking time in seconds (s) calculated by

\[
T_W = D/V
\]
where \(D \) is taken in meters (m) as the longer of the floor’s plan dimensions or, when known, the longest corridor length. The walking velocity, \(V \), in m/s is calculated by

\[
V = 1.67 f_p^2 - 4.83 f_p + 4.50 \quad \text{for} \quad 1.7 \text{ Hz} \leq f_p \leq 2.4 \text{ Hz} \tag{1.30}
\]

where \(f_p \) is the walking frequency, Hz, which is taken as the lowest harmonic of the fundamental frequency of the floor. The damping ratio, \(\zeta \), is taken as 1.1 % for bare floors and 3.0 % for normal, well furnished floors. The resonance build-up factor may conservatively be taken as 1.0 when the building parameters are unknown.

The effective vibrating modal mass, \(M \), which accounts for the effective plan area participating in the motion, is calculated by

\[
M = \frac{m L_{eff} S}{4} \tag{1.31}
\]

where \(m \) = total floor distributed mass, kg/m\(^2\). Table 1.1 provides equations to estimate the floor beam effective span, \(L_{eff} \), and the floor effective width, \(S \), for structural systems.

From Table 1.1, the relative flexibility of the primary beam, \(RF_{main_beam} \), is calculated by the following expression

\[
RF_{main_beam} = \frac{\Delta_g}{\Delta_g + \Delta_b} \tag{1.32}
\]

where \(\Delta_g \) and \(\Delta_b \) are as previously described. The effective width of the floor participating in the motion, \(S^* \), is measured in meters and is given by

\[
S^* = 4.5 \left(\frac{EI_1}{mf_o^2} \right)^{1/4} \tag{1.33}
\]

where \(EI_1 \) = dynamic flexural rigidity of the slab, Nm\(^2\) per meter width; \(f_o \) = fundamental frequency of the floor, Hz. The effective span of the secondary beam participating in the motion, \(L^* \), is measured in meters and is given by

\[
L^* = 3.8 \left(\frac{EI_b}{mbf_o^2} \right)^{1/4} \tag{1.34}
\]

where \(EI_b \) = dynamic flexural rigidity of the composite secondary beam, Nm\(^2\); and \(b \) = the secondary beam spacing, m. Table 1.1 also defines \(W \) as the width of the floor area being analyzed, \(L_m \) as the span of the primary beam measured in meters, and \(L_{max} \) as the
entire length of the secondary beam when considered to act continuously. These three parameters are measured in meters.

<table>
<thead>
<tr>
<th>Indicative floor layout</th>
<th>Qualifying conditions</th>
<th>L_{eff} (m)</th>
<th>S (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>$RF_{\text{main beam}} < 0.2$</td>
<td>L</td>
<td>S^* but $\leq W$</td>
</tr>
<tr>
<td></td>
<td>$RF_{\text{main beam}} > 0.2$</td>
<td>L</td>
<td>Greater of S^* or l_{m} but $\leq W$</td>
</tr>
<tr>
<td>Case 2</td>
<td>$l = L$</td>
<td>$2L$</td>
<td>As for Case (1) above</td>
</tr>
<tr>
<td></td>
<td>$0.8L < l < L$</td>
<td>$1.7L$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$l < 0.8L$</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Case 3</td>
<td>$RF_{\text{main beam}} < 0.6$</td>
<td>$2L$</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>$RF_{\text{main beam}} > 0.6$</td>
<td>$L^* \text{ but } \leq l_{\text{max}}$</td>
<td></td>
</tr>
<tr>
<td>Case 4</td>
<td>$W_2 = W_1$</td>
<td>$2W_1$</td>
<td>As for Case (3) above</td>
</tr>
<tr>
<td></td>
<td>$W_2 > 0.8W_1$</td>
<td>$1.7W_1$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$W_2 < 0.8W_1$</td>
<td>W_1</td>
<td></td>
</tr>
</tbody>
</table>

1.4.4 ADDITIONAL CURRENT RESEARCH

In recent years, floor vibrations research has expanded to study a multitude of related fields. By investigating a broad range of correlated topics, further understanding of the science of human induced floor vibrations can continue to evolve. Through the work of Kitterman (1994), the motion of steel joists and joist-girders was investigated. Specifically, the effective moment of inertia and the ability of joist seats to provide
composite behavior were explored. Kitterman derived equations for estimating the effective moment of inertia of framing members as a result of many tests of floor systems. Rottmann (1996) studied the use of tuned mass dampers for retrofitting floor systems with motion problems. The use of finite element analyses for predicting floor behavior was conducted by Band (1996), Beavers (1998), and Sladki (1999). Finite element analyses proved to be an effective tool in approximating the fundamental natural frequency of a floor. However, the studies also found that peak accelerations of floors cannot be predicted accurately using finite element techniques. Warmoth (2002) also investigated the girder moment of inertia in relation to floor vibrations. Warmoth recognized that different joist-seat connections vary in stiffness and proposed a new calculation for girder effective moment of inertia based on these findings. Through the work of Jackson (2002), floor motion properties of castellated beams were examined. Castellated beams have web openings creating non-prismatic cross sections. Jackson concluded that the composite moment of inertia should be calculated using the net moment of inertia for floor member properties.

1.5 NEED FOR RESEARCH

The dynamics of floors systems are changing with currents trends in design using lightweight, high-strength materials, and office fit-outs. Properties and vibrations behavior change due to less damping, stiffness, and mass provided by the floors. Therefore, past assumptions and methodology become out dated and floor vibrations research must continue to evolve. Analyses of existing floors are important for investigating more accurate techniques to improve the correlation between predicted and observed floor behavior. Examining case studies of floor systems can provide insight on the accuracy of the various prediction criteria. The focus of this research is divided into three topics in which case studies of existing floors are evaluated. In Chapter II, the fundamental natural frequencies of floor systems with various framing are studied. The measured and predicted bay, beam, and girder frequencies are scrutinized. Four acceptability criteria for analyzing existing occupied floors in the United States are compared in Chapter III. The criteria are then evaluated with field subjective analyses of the floors. The AISC and SCI methods on predicting floor motion are compared in
Chapter IV. Conclusions are made and continued research is proposed in Chapter V based on the findings from each study. Supplemental material in the publication by Boice and Murray (2003) for this report contains summary sheets of the case studies used in the frequency and criteria comparisons. These sheets include floor systems properties such as damping, framing, loading, predicted and measured fundamental frequencies, accelerations, and slab properties. In addition, framing plans for the floor systems evaluated in this study are found in the supplemental material. Appendix A contains the example calculations of frequencies and acceptability criteria based on the AISC and SCI methods.
CHAPTER II – NATURAL FREQUENCY STUDY

2.1 INTRODUCTION

Analyzing actual floor systems that are occupied or under construction provides insight into the behavior of vibrations induced by walking excitations. The fundamental natural frequency is an important property needed to predict the response of a floor. Therefore, the natural frequencies for floor systems of various framing are examined in this chapter. Correlation between predicted and measured response can be improved by comparing structural system frequencies.

This chapter provides a comparison of predicted and measured frequencies from 103 case studies involving floors occupied and or currently being constructed in the United States and the United Kingdom. The type of framing used differentiates the structural floor systems. The classifications for framing are “hot-rolled beams”, “hot-rolled girders with joists”, “hot-rolled girders with castellated beams”, and “joist girders with joists”. The controlling girder, which allows the most deflection corresponding to the lower frequency, is considered when classifying a floor system when two different types of girders are used in the framing.

The measured frequency was determined from the response of a floor system due to heel drops, walking, and ambient conditions. For ambient measurements, the frequency is measured without any excitation to the floor. An ONO SOKKI CF-1200 Handheld FFT Analyzer and seismic accelerometer was primarily used in the most recent case studies to measure natural frequencies as a result of excitations administered at the center of selected bays. This FFT analyzer is accurate to within 0.25 Hz.

The framing systems were modeled using the design software FLOORVIB2 (Murray and Elhouar 1994) in order to predict the fundamental natural frequency. The FLOORVIB2 software is based on the AISC Design Guide. In addition, the frequencies are also predicted using the methods outlined in the SCI Publication Design Guide on the
Vibration of Floors, (Wyatt 1989). The predicted beam, girder, and bay frequencies are then compared to the measured frequencies.

Supplemental material for this report is found in the publication by Boice and Murray (2003) and contains summary sheets of the case studies used in the frequency and criteria comparisons. These sheets include floor systems properties such as damping, framing, loading, predicted and measured fundamental frequencies, accelerations, and slab properties. In addition, the supplemental material contains framing plans for the floor systems evaluated in this chapter. Appendix A contains sample calculations of beam, girder, and bay frequencies. The following sections of this chapter include the frequency comparison using the Design Guide and SCI methods, followed by a summary of AISC and SCI predicted bay frequencies. In addition, this chapter includes vibration properties for floors that were tested in Europe. The final section of this chapter provides conclusions and recommendations.

2.2 AISC FREQUENCY COMPARISONS

This section presents the results from comparisons between measured bay frequencies and predicted beam, joist, girder, and system frequencies. The predicted frequencies are calculated using the methods outlined in the AISC Design Guide. The floors are classified and compared by the framing used in the structural system. The bay or system frequency is predicted using Dunkerly’s relationship, Equation 1.12. In addition, system frequencies estimated using modifications to Dunkerly’s equation are compared with measured frequencies. These modifications raise the powers of the system properties to 4 and 6. The following relationships reflect the revisions,

\[
\frac{1}{f_n^4} = \frac{1}{f_j^4} + \frac{1}{f_g^4} \quad (2.1)
\]

\[
\frac{1}{f_n^6} = \frac{1}{f_j^6} + \frac{1}{f_g^6} \quad (2.2)
\]

where \(f_n \) = system frequency, \(f_j \) = beam or joist frequency, \(f_g \) = girder frequency, measured in Hz.

In the following sections, Tables 2.1 through 2.4 provide predicted and measured frequencies as well as frequency ratios for each type of framing. The girders are assumed
to be infinitely rigid for some of the case studies. Therefore, the girders that do not participate in the motion of the floor are modeled as walls in the FLOORVIB2 software. Tables 2.1 through 2.4 have the phrase “N/A” or not applicable when the girder frequency is not used in the comparison. In Tables 2.1 through 2.4, measured bay frequencies are compared with predicted bay frequencies. In the comparisons that follow, f_n from equations 1.12, 2.1, and 2.2 will be referred to as f_n^2, f_n^4, and f_n^6, respectively. In addition, measured system frequencies are compared with predicted beam and girder frequencies in these tables. Figures 2.1 through 2.5 in the following sections graphically show measured bay frequencies versus predicted frequencies. In these figures, the abbreviation “H-R” describes hot-rolled framing, “H-R/J” describes framing with hot-rolled girders and joists, “J-G/J” describes framing with joist girders and joists, and “H-R/Cast.” describes framing with hot-rolled girders and castellated beams. Also, in Figures 2.1 through 2.5, the solid line represents when the predicted frequency is equal to the measured frequency. The dashed lines located above and below the solid line represent a range of predicted frequencies within 10% of the measured frequencies.

2.2.1 FLOORS WITH HOT-ROLLED SHAPES

Table 2.1 summarizes the results from the frequency comparisons for floors that are constructed of hot-rolled framing. From Table 2.1, the average ratio between predicted beam and measured frequencies (f_b/f_m) is 1.03 with a modest standard deviation of 0.18. The ratio comparing predicted girder and measured frequencies demonstrates that the girder does not solely control the floor behavior. The f_g/f_m ratio is 1.34 with a standard deviation of 0.48. The average ratio of predicted bay frequency to measured frequency (f_n^2/f_m) is 0.80 with a standard deviation of 0.13. The comparison between measured and predicted bay frequencies, f_n^4 and f_n^6, provides better correlations than estimations using f_n^2. The average f_n^4/f_m ratio is 0.90 with a standard deviation of 0.15. The average f_n^6/f_m ratio is 0.93 with a standard deviation of 0.16.

The measured bay frequencies are plotted against the predicted beam frequencies in Figure 2.1(a). This figure illustrates that the predicted beam frequencies are within 10% of the measured bay frequencies for about 64% of the case studies with hot-rolled
framing. The measured bay frequencies are plotted against the predicted bay frequencies, f_n^2, in Figure 2.1(b). This figure illustrates that the predicted bay frequencies are within 10% of the measured bay frequencies for only about 28% of the case studies with hot-rolled framing. The measured bay frequencies are plotted against the predicted bay frequencies, using the revision f_n^4, in Figure 2.1(c). This figure illustrates that the predicted bay frequencies are within 10% of the measured bay frequencies for 40% of the case studies with hot-rolled framing. The measured frequencies are plotted against the predicted bay frequencies, using the revision f_n^6, in Figure 2.1(d). This figure illustrates that the predicted bay frequencies are within 10% of the measured bay frequencies for about 28% of the case studies with hot-rolled framing.

Table 2.1 – AISC Frequency Comparison for Floors with Hot-Rolled Shapes

<table>
<thead>
<tr>
<th>Building</th>
<th>File</th>
<th>Bay</th>
<th>Predicted Frequencies</th>
<th>Meas. Frequencies</th>
<th>Frequency Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>f_b (Hz)</td>
<td>f_g (Hz)</td>
<td>f_n^2 (Hz)</td>
</tr>
<tr>
<td>Jersey Lils</td>
<td>272</td>
<td>Typ.</td>
<td>3.23</td>
<td>10.40</td>
<td>3.15</td>
</tr>
<tr>
<td>Mercy Health Ctr.</td>
<td>508</td>
<td>Int.</td>
<td>9.97</td>
<td>7.19</td>
<td>6.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ext.</td>
<td>8.92</td>
<td>7.58</td>
<td>6.09</td>
</tr>
<tr>
<td>Iowa State</td>
<td>535</td>
<td>1</td>
<td>4.07</td>
<td>5.15</td>
<td>3.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,3</td>
<td>4.12</td>
<td>9.11</td>
<td>3.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>4.12</td>
<td>9.13</td>
<td>3.82</td>
</tr>
<tr>
<td>Oracle Building</td>
<td>565</td>
<td>1</td>
<td>4.87</td>
<td>5.83</td>
<td>3.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,3</td>
<td>4.87</td>
<td>5.83</td>
<td>3.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>5.15</td>
<td>5.69</td>
<td>3.88</td>
</tr>
<tr>
<td>Newgen Building</td>
<td>568</td>
<td>Ext.</td>
<td>6.62</td>
<td>9.53</td>
<td>5.47</td>
</tr>
<tr>
<td>42nd St. Building</td>
<td>575</td>
<td>Typ.</td>
<td>6.50</td>
<td>3.95</td>
<td>3.38</td>
</tr>
<tr>
<td>Penn State</td>
<td>Boice3</td>
<td>Typ.</td>
<td>4.51</td>
<td>8.66</td>
<td>4.23</td>
</tr>
<tr>
<td>Newport V</td>
<td>600</td>
<td>Typ.</td>
<td>3.78</td>
<td>6.80</td>
<td>3.38</td>
</tr>
<tr>
<td>Doylestown Hosp.</td>
<td>569</td>
<td>Typ.</td>
<td>6.86</td>
<td>6.98</td>
<td>5.19</td>
</tr>
<tr>
<td>UT Med. Center</td>
<td>Boice1</td>
<td>C</td>
<td>13.47</td>
<td>11.96</td>
<td>8.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>12.73</td>
<td>11.96</td>
<td>6.48</td>
</tr>
<tr>
<td>One Texas Court</td>
<td>617</td>
<td>1</td>
<td>4.83</td>
<td>6.29</td>
<td>3.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>6.54</td>
<td>6.36</td>
<td>4.61</td>
</tr>
<tr>
<td>AMEX</td>
<td>602</td>
<td>Typ.</td>
<td>4.24</td>
<td>N/A</td>
<td>4.24</td>
</tr>
<tr>
<td>GTE</td>
<td>Slad2</td>
<td>Typ.</td>
<td>5.06</td>
<td>6.17</td>
<td>4.00</td>
</tr>
<tr>
<td>Three Parkwood</td>
<td>618</td>
<td>1</td>
<td>5.35</td>
<td>6.79</td>
<td>4.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>4.62</td>
<td>5.77</td>
<td>3.65</td>
</tr>
<tr>
<td>Norman Pointe I</td>
<td>620</td>
<td>1</td>
<td>6.05</td>
<td>7.97</td>
<td>4.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>5.12</td>
<td>4.53</td>
<td>3.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>6.05</td>
<td>7.97</td>
<td>4.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>6.05</td>
<td>7.97</td>
<td>4.91</td>
</tr>
</tbody>
</table>

Average - 1.034 1.336 0.797 0.897 0.931
Standard Deviation - 0.176 0.480 0.132 0.151 0.158

26
Figure 2.1 – Measured Bay Frequencies vs. AISC Predicted Frequencies for Floors with Hot-Rolled Shapes
2.2.2 FLOORS WITH HOT-ROLLED GIRDERS AND JOISTS

Table 2.2 summarizes the results from the frequency comparison for floors that are constructed of hot-rolled girders and joist framing. From Table 2.2, the average ratio between predicted beam and measured frequencies (f_b/f_m) is 1.06 with a standard deviation of 0.25. The f_g/f_m ratio is 1.67 with a high standard deviation of 0.60. The average ratio of predicted bay frequency to measured frequency (f_{n_2}/f_m) is 0.90 with a standard deviation of 0.20. The comparison between measured and predicted bay frequencies, f_{n_4} and f_{n_6}, provides more reliable correlations than estimations using f_{n_2}. The average f_{n_4}/f_m ratio is 0.98 with a standard deviation of 0.21. The average f_{n_6}/f_m ratio is 1.00 with a standard deviation of 0.22.

Table 2.2 – AISC Frequency Comparison for Hot-Rolled Girders and Joists

<table>
<thead>
<tr>
<th>Building</th>
<th>File</th>
<th>Bay</th>
<th>f_b (Hz)</th>
<th>f_g (Hz)</th>
<th>f_{n_2} (Hz)</th>
<th>f_{n_4} (Hz)</th>
<th>f_{n_6} (Hz)</th>
<th>f_m (Hz)</th>
<th>f_b/f_m</th>
<th>f_g/f_m</th>
<th>f_{n_2}/f_m</th>
<th>f_{n_4}/f_m</th>
<th>f_{n_6}/f_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premiere</td>
<td>351</td>
<td>1</td>
<td>10.67</td>
<td>7.08</td>
<td>5.90</td>
<td>6.77</td>
<td>6.98</td>
<td>6.00</td>
<td>1.778</td>
<td>1.180</td>
<td>0.983</td>
<td>1.129</td>
<td>1.164</td>
</tr>
<tr>
<td>Patterson Ave. Fac.</td>
<td>549</td>
<td>4</td>
<td>6.58</td>
<td>12.57</td>
<td>5.97</td>
<td>6.46</td>
<td>6.56</td>
<td>4.50</td>
<td>1.462</td>
<td>2.793</td>
<td>1.327</td>
<td>1.436</td>
<td>1.457</td>
</tr>
<tr>
<td>Orange Synagogue</td>
<td>349</td>
<td>5</td>
<td>5.51</td>
<td>7.51</td>
<td>4.68</td>
<td>6.34</td>
<td>6.51</td>
<td>4.50</td>
<td>1.224</td>
<td>1.669</td>
<td>1.040</td>
<td>1.149</td>
<td>1.195</td>
</tr>
<tr>
<td>ACTIC</td>
<td>341</td>
<td>7</td>
<td>6.16</td>
<td>10.98</td>
<td>5.65</td>
<td>6.02</td>
<td>6.13</td>
<td>7.00</td>
<td>0.880</td>
<td>1.569</td>
<td>0.807</td>
<td>0.859</td>
<td>0.876</td>
</tr>
<tr>
<td>Camron Univ.</td>
<td>514</td>
<td>271</td>
<td>5.88</td>
<td>10.50</td>
<td>5.39</td>
<td>6.15</td>
<td>6.51</td>
<td>8.50</td>
<td>0.888</td>
<td>0.946</td>
<td>0.769</td>
<td>0.799</td>
<td>0.814</td>
</tr>
<tr>
<td>Melroe</td>
<td>508</td>
<td>373</td>
<td>5.46</td>
<td>5.28</td>
<td>3.80</td>
<td>4.51</td>
<td>4.78</td>
<td>5.50</td>
<td>0.953</td>
<td>0.960</td>
<td>0.691</td>
<td>0.820</td>
<td>0.869</td>
</tr>
<tr>
<td>Steel Case</td>
<td>570</td>
<td>525</td>
<td>5.25</td>
<td>4.92</td>
<td>3.59</td>
<td>4.26</td>
<td>4.51</td>
<td>4.75</td>
<td>1.105</td>
<td>1.036</td>
<td>0.756</td>
<td>0.898</td>
<td>0.950</td>
</tr>
<tr>
<td>UT Med.</td>
<td>619</td>
<td>508</td>
<td>5.25</td>
<td>4.02</td>
<td>3.19</td>
<td>3.73</td>
<td>3.90</td>
<td>4.75</td>
<td>1.105</td>
<td>0.846</td>
<td>0.672</td>
<td>0.786</td>
<td>0.821</td>
</tr>
<tr>
<td>IQ/ Ford</td>
<td>615</td>
<td>519</td>
<td>5.31</td>
<td>5.96</td>
<td>3.97</td>
<td>4.70</td>
<td>4.96</td>
<td>4.75</td>
<td>1.118</td>
<td>1.255</td>
<td>0.836</td>
<td>0.989</td>
<td>0.945</td>
</tr>
<tr>
<td>XILINX</td>
<td>609</td>
<td>505</td>
<td>5.05</td>
<td>6.06</td>
<td>3.93</td>
<td>4.58</td>
<td>4.81</td>
<td>4.75</td>
<td>1.063</td>
<td>1.276</td>
<td>0.827</td>
<td>0.964</td>
<td>1.013</td>
</tr>
<tr>
<td>CO Civic Center</td>
<td>610</td>
<td>516</td>
<td>5.16</td>
<td>N/A</td>
<td>5.16</td>
<td>5.16</td>
<td>5.16</td>
<td>5.25</td>
<td>0.983</td>
<td>N/A</td>
<td>0.983</td>
<td>0.983</td>
<td>0.983</td>
</tr>
<tr>
<td>Gateway</td>
<td>502</td>
<td>252</td>
<td>5.25</td>
<td>4.07</td>
<td>2.72</td>
<td>2.44</td>
<td>2.50</td>
<td>4.00</td>
<td>0.630</td>
<td>1.018</td>
<td>0.555</td>
<td>0.669</td>
<td>0.624</td>
</tr>
<tr>
<td>Ruby Tuesday</td>
<td>518</td>
<td>449</td>
<td>4.94</td>
<td>10.50</td>
<td>4.26</td>
<td>4.45</td>
<td>4.49</td>
<td>4.25</td>
<td>1.058</td>
<td>2.471</td>
<td>1.002</td>
<td>1.048</td>
<td>1.055</td>
</tr>
<tr>
<td>Midwest Kentworth</td>
<td>519</td>
<td>516</td>
<td>3.86</td>
<td>10.56</td>
<td>3.72</td>
<td>3.84</td>
<td>3.86</td>
<td>3.75</td>
<td>1.029</td>
<td>2.816</td>
<td>0.992</td>
<td>1.025</td>
<td>1.029</td>
</tr>
<tr>
<td>Nations Bank</td>
<td>525</td>
<td>414</td>
<td>5.04</td>
<td>8.09</td>
<td>3.77</td>
<td>3.98</td>
<td>4.03</td>
<td>3.85</td>
<td>1.049</td>
<td>2.101</td>
<td>0.979</td>
<td>1.034</td>
<td>1.047</td>
</tr>
<tr>
<td>Eight Parkwood</td>
<td>618</td>
<td>519</td>
<td>7.61</td>
<td>10.82</td>
<td>6.22</td>
<td>7.20</td>
<td>7.47</td>
<td>5.25</td>
<td>1.450</td>
<td>2.061</td>
<td>1.185</td>
<td>1.372</td>
<td>1.422</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.61</td>
<td>10.82</td>
<td>6.22</td>
<td>7.20</td>
<td>7.47</td>
<td>5.50</td>
<td>1.384</td>
<td>1.967</td>
<td>1.131</td>
<td>1.310</td>
<td>1.358</td>
</tr>
</tbody>
</table>

Average - 1.059 1.673 0.896 0.979 1.004
Standard Deviation - 0.252 0.602 0.195 0.214 0.218
Figure 2.2 – Measured Bay Frequencies vs. AISC Predicted Frequencies for Floors with Hot-Rolled Girders and Joists
The measured bay frequencies are plotted against the predicted beam frequencies in Figure 2.2(a). This figure illustrates that the predicted beam frequencies are within 10% of the measured bay frequencies for only about 40% of the case studies with hot-rolled girders and joist framing. The measured bay frequencies are plotted against the predicted bay frequencies, f_n^2, in Figure 2.2(b). This figure illustrates that the predicted bay frequencies are within 10% of the measured bay frequencies for only about 30% of the case studies with hot-rolled girders and joist framing. The measured bay frequencies are plotted against the predicted bay frequencies, using the revision f_n^4, in Figure 2.2(c). This figure reveals that the predicted bay frequencies are within 10% of the measured bay frequencies for about 33% of the case studies with hot-rolled girders and joist framing. The measured frequencies are plotted against the predicted bay frequencies, using the revision f_n^6, in Figure 2.2(d). This figure illustrates that the predicted bay frequencies are within 10% of the measured bay frequencies for about 40% of the case studies with hot-rolled girders and joist framing.

2.2.3 FLOORS WITH JOIST GIRDERS AND JOISTS

Table 2.3 summarizes the results from the frequency comparison for floors that are constructed using joist girders and joist framing. From Table 2.3, the average ratio between predicted beam and measured frequencies (f_b/f_m) is 1.00 with a modest standard deviation of 0.23. The ratio comparing predicted girder and measured frequencies reveals that the primary framing may control the floor behavior for some case studies using this particular framing. The f_g/f_m ratio is 1.00 with a standard deviation of 0.24. The average ratio of predicted bay frequency to measured frequency (f_n^2/f_m) is 0.76 with a standard deviation of 0.17. The comparison between measured and predicted system frequencies, f_n^4 and f_n^6, provides more reliable correlations than estimations using f_n^2. The average f_n^4/f_m ratio is 0.84 with a standard deviation of 0.17. The average f_n^6/f_m ratio is 0.87 with a standard deviation of 0.18.

The measured bay frequencies are plotted against the predicted beam frequencies in Figure 2.3(a). This figure illustrates that the predicted beam frequencies are within 10% of the measured bay frequencies for only about 39% of the case studies using joist girders and joists for framing. The measured bay frequencies are plotted against the...
predicted bay frequencies, f_n^2, in Figure 2.3(b). This figure illustrates that the predicted bay frequencies are within 10% of the measured bay frequencies for only about 18% of the case studies using joist girders and joists for framing. The measured bay frequencies are plotted against the predicted bay frequencies, using the revision f_n^4, in Figure 2.3(c). This figure illustrates that the predicted bay frequencies are within 10% of the measured bay frequencies for about 29% of the case studies using joist girders and joists for framing. The measured frequencies are plotted against the predicted bay frequencies, using the revision f_n^6, in Figure 2.3(d). This figure illustrates that the predicted bay frequencies are within 10% of the measured bay frequencies for about 32% of the case studies using joist girders and joists for framing.

Table 2.3 – AISC Frequency Comparison for Floors with Joist Girders and Joists

<table>
<thead>
<tr>
<th>Building</th>
<th>File</th>
<th>Bay</th>
<th>Predicted Frequencies</th>
<th>Meas. Frequency Ratios</th>
<th>Frequency Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>f_b (Hz)</td>
<td>f_g (Hz)</td>
<td>f_n^2 (Hz)</td>
</tr>
<tr>
<td>Z.C.M.I. Store</td>
<td>269</td>
<td>1–4</td>
<td>7.23</td>
<td>6.22</td>
<td>4.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5,10</td>
<td>6.86</td>
<td>4.99</td>
<td>4.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>7.62</td>
<td>6.63</td>
<td>5.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,8,11</td>
<td>7.23</td>
<td>6.22</td>
<td>4.72</td>
</tr>
<tr>
<td>Patterson</td>
<td>549</td>
<td>6</td>
<td>6.04</td>
<td>6.10</td>
<td>4.67</td>
</tr>
<tr>
<td>Toyota</td>
<td>481</td>
<td></td>
<td>4.94</td>
<td>8.02</td>
<td>4.53</td>
</tr>
<tr>
<td>Garmin Int. Bldg.</td>
<td>506</td>
<td>Int.</td>
<td>6.25</td>
<td>4.52</td>
<td>3.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ext.</td>
<td>6.25</td>
<td>4.52</td>
<td>3.66</td>
</tr>
<tr>
<td>Sony Corp.</td>
<td>511</td>
<td>Typ.</td>
<td>5.47</td>
<td>4.44</td>
<td>3.45</td>
</tr>
<tr>
<td>Loma Linda</td>
<td>568</td>
<td>Ext.-1</td>
<td>6.12</td>
<td>6.45</td>
<td>4.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ext.-2</td>
<td>4.71</td>
<td>5.00</td>
<td>3.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int.-1</td>
<td>9.52</td>
<td>7.29</td>
<td>5.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int.-2</td>
<td>7.24</td>
<td>5.57</td>
<td>4.42</td>
</tr>
<tr>
<td>Pacific Tech.</td>
<td>568</td>
<td>Typ.</td>
<td>6.14</td>
<td>6.71</td>
<td>4.53</td>
</tr>
<tr>
<td>IBM</td>
<td>605</td>
<td>Typ.</td>
<td>6.78</td>
<td>N/A</td>
<td>6.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.54</td>
<td>6.67</td>
<td>4.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.54</td>
<td>6.67</td>
<td>4.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.58</td>
<td>6.79</td>
<td>5.22</td>
</tr>
<tr>
<td>Southern Bell</td>
<td>57</td>
<td>2</td>
<td>5.54</td>
<td>6.67</td>
<td>4.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>5.54</td>
<td>6.67</td>
<td>4.48</td>
</tr>
<tr>
<td>Wholesale Grocers</td>
<td>1</td>
<td>2.45</td>
<td>N/A</td>
<td>2.45</td>
<td>2.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>2.53</td>
<td>N/A</td>
<td>2.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>2.03</td>
<td>N/A</td>
<td>2.03</td>
</tr>
<tr>
<td>Eight Parkwood</td>
<td>618</td>
<td>1</td>
<td>6.11</td>
<td>5.89</td>
<td>4.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>6.11</td>
<td>6.10</td>
<td>4.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>6.11</td>
<td>5.89</td>
<td>4.24</td>
</tr>
<tr>
<td>R.S.I. Building</td>
<td>621</td>
<td>1</td>
<td>8.54</td>
<td>N/A</td>
<td>8.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>8.54</td>
<td>N/A</td>
<td>8.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>9.61</td>
<td>N/A</td>
<td>9.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>6.87</td>
<td>N/A</td>
<td>6.87</td>
</tr>
</tbody>
</table>

Average - 1.003 0.995 0.759 0.842 0.873
Standard Deviation - 0.225 0.240 0.166 0.172 0.181
Figure 2.3 – Measured Bay Frequencies vs. AISC Predicted Frequencies for Floors with Joist Girders and Joists
2.2.4 HOT-ROLLED GIRDERS AND CASTELLATED BEAMS

Table 2.4 summarizes the results from the frequency comparison for floors that are constructed of hot-rolled girders with castellated beams. From Table 2.4, the average ratio between predicted beam and measured frequencies (\(f_b/f_m\)) is 1.06 with a low standard deviation of 0.08. The ratio comparing predicted and measured girder frequencies reveals that the primary framing does not solely control floor behavior. The \(f_g/f_m\) ratio is 1.56 with a standard deviation of 0.54. The average ratio of predicted bay frequency to measured frequency (\(f_n^2/f_m\)) is 0.86 with a low standard deviation of 0.09. The average \(f_n^4/f_m\) ratio is 0.97 with a standard deviation of 0.05. The average \(f_n^6/f_m\) ratio is 1.00 with a standard deviation of 0.05.

Table 2.4 – AISC Frequency Comparison for Floors with Hot-Rolled Girders and Castellated Beams

<table>
<thead>
<tr>
<th>Building</th>
<th>File</th>
<th>Bay</th>
<th>Predicted Frequencies</th>
<th>Meas.</th>
<th>Frequency Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(f_b) (Hz)</td>
<td>(f_g) (Hz)</td>
<td>(f_n^2) (Hz)</td>
</tr>
<tr>
<td>Lennox</td>
<td>572</td>
<td>1,3</td>
<td>3.41</td>
<td>7.16</td>
<td>3.19</td>
</tr>
<tr>
<td>Wal-Mart</td>
<td>572</td>
<td>4,5</td>
<td>4.66</td>
<td>10.22</td>
<td>4.44</td>
</tr>
<tr>
<td>AMAT</td>
<td>Boice7</td>
<td>B,B2</td>
<td>6.93</td>
<td>7.88</td>
<td>5.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>5.63</td>
<td>5.79</td>
<td>4.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>6.93</td>
<td>7.21</td>
<td>5.00</td>
</tr>
</tbody>
</table>

Average - Standard Deviation -

Average -

0.1058 | 1.561 | 0.858 | 0.965 | 1.002

0.078 | 0.544 | 0.090 | 0.050 | 0.046

The measured bay frequencies are plotted against the predicted beam frequencies in Figure 2.4(a). This figure illustrates that the predicted beam frequencies are within 10 % of the measured bay frequencies for about 80 % of the case studies with hot-rolled girders and castellated framing. The measured bay frequencies are plotted against the predicted bay frequencies, \(f_n^2\), in Figure 2.4(b). This figure illustrates that the predicted bay frequencies are within 10 % of the measured bay frequencies for only about 40 % of case studies with hot-rolled girders and castellated beams. The measured bay frequencies are plotted against the predicted bay frequencies, using the revision \(f_n^4\), in Figure 2.4(c). This figure illustrates that the predicted bay frequencies are within 10 % of the measured bay frequencies for all of the case studies with hot-rolled girders and castellated beams. The measured frequencies are plotted against the predicted bay frequencies, using the revision \(f_n^6\), in Figure 2.4(d). This figure illustrates that the predicted bay frequencies are
within 10% of the measured bay frequencies for all of the case studies with hot-rolled girders and castellated framing.

Figure 2.4 – Measured Bay Frequencies vs. AISC Predicted Frequencies for Floors with Hot-Rolled Girders with Castellated Beams
2.2.5 SUMMARY OF AISC FREQUENCY COMPARISONS

Based on a statistical analysis of the data in Tables 2.1 through 2.4, the average ratio between predicted beam and measured frequencies (f_b/f_m) is 1.03 with a standard deviation of 0.22 for all of the floor systems used in these comparisons. The ratio comparing predicted and measured girder frequencies shows that the primary framing does not solely control floor behavior. The f_g/f_m ratio is 1.38 with a high standard deviation of 0.55. The average ratio of predicted bay frequency to measured frequency (f_n^2/f_m) is 0.82 with a modest standard deviation of 0.17. The average f_n^4/f_m ratio is 0.91 with a standard deviation of 0.19. The average f_n^6/f_m ratio is 0.94 with a standard deviation of 0.19.

The measured bay frequencies are plotted against the predicted beam frequencies for all types of floor framing in Figure 2.5(a). This figure illustrates that the predicted beam frequencies are within 10% of the measured bay frequencies for only about 48% of the case studies. The measured bay frequencies are plotted against the predicted bay frequencies, f_n^2, in Figure 2.5(b). This figure illustrates that the predicted bay frequencies are within 10% of the measured bay frequencies for only about 27% of case studies. The measured bay frequencies are plotted against the predicted bay frequencies, using the revision f_n^4, in Figure 2.5(c). This figure illustrates that the predicted system frequencies are within 10% of the measured bay frequencies for about 37% of the case studies. The measured frequencies are plotted against the predicted bay frequencies, using the revision f_n^6, in Figure 2.5(d). This figure illustrates that the predicted bay frequencies are within 10% of the measured bay frequencies for only about 37% of the case studies.
Figure 2.5 – Measured Bay Frequencies vs. AISC Predicted Frequencies for All Framing Types
2.3 SCI FREQUENCY COMPARISONS

This section presents the results from a comparison between measured bay frequencies and predicted beam, joist, girder, and system frequencies. The predicted frequencies are calculated using the methods outlined in the SCI Publication Design Guide on the Vibration of Floors (Wyatt 1989). The floors are classified and compared by the framing used in the structural system. The data for the SCI frequency comparisons is reported as was done in the previous section. In the following sections, Tables 2.5 through 2.8 provide predicted and measured frequencies as well as frequency ratios for each type of framing. Figures 2.6 through 2.10 in the following sections graphically show measured bay frequencies versus predicted frequencies. Measured bay frequencies are not plotted versus predicted beam frequencies in this section due to poor correlation.

2.3.1 FLOORS WITH HOT-ROLLED SHAPES

Table 2.5 summarizes the results from the frequency comparisons for floors that are constructed of hot-rolled framing. According to SCI predictions, the ratio comparing predicted girder and measured frequencies demonstrates that the beam does not solely control the floor behavior. From Table 2.5, the average ratio between predicted beam and measured frequencies \(f_b/f_m \) is 1.62 with a high standard deviation of 0.73. The average ratio between predicted girder and measured bay frequencies \(f_g/f_m \) is 0.93 with a standard deviation of 0.18. The average ratio of predicted bay frequency to measured frequency \(f_n^2/f_m \) is 0.96 with a standard deviation of 0.19. The comparison between measured and predicted bay frequencies, \(f_n^4 \) and \(f_n^6 \), marginally provides more reliable correlations than estimations using \(f_n^2 \). The average \(f_n^4/f_m \) ratio is 0.99 with a standard deviation of 0.19. The average \(f_n^6/f_m \) ratio is 1.00 with a standard deviation of 0.19.

The measured bay frequencies are plotted versus predicted bay frequencies, \(f_n^2 \), in Figure 2.6(a). This figure illustrates that the predicted bay frequencies are within 10% of the measured bay frequencies for only about 32% of the case studies with hot-rolled framing. The measured bay frequencies are plotted against the predicted bay frequencies, using the revision \(f_n^4 \), in Figure 2.6(b). This figure illustrates that the predicted bay frequencies are within 10% of the measured bay frequencies for about 48% of the case studies with hot-rolled framing. The measured frequencies are plotted against the
predicted bay frequencies, using the revision f_n^6, in Figure 2.6(c). This figure also illustrates that the predicted bay frequencies are within 10% of the measured bay frequencies for about 48% of the case studies with hot-rolled framing.

Table 2.5 – SCI Frequency Comparison for Floors with Hot-Rolled Shapes

<table>
<thead>
<tr>
<th>Building</th>
<th>File</th>
<th>Bay</th>
<th>Predicted Frequencies</th>
<th>Meas.</th>
<th>Frequency Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>f_b (Hz)</td>
<td>f_g (Hz)</td>
<td>f_n^2 (Hz)</td>
</tr>
<tr>
<td>Jersey Lils Club</td>
<td>272</td>
<td>Typ.</td>
<td>3.23</td>
<td>N/A</td>
<td>3.23</td>
</tr>
<tr>
<td>Mercy Health Center</td>
<td>508</td>
<td>Int.</td>
<td>21.58</td>
<td>7.31</td>
<td>6.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ext.</td>
<td>19.44</td>
<td>7.58</td>
<td>7.06</td>
</tr>
<tr>
<td>Iowa State University</td>
<td>535</td>
<td>1</td>
<td>4.07</td>
<td>N/A</td>
<td>4.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,3</td>
<td>4.20</td>
<td>N/A</td>
<td>4.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>4.12</td>
<td>N/A</td>
<td>4.12</td>
</tr>
<tr>
<td>Oracle Building</td>
<td>565</td>
<td>1,2</td>
<td>10.89</td>
<td>5.47</td>
<td>4.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,4</td>
<td>10.89</td>
<td>5.47</td>
<td>4.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>11.46</td>
<td>5.47</td>
<td>4.93</td>
</tr>
<tr>
<td>Newgen Building</td>
<td>568</td>
<td>Ext.</td>
<td>6.62</td>
<td>N/A</td>
<td>6.62</td>
</tr>
<tr>
<td>42nd St. Building</td>
<td>575</td>
<td>Typ.</td>
<td>14.37</td>
<td>3.90</td>
<td>3.76</td>
</tr>
<tr>
<td>Penn State Building</td>
<td>Boice 3</td>
<td>Typ.</td>
<td>5.68</td>
<td>N/A</td>
<td>5.68</td>
</tr>
<tr>
<td>Newport V Building</td>
<td>600</td>
<td>Typ.</td>
<td>3.84</td>
<td>N/A</td>
<td>3.84</td>
</tr>
<tr>
<td>Doylestown Hospital</td>
<td>569</td>
<td>Typ.</td>
<td>14.94</td>
<td>6.67</td>
<td>6.09</td>
</tr>
<tr>
<td>UT Medical Center</td>
<td>Boice 1</td>
<td>C</td>
<td>29.33</td>
<td>11.43</td>
<td>10.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>28.40</td>
<td>7.50</td>
<td>7.16</td>
</tr>
<tr>
<td>One Texas Court</td>
<td>617</td>
<td>1</td>
<td>4.97</td>
<td>N/A</td>
<td>4.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>14.33</td>
<td>6.14</td>
<td>5.64</td>
</tr>
<tr>
<td>AMEX Building</td>
<td>602</td>
<td>Typ.</td>
<td>4.24</td>
<td>N/A</td>
<td>4.24</td>
</tr>
<tr>
<td>GTE Building</td>
<td>Slad 2</td>
<td>Typ.</td>
<td>5.08</td>
<td>N/A</td>
<td>5.08</td>
</tr>
<tr>
<td>Three Parkwood Building</td>
<td>618</td>
<td>1</td>
<td>5.70</td>
<td>N/A</td>
<td>5.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>4.45</td>
<td>N/A</td>
<td>4.45</td>
</tr>
<tr>
<td>Norman Pointe 1</td>
<td>620</td>
<td>1</td>
<td>6.46</td>
<td>N/A</td>
<td>6.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>12.57</td>
<td>5.38</td>
<td>4.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>6.46</td>
<td>N/A</td>
<td>6.46</td>
</tr>
</tbody>
</table>

Average -
Standard Deviation -

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.617</td>
<td>0.931</td>
<td>0.963</td>
<td>0.992</td>
<td>0.995</td>
<td>0.727</td>
<td>0.183</td>
<td>0.194</td>
<td>0.189</td>
<td>0.189</td>
<td>38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 2.6 – Measured Bay Frequencies vs. SCI Predicted Frequencies for Floors with Hot-Rolled Shapes

(a) Measured Bay Frequency vs. SCI Predicted Bay Frequency (f_n^2)

(b) Measured Bay Frequency vs. SCI Predicted Bay Frequency (f_n^4)

(c) Measured Bay Frequency vs. SCI Predicted Bay Frequency (f_n^6)
2.3.2 FLOORS WITH HOT-ROLLED GIRDERS AND JOISTS

Table 2.6 summarizes the results from the frequency comparisons for floors that are constructed of hot-rolled girders and joist beams. According to SCI predictions, the ratio comparing predicted beam and measured bay frequencies demonstrates that the secondary framing does not solely control the floor behavior. From Table 2.6, the average ratio between predicted beam and measured bay frequencies \((f_b/f_m)\) is 1.41 with a high standard deviation of 0.73. The average ratio between predicted girder and measured bay frequencies \((f_g/f_m)\) is 0.95 with a modest standard deviation of 0.15. The average ratio of predicted bay frequency to measured frequency \((f_n^2/f_m)\) is 0.99 with a standard deviation of 0.22. The comparison between measured and predicted bay frequencies, \(f_n^4\) and \(f_n^6\), marginally provides more reliable correlations than estimations using \(f_n^2\). The average \(f_n^4/f_m\) ratio is 1.01 with a standard deviation of 0.21. The average \(f_n^6/f_m\) ratio is 1.01 with a standard deviation of 0.21.

The measured bay frequencies are plotted versus predicted bay frequencies, \(f_n^2\), in Figure 2.7(a). This figure illustrates that the predicted bay frequencies are within 33% of the measured bay frequencies for only about 38% of the case studies with hot-rolled girders and joist beams. The measured bay frequencies are plotted against the predicted bay frequencies, using the revision \(f_n^4\), in Figure 2.7(b). This figure illustrates that the predicted bay frequencies are within 10% of the measured bay frequencies for about 33% of the case studies with hot-rolled girders and joist beams. The measured bay frequencies are plotted against the predicted bay frequencies, using the revision \(f_n^6\), in Figure 2.7(c). This figure illustrates that the predicted bay frequencies are within 10% of the measured bay frequencies for about 33% of the case studies with hot-rolled girders and joist beams.
<table>
<thead>
<tr>
<th>Building</th>
<th>File</th>
<th>Bay</th>
<th>Predicted Frequencies</th>
<th>Meas.</th>
<th>Frequency Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>f_b (Hz)</td>
<td>f_g (Hz)</td>
<td>f_n^2 (Hz)</td>
</tr>
<tr>
<td>Patterson Avenue</td>
<td>549</td>
<td>4</td>
<td>6.58</td>
<td>N/A</td>
<td>6.58</td>
</tr>
<tr>
<td>Facility</td>
<td></td>
<td>5</td>
<td>6.58</td>
<td>N/A</td>
<td>6.58</td>
</tr>
<tr>
<td>Orange Synagogue</td>
<td>349</td>
<td>7</td>
<td>6.58</td>
<td>N/A</td>
<td>6.58</td>
</tr>
<tr>
<td>ACTIC Building</td>
<td>341</td>
<td></td>
<td>6.21</td>
<td>N/A</td>
<td>6.21</td>
</tr>
<tr>
<td>Cameron University</td>
<td>514</td>
<td>271</td>
<td>6.16</td>
<td>N/A</td>
<td>6.16</td>
</tr>
<tr>
<td>Metroe Corp.</td>
<td>508</td>
<td></td>
<td>12.21</td>
<td>4.93</td>
<td>4.57</td>
</tr>
<tr>
<td>Steel Case</td>
<td>570</td>
<td>Mezz.</td>
<td>11.73</td>
<td>4.73</td>
<td>4.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int.</td>
<td>11.73</td>
<td>3.62</td>
<td>3.46</td>
</tr>
<tr>
<td>UT Medical Center</td>
<td>Boice1</td>
<td>A</td>
<td>4.53</td>
<td>N/A</td>
<td>4.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>4.53</td>
<td>N/A</td>
<td>4.53</td>
</tr>
<tr>
<td>InterqQuest/For</td>
<td>615</td>
<td>Typ.</td>
<td>11.87</td>
<td>5.56</td>
<td>5.04</td>
</tr>
<tr>
<td>XILINX Building</td>
<td>609</td>
<td>Typ.</td>
<td>5.05</td>
<td>N/A</td>
<td>5.05</td>
</tr>
<tr>
<td>Co Civic Center</td>
<td>610</td>
<td>1</td>
<td>5.16</td>
<td>N/A</td>
<td>5.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>5.26</td>
<td>N/A</td>
<td>5.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>4.70</td>
<td>N/A</td>
<td>4.70</td>
</tr>
<tr>
<td>Gateway 800 Bridge</td>
<td>Boice7</td>
<td>Typ.</td>
<td>2.52</td>
<td>N/A</td>
<td>2.52</td>
</tr>
<tr>
<td>Ruby Tuesday</td>
<td>Slad1</td>
<td>2nd.</td>
<td>4.49</td>
<td>N/A</td>
<td>4.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3rd.</td>
<td>3.86</td>
<td>N/A</td>
<td>3.86</td>
</tr>
<tr>
<td>MidWest Kentworth</td>
<td>Band3</td>
<td>Typ.</td>
<td>4.04</td>
<td>N/A</td>
<td>4.04</td>
</tr>
<tr>
<td>Nations Bank</td>
<td>Band4</td>
<td>1,4</td>
<td>4.04</td>
<td>N/A</td>
<td>4.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,6</td>
<td>3.53</td>
<td>N/A</td>
<td>3.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3.53</td>
<td>N/A</td>
<td>3.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>4.04</td>
<td>N/A</td>
<td>4.04</td>
</tr>
<tr>
<td>Eight Parkwood</td>
<td>618</td>
<td>2</td>
<td>7.07</td>
<td>N/A</td>
<td>7.07</td>
</tr>
</tbody>
</table>

Average -
Standard Deviation -

<table>
<thead>
<tr>
<th>Average</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.412</td>
<td>0.731</td>
</tr>
<tr>
<td>0.947</td>
<td>0.150</td>
</tr>
<tr>
<td>0.994</td>
<td>0.217</td>
</tr>
<tr>
<td>1.011</td>
<td>0.211</td>
</tr>
<tr>
<td>1.012</td>
<td>0.210</td>
</tr>
</tbody>
</table>
Figure 2.7 – Measured Bay Frequencies vs. SCI Predicted Frequencies for Floors with Hot-Rolled Girders and Joists
2.3.3 FLOORS WITH JOIST GIRDERS AND JOISTS

Table 2.7 summarizes the results from the frequency comparisons for floors that are constructed of joist girders and joist beams. From Table 2.7, the average ratio between predicted beam and measured frequencies (f_b/f_m) is 2.03 with a high standard deviation of 0.79. The average ratio between predicted girder and measured frequencies (f_g/f_m) is 0.83 with a modest standard deviation of 0.18. The average ratio of predicted system frequency to measured frequency (f_n/f_m) is 0.78 with a standard deviation of 0.17.

The comparison between measured and predicted bay frequencies, f_n^4 and f_n^6, marginally provides more reliable correlations than estimations using f_n^2. The average f_n^4/f_m ratio is 0.82 with a standard deviation of 0.18. The average f_n^6/f_m ratio is 0.82 with a standard deviation of 0.18.

Table 2.7 – SCI Frequency Comparison for Floors with Joist Girders and Joists

<table>
<thead>
<tr>
<th>Building</th>
<th>File</th>
<th>Bay</th>
<th>f_b (Hz)</th>
<th>f_g (Hz)</th>
<th>f_n^2 (Hz)</th>
<th>f_n^4 (Hz)</th>
<th>f_n^6 (Hz)</th>
<th>f_m (Hz)</th>
<th>f_b/f_m</th>
<th>f_g/f_m</th>
<th>f_n^2/f_m</th>
<th>f_n^4/f_m</th>
<th>f_n^6/f_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z.C.M.I. Store</td>
<td>269</td>
<td>1–4</td>
<td>16.18</td>
<td>5.45</td>
<td>5.16</td>
<td>5.43</td>
<td>5.45</td>
<td>5.65</td>
<td>2.864</td>
<td>0.965</td>
<td>0.913</td>
<td>0.962</td>
<td>0.964</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5,10</td>
<td>14.99</td>
<td>4.57</td>
<td>4.37</td>
<td>4.56</td>
<td>4.57</td>
<td>4.75</td>
<td>3.156</td>
<td>0.962</td>
<td>0.920</td>
<td>0.960</td>
<td>0.962</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,8,11</td>
<td>16.18</td>
<td>5.45</td>
<td>5.16</td>
<td>5.43</td>
<td>5.45</td>
<td>7.04</td>
<td>2.422</td>
<td>0.827</td>
<td>0.783</td>
<td>0.824</td>
<td>0.826</td>
</tr>
<tr>
<td>Patterson</td>
<td>549</td>
<td>6</td>
<td>18.15</td>
<td>5.03</td>
<td>4.72</td>
<td>5.01</td>
<td>5.03</td>
<td>5.00</td>
<td>2.700</td>
<td>1.006</td>
<td>0.944</td>
<td>1.001</td>
<td>1.006</td>
</tr>
<tr>
<td>Toyota</td>
<td>481</td>
<td></td>
<td>4.94</td>
<td>N/A</td>
<td>4.94</td>
<td>4.94</td>
<td>4.94</td>
<td>5.63</td>
<td>0.877</td>
<td>N/A</td>
<td>0.877</td>
<td>0.877</td>
<td>0.877</td>
</tr>
<tr>
<td>Garmin Int. Bldg.</td>
<td>506</td>
<td></td>
<td>13.97</td>
<td>4.10</td>
<td>3.94</td>
<td>4.09</td>
<td>4.10</td>
<td>6.25</td>
<td>2.235</td>
<td>0.656</td>
<td>0.630</td>
<td>0.655</td>
<td>0.656</td>
</tr>
<tr>
<td>Nordic</td>
<td></td>
<td></td>
<td>13.97</td>
<td>4.10</td>
<td>3.94</td>
<td>4.09</td>
<td>4.10</td>
<td>6.25</td>
<td>2.235</td>
<td>0.656</td>
<td>0.630</td>
<td>0.655</td>
<td>0.656</td>
</tr>
<tr>
<td>Sony Corp.</td>
<td>511</td>
<td></td>
<td>12.24</td>
<td>4.04</td>
<td>3.83</td>
<td>4.03</td>
<td>4.04</td>
<td>5.50</td>
<td>2.225</td>
<td>0.735</td>
<td>0.696</td>
<td>0.732</td>
<td>0.734</td>
</tr>
<tr>
<td>Diversa Building</td>
<td>568</td>
<td>Ext-1</td>
<td>13.69</td>
<td>5.61</td>
<td>5.19</td>
<td>5.57</td>
<td>5.61</td>
<td>5.75</td>
<td>2.381</td>
<td>0.976</td>
<td>0.903</td>
<td>0.969</td>
<td>0.975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ext-2</td>
<td>10.54</td>
<td>4.35</td>
<td>4.02</td>
<td>4.32</td>
<td>4.35</td>
<td>5.00</td>
<td>2.108</td>
<td>0.870</td>
<td>0.804</td>
<td>0.864</td>
<td>0.869</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int-1</td>
<td>21.16</td>
<td>6.16</td>
<td>5.91</td>
<td>6.15</td>
<td>6.16</td>
<td>9.50</td>
<td>2.227</td>
<td>0.648</td>
<td>0.622</td>
<td>0.647</td>
<td>0.648</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int-2</td>
<td>16.09</td>
<td>4.71</td>
<td>4.52</td>
<td>4.70</td>
<td>4.71</td>
<td>13.00</td>
<td>1.238</td>
<td>0.362</td>
<td>0.348</td>
<td>0.362</td>
<td>0.362</td>
</tr>
<tr>
<td>Pacific</td>
<td>568</td>
<td></td>
<td>13.73</td>
<td>5.83</td>
<td>5.37</td>
<td>5.78</td>
<td>5.82</td>
<td>6.00</td>
<td>2.288</td>
<td>0.972</td>
<td>0.895</td>
<td>0.964</td>
<td>0.971</td>
</tr>
<tr>
<td>IBM</td>
<td>605</td>
<td></td>
<td>6.78</td>
<td>N/A</td>
<td>6.78</td>
<td>6.78</td>
<td>6.78</td>
<td>6.00</td>
<td>1.130</td>
<td>N/A</td>
<td>1.130</td>
<td>1.130</td>
<td>1.130</td>
</tr>
<tr>
<td>Southern Bell</td>
<td></td>
<td></td>
<td>6.78</td>
<td>N/A</td>
<td>6.78</td>
<td>6.78</td>
<td>6.78</td>
<td>6.00</td>
<td>1.130</td>
<td>N/A</td>
<td>1.130</td>
<td>1.130</td>
<td>1.130</td>
</tr>
<tr>
<td>Wholesale Grocers</td>
<td></td>
<td></td>
<td>6.78</td>
<td>N/A</td>
<td>6.78</td>
<td>6.78</td>
<td>6.78</td>
<td>6.00</td>
<td>1.130</td>
<td>N/A</td>
<td>1.130</td>
<td>1.130</td>
<td>1.130</td>
</tr>
<tr>
<td>Eight Parkwood</td>
<td>618</td>
<td></td>
<td>13.66</td>
<td>4.52</td>
<td>4.29</td>
<td>4.51</td>
<td>4.52</td>
<td>5.25</td>
<td>2.602</td>
<td>0.861</td>
<td>0.858</td>
<td>0.861</td>
<td>0.861</td>
</tr>
<tr>
<td>R.S.I. Building</td>
<td>621</td>
<td></td>
<td>8.54</td>
<td>N/A</td>
<td>8.54</td>
<td>8.54</td>
<td>8.54</td>
<td>9.50</td>
<td>0.899</td>
<td>N/A</td>
<td>0.899</td>
<td>0.899</td>
<td>0.899</td>
</tr>
</tbody>
</table>

Average - 2.033
Standard Deviation - 0.786
Figure 2.8 – Measured Bay Frequencies vs. SCI Predicted Frequencies for Floors with Joist Girders and Joists
The measured bay frequencies are plotted versus predicted bay frequencies, f_n^2, in Figure 2.8(a). This figure illustrates that the predicted bay frequencies are within 10% of the measured bay frequencies for only about 29% of the case studies with joist girders and joist beams. The measured bay frequencies are plotted against the predicted bay frequencies, using the revision f_n^4, in Figure 2.8(b). This figure illustrates that the predicted bay frequencies are within 10% of the measured bay frequencies for about 36% of the case studies with joist girders and joist framing. The measured frequencies are plotted against the predicted bay frequencies, using the revision f_n^6, in Figure 2.8(c). This figure illustrates that the predicted bay frequencies are within 10% of the measured bay frequencies for about 36% of the case studies with joist girders and joist beams.

2.3.4 HOT-ROLLED GIRDERs AND CASTELLATED BEAMS

Table 2.8 summarizes the results from the frequency comparison for floors that are constructed of hot-rolled and castellated framing. From Table 2.8, the average ratio of predicted bay frequency to measured frequency (f_n^2/f_m) is 0.99 with a low standard deviation of 0.03. The average ratio between predicted beam and measured frequencies (f_b/f_m) is 1.82 with a high standard deviation of 0.74. The comparison between measured and predicted bay frequencies, f_n^4 and f_n^6, provides more reliable correlations than estimations using f_n^2. The average f_n^4/f_m ratio is 1.04 with a standard deviation of 0.05. The average f_n^6/f_m ratio is 1.05 with a standard deviation of 0.05. The average f_b/f_m ratio is 1.10 with a standard deviation of 0.04.

Table 2.8 – SCI Frequency Comparison for Floors with Hot-Rolled Girders and Castellated Beams

<table>
<thead>
<tr>
<th>Building</th>
<th>File</th>
<th>Bay</th>
<th>Predicted Frequencies</th>
<th>Meas.</th>
<th>Frequency Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>f_b (Hz)</td>
<td>f_g (Hz)</td>
<td>f_n^2 (Hz)</td>
</tr>
<tr>
<td>Lennox</td>
<td>572</td>
<td>1.3</td>
<td>3.41</td>
<td>3.41</td>
<td>3.41</td>
</tr>
<tr>
<td>Wal-Mart</td>
<td>572</td>
<td>4.5</td>
<td>4.66</td>
<td>4.66</td>
<td>4.66</td>
</tr>
<tr>
<td>AMAT</td>
<td>B,B2</td>
<td>C</td>
<td>15.50</td>
<td>7.56</td>
<td>6.80</td>
</tr>
<tr>
<td>B,C</td>
<td>B,B2</td>
<td>D</td>
<td>11.35</td>
<td>5.02</td>
<td>4.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.50</td>
<td>6.95</td>
<td>6.34</td>
</tr>
<tr>
<td>Average</td>
<td>1.816</td>
<td>1.082</td>
<td>0.992</td>
<td>1.044</td>
<td>1.05</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.742</td>
<td>0.033</td>
<td>0.026</td>
<td>0.045</td>
<td>0.050</td>
</tr>
</tbody>
</table>
Figure 2.9 – Measured Bay Frequencies vs. SCI Predicted Frequencies for Floors with Hot-Rolled Girders and Castellated Beams
The measured bay frequencies are plotted versus predicted bay frequencies, f_n^2, in Figure 2.9(a). This figure illustrates that the predicted bay frequencies are within 10% of the measured bay frequencies for 100% of the case studies with hot-rolled girders and castellated beams. The measured bay frequencies are plotted against the predicted bay frequencies, using the revision f_n^4, in Figure 2.9(b). This figure illustrates that the predicted system frequencies are within 10% of the measured bay frequencies for about 80% of the case studies with hot-rolled girders and castellated beams. The measured frequencies are plotted against the predicted bay frequencies, using the revision f_n^6, in Figure 2.9(c). This figure illustrates that the predicted bay frequencies are within 10% of the measured system frequencies for about 80% of the case studies with hot-rolled girders and castellated beams.

2.3.5 SUMMARY OF SCI FREQUENCY COMPARISONS

Based on a statistical analysis of the data in Tables 2.5 through 2.8, the average ratio between predicted beam and measured frequencies (f_b/f_m) is 1.64 with a high standard deviation of 0.77 for floors constructed of all types of framing, meaning that the secondary framing does not solely control floor behavior when the SCI method is used. The f_g/f_m ratio is 0.90 with a modest standard deviation of 0.18. The average ratio of predicted system frequency to measured frequency (f_n^2/f_m) is 0.93 with a modest standard deviation of 0.20. The average f_n^4/f_m ratio is 0.95 with a standard deviation of 0.20. Collectively, the average f_n^6/f_m ratio is 0.95 with a standard deviation of 0.20 for floors constructed of all types of framing.

The measured bay frequencies are plotted against the predicted bay frequencies, f_n^2, in Figure 2.10(a). This figure illustrates that the predicted bay frequencies are within 10% of the measured bay frequencies for only about 38% of case studies. From Figure 2.10(b), the predicted bay frequencies, using the revision f_n^4, are within 10% of the measured bay frequencies for about 43% of the case studies. The measured frequencies are plotted against the predicted bay frequencies, using the revision f_n^6, in Figure 2.10(c). This figure also illustrates that the predicted bay frequencies are within 10% of the measured bay frequencies for 43% of the case studies.
Figure 2.10 – Measured Bay Frequencies vs. SCI Predicted Frequencies for All Framing Types

(a) Measured Bay Frequency vs. SCI Predicted Bay Frequency \(f_n^2 \)

(b) Measured Bay Frequency vs. SCI Predicted Bay Frequency \(f_n^4 \)

(c) Measured Bay Frequency vs. SCI Predicted Bay Frequency \(f_n^6 \)

Figure 2.10 – Measured Bay Frequencies vs. SCI Predicted Frequencies for All Framing Types
2.4 AISC vs. SCI FREQUENCY COMPARISON

This section focuses on comparing the methods provided by AISC and SCI for predicting the fundamental natural frequency of structural floor systems. The theoretical or predicted bay frequencies are compared with measured system frequencies for the 89 case studies evaluated in Sections 2.2 and 2.3, which include all types of framing. Tables 2.9 through 2.12 summarize the comparison between measured and predicted bay frequencies using AISC and SCI techniques for the four framing types. The predicted system frequency of interest for comparison is Dunkerly’s estimate, f_n^2. In Tables 2.9 through 2.12, f_n^2 is replaced with f_{bay}. Predicted beam and girder frequencies are not evaluated in this section due to poor correlation with measured bay frequencies as shown in the previous sections.

2.4.1 FLOORS WITH HOT-ROLLED SHAPES

Table 2.9 summarizes the results from the frequency comparison between AISC and SCI for floors that are constructed of hot-rolled framing. From Table 2.9, the average ratio of predicted bay frequency using the AISC Design Guide to measured frequency (f_{bay}/f_m) is 0.80 with a modest standard deviation of 0.13. The average ratio of predicted bay frequency using the SCI method to measured frequency (f_{bay}/f_m) is 0.96 with a modest standard deviation of 0.19.

2.4.2 FLOORS WITH HOT-ROLLED GIRDERS AND JOISTS

Table 2.10 summarizes the results from the frequency comparison between AISC and SCI for floors that are constructed of hot-rolled girders and joist beams. From Table 2.10, the average ratio of predicted bay frequency using the AISC Design Guide to measured frequency (f_{bay}/f_m) is 0.90 with a standard deviation of 0.20. The average ratio of predicted bay frequency using the SCI method to measured frequency (f_{bay}/f_m) is 0.99 with a standard deviation of 0.22.

2.4.3 FLOORS WITH JOIST GIRDERS AND JOISTS

Table 2.11 summarizes the results from the frequency comparison between AISC and SCI for floors that are constructed of joist girder and joist framing. From Table 2.11, the average ratio of predicted bay frequency using the AISC Design Guide to measured
frequency ($f_{bay/fm}$) is 0.76 with a modest standard deviation of 0.17. The average ratio of predicted bay frequency using the SCI method to measured frequency ($f_{bay/fm}$) is 0.78 with a modest standard deviation of 0.17.

Table 2.9 – AISC vs. SCI Frequency Comparison for Floors with Hot-Rolled Shapes

<table>
<thead>
<tr>
<th>Building</th>
<th>File</th>
<th>Bay</th>
<th>Predicted Frequencies</th>
<th>Meas.</th>
<th>Frequency Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>AISC (f_b (Hz))</td>
<td>SCI (f_f (Hz))</td>
<td>f_{bay} (Hz)</td>
</tr>
<tr>
<td>Jersey Lils</td>
<td>272</td>
<td>Ty.</td>
<td>3.23</td>
<td>10.40</td>
<td>3.15</td>
</tr>
<tr>
<td>Mercy Health Ctr.</td>
<td>508</td>
<td>Int.</td>
<td>9.97</td>
<td>7.19</td>
<td>6.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ext.</td>
<td>8.92</td>
<td>7.58</td>
<td>6.09</td>
</tr>
<tr>
<td>Iowa State</td>
<td>535</td>
<td>1</td>
<td>4.07</td>
<td>5.15</td>
<td>3.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,3</td>
<td>4.12</td>
<td>9.11</td>
<td>3.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>4.12</td>
<td>9.13</td>
<td>3.82</td>
</tr>
<tr>
<td>Oracle Building</td>
<td>565</td>
<td>1,2</td>
<td>4.87</td>
<td>5.83</td>
<td>3.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,4</td>
<td>4.87</td>
<td>5.83</td>
<td>3.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>5.15</td>
<td>5.69</td>
<td>3.88</td>
</tr>
<tr>
<td>Newgen</td>
<td>568</td>
<td>Ext.</td>
<td>6.62</td>
<td>9.53</td>
<td>5.47</td>
</tr>
<tr>
<td>42nd St.</td>
<td>575</td>
<td>Ty.</td>
<td>6.50</td>
<td>3.95</td>
<td>3.38</td>
</tr>
<tr>
<td>Penn State</td>
<td>569</td>
<td>Ty.</td>
<td>6.86</td>
<td>6.98</td>
<td>5.19</td>
</tr>
<tr>
<td>Newport V</td>
<td>600</td>
<td>Ty.</td>
<td>3.78</td>
<td>6.80</td>
<td>3.38</td>
</tr>
<tr>
<td>Doylestown</td>
<td>569</td>
<td>Ty.</td>
<td>6.86</td>
<td>6.98</td>
<td>5.19</td>
</tr>
<tr>
<td>UT Med. Center</td>
<td>Boice1</td>
<td>C</td>
<td>13.47</td>
<td>11.96</td>
<td>8.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>12.73</td>
<td>7.53</td>
<td>6.48</td>
</tr>
<tr>
<td>One Texas Court</td>
<td>617</td>
<td>1</td>
<td>4.83</td>
<td>6.29</td>
<td>3.96</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6.54</td>
<td>6.36</td>
<td>4.61</td>
<td>14.33</td>
</tr>
<tr>
<td>AMEX</td>
<td>602</td>
<td>Ty.</td>
<td>4.24</td>
<td>0.00</td>
<td>4.24</td>
</tr>
<tr>
<td>GTE</td>
<td>Slad2</td>
<td>1</td>
<td>5.06</td>
<td>6.17</td>
<td>4.00</td>
</tr>
<tr>
<td>Three Parkwood</td>
<td>618</td>
<td>1</td>
<td>5.35</td>
<td>6.79</td>
<td>4.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>4.62</td>
<td>5.77</td>
<td>3.65</td>
</tr>
<tr>
<td>Norman Pointe 1</td>
<td>620</td>
<td>1</td>
<td>6.05</td>
<td>7.97</td>
<td>4.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>5.12</td>
<td>4.53</td>
<td>3.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>6.05</td>
<td>7.97</td>
<td>4.91</td>
</tr>
</tbody>
</table>

Average - 0.797 0.963 0.835
Standard Deviation - 0.132 0.194 0.072

2.4.4 HOT-ROLLED GIRDERS AND CASTELLATED BEAMS

Table 2.12 summarizes the results from the frequency comparison between AISC and SCI for floors that are constructed of hot-rolled girders and castellated framing. From Table 2.12, the average ratio of predicted bay frequency using the AISC Design Guide to measured frequency ($f_{bay/fm}$) is 0.86 with a standard deviation of 0.09. The average ratio of predicted bay frequency using the SCI method to measured frequency ($f_{bay/fm}$) is 0.99 with a small standard deviation of 0.03.
<table>
<thead>
<tr>
<th>Building</th>
<th>File</th>
<th>Bay</th>
<th>Predicted Frequencies</th>
<th>Meas.</th>
<th>Frequency Ratios</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>AISC</td>
<td>SCI</td>
<td>AISC/SCI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>f_b (Hz)</td>
<td>f_g (Hz)</td>
<td>f_{bay} (Hz)</td>
<td>f_m (Hz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Premiere Club</td>
<td>351</td>
<td>1</td>
<td>10.67</td>
<td>7.08</td>
<td>5.90</td>
<td>23.35</td>
</tr>
<tr>
<td>Patterson</td>
<td>549</td>
<td>4</td>
<td>6.58</td>
<td>12.57</td>
<td>5.97</td>
<td>6.58</td>
</tr>
<tr>
<td>Avenue Facility</td>
<td></td>
<td>5</td>
<td>6.58</td>
<td>10.41</td>
<td>5.75</td>
<td>6.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>5.51</td>
<td>7.51</td>
<td>4.68</td>
<td>5.47</td>
</tr>
<tr>
<td>Orange Synagogue</td>
<td>349</td>
<td>1</td>
<td>7.10</td>
<td>7.57</td>
<td>5.36</td>
<td>16.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>7.10</td>
<td>7.57</td>
<td>5.36</td>
<td>16.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>7.10</td>
<td>7.57</td>
<td>5.36</td>
<td>16.03</td>
</tr>
<tr>
<td>ACTIC</td>
<td>341</td>
<td>Typ.</td>
<td>6.21</td>
<td>12.40</td>
<td>5.64</td>
<td>6.21</td>
</tr>
<tr>
<td>Camron</td>
<td>514</td>
<td>271</td>
<td>6.16</td>
<td>10.98</td>
<td>5.65</td>
<td>6.16</td>
</tr>
<tr>
<td>University</td>
<td></td>
<td>273</td>
<td>5.88</td>
<td>10.50</td>
<td>5.39</td>
<td>5.88</td>
</tr>
<tr>
<td>Melfro Corp.</td>
<td>508</td>
<td>Typ.</td>
<td>5.46</td>
<td>5.28</td>
<td>3.80</td>
<td>12.21</td>
</tr>
<tr>
<td>Steel Case</td>
<td>570</td>
<td>Mezz.</td>
<td>5.25</td>
<td>4.92</td>
<td>3.59</td>
<td>11.73</td>
</tr>
<tr>
<td>Medical</td>
<td></td>
<td>Int.</td>
<td>5.25</td>
<td>4.02</td>
<td>3.19</td>
<td>11.73</td>
</tr>
<tr>
<td>ATIC</td>
<td>341</td>
<td>Typ.</td>
<td>5.31</td>
<td>5.96</td>
<td>3.97</td>
<td>11.87</td>
</tr>
<tr>
<td>IQ/ Ford</td>
<td>615</td>
<td>Typ.</td>
<td>5.05</td>
<td>6.06</td>
<td>3.93</td>
<td>5.05</td>
</tr>
<tr>
<td>XILINX</td>
<td>609</td>
<td>Typ.</td>
<td>5.05</td>
<td>6.06</td>
<td>3.93</td>
<td>5.05</td>
</tr>
<tr>
<td>CO Civic Center</td>
<td>610</td>
<td>1</td>
<td>5.16</td>
<td>N/A</td>
<td>5.16</td>
<td>5.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>5.26</td>
<td>N/A</td>
<td>5.26</td>
<td>5.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>4.70</td>
<td>N/A</td>
<td>4.70</td>
<td>4.70</td>
</tr>
<tr>
<td>Gateway 800 Bridge</td>
<td>402</td>
<td>Typ.</td>
<td>2.52</td>
<td>4.07</td>
<td>2.22</td>
<td>2.52</td>
</tr>
<tr>
<td>Ruby Tuesday</td>
<td></td>
<td>2nd.</td>
<td>4.49</td>
<td>10.50</td>
<td>4.26</td>
<td>4.49</td>
</tr>
<tr>
<td>Slad1</td>
<td></td>
<td>3rd.</td>
<td>3.86</td>
<td>10.56</td>
<td>3.72</td>
<td>3.86</td>
</tr>
<tr>
<td>Midwest</td>
<td></td>
<td>Band3</td>
<td>4.04</td>
<td>0.00</td>
<td>4.04</td>
<td>4.04</td>
</tr>
<tr>
<td>Kentworth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nations Bank</td>
<td></td>
<td>1</td>
<td>4.04</td>
<td>8.09</td>
<td>3.77</td>
<td>4.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>3.53</td>
<td>8.09</td>
<td>3.36</td>
<td>3.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3.53</td>
<td>8.09</td>
<td>3.36</td>
<td>3.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>4.04</td>
<td>8.09</td>
<td>3.77</td>
<td>4.04</td>
</tr>
<tr>
<td>Eight Parkwood</td>
<td>618</td>
<td>2</td>
<td>7.61</td>
<td>10.82</td>
<td>6.22</td>
<td>7.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>7.61</td>
<td>10.82</td>
<td>6.22</td>
<td>7.07</td>
</tr>
</tbody>
</table>

Average -

0.896

Standard Deviation -

0.195

0.217

0.061
Table 2.11 – AISC vs. SCI Frequencies for Floors with Joist Girders and Joists

<table>
<thead>
<tr>
<th>Building</th>
<th>File</th>
<th>Bay</th>
<th>Predicted Frequencies</th>
<th>Meas.</th>
<th>Frequency Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>AISC</td>
<td>SCI</td>
<td>AISC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>f_b (Hz)</td>
<td>f_g (Hz)</td>
<td>f_{bay} (Hz)</td>
</tr>
<tr>
<td>Z.C.M.I. Store</td>
<td>269</td>
<td>1–4</td>
<td>7.23</td>
<td>6.22</td>
<td>4.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5,10</td>
<td>6.86</td>
<td>4.99</td>
<td>4.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>7.62</td>
<td>6.63</td>
<td>5.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.8,11</td>
<td>7.23</td>
<td>6.22</td>
<td>4.72</td>
</tr>
<tr>
<td>Patterson</td>
<td>549</td>
<td>6</td>
<td>6.04</td>
<td>6.10</td>
<td>4.67</td>
</tr>
<tr>
<td>Toyota</td>
<td>481</td>
<td>Typ.</td>
<td>4.94</td>
<td>8.02</td>
<td>4.53</td>
</tr>
<tr>
<td>Garmin Int. Bldg.</td>
<td>506</td>
<td>Int.</td>
<td>6.25</td>
<td>4.52</td>
<td>3.66</td>
</tr>
<tr>
<td>Sony Corp.</td>
<td>511</td>
<td>Typ.</td>
<td>5.47</td>
<td>4.44</td>
<td>3.45</td>
</tr>
<tr>
<td>Diversa Building</td>
<td>568</td>
<td>Ext.</td>
<td>4.12</td>
<td>6.45</td>
<td>4.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ext.-2</td>
<td>4.71</td>
<td>5.00</td>
<td>3.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int.-1</td>
<td>9.52</td>
<td>7.29</td>
<td>5.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int.-2</td>
<td>7.24</td>
<td>5.57</td>
<td>4.42</td>
</tr>
<tr>
<td>Pacific</td>
<td>568</td>
<td>Typ.</td>
<td>6.14</td>
<td>6.71</td>
<td>4.53</td>
</tr>
<tr>
<td>IBM</td>
<td>605</td>
<td>Typ.</td>
<td>6.78</td>
<td>N/A</td>
<td>6.78</td>
</tr>
<tr>
<td>Southern Bell</td>
<td></td>
<td>2</td>
<td>5.54</td>
<td>6.67</td>
<td>4.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5,7</td>
<td>5.54</td>
<td>6.67</td>
<td>4.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>7.58</td>
<td>6.79</td>
<td>5.22</td>
</tr>
<tr>
<td>Wholesale Grocers</td>
<td></td>
<td>1</td>
<td>2.45</td>
<td>N/A</td>
<td>2.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>2.53</td>
<td>N/A</td>
<td>2.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>2.03</td>
<td>N/A</td>
<td>2.03</td>
</tr>
<tr>
<td>Eight Parkwood</td>
<td>618</td>
<td>1</td>
<td>6.11</td>
<td>5.89</td>
<td>4.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>6.11</td>
<td>6.10</td>
<td>4.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,5</td>
<td>6.11</td>
<td>5.89</td>
<td>4.24</td>
</tr>
<tr>
<td>R.S.I. Building</td>
<td>621</td>
<td>1</td>
<td>8.54</td>
<td>N/A</td>
<td>8.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>8.54</td>
<td>N/A</td>
<td>8.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>9.61</td>
<td>N/A</td>
<td>9.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>6.87</td>
<td>N/A</td>
<td>6.87</td>
</tr>
</tbody>
</table>

Average - 0.759 0.783 0.936
Standard Deviation - 0.166 0.170 0.053

Table 2.12 – AISC vs. SCI Frequencies for Hot-Rolled Girders with Castellated Beams

<table>
<thead>
<tr>
<th>Building</th>
<th>File</th>
<th>Bay</th>
<th>Predicted Frequencies</th>
<th>Meas.</th>
<th>Frequency Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>AISC</td>
<td>SCI</td>
<td>AISC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>f_b (Hz)</td>
<td>f_g (Hz)</td>
<td>f_{bay} (Hz)</td>
</tr>
<tr>
<td>Lennox</td>
<td>572</td>
<td>1,3</td>
<td>3.41</td>
<td>7.16</td>
<td>3.19</td>
</tr>
<tr>
<td>Wal-Mart</td>
<td>572</td>
<td>4,5</td>
<td>4.66</td>
<td>10.22</td>
<td>4.44</td>
</tr>
<tr>
<td>AMAT</td>
<td>Boice7</td>
<td>B, B2</td>
<td>6.93</td>
<td>7.88</td>
<td>5.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>5.63</td>
<td>5.79</td>
<td>4.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>6.93</td>
<td>7.21</td>
<td>5.00</td>
</tr>
</tbody>
</table>

Average - 0.858 0.992 0.865
Standard Deviation - 0.090 0.026 0.084
2.5 FREQUENCY EVALUATION OF BRITISH FLOORS

This section focuses on comparing the methods provided by AISC and SCI for predicting the fundamental natural frequency of structural floor systems. Fourteen case studies of floors previously evaluated in the SCI publication *Design Guide for Vibration of Long Span Composite Floors* (Hicks, et al. 2000) are assessed. These floors use hot-rolled, castellated, or cellular framing. Cellular beams are similar to castellated beams in that the cross sectional properties for both are non-prismatic. Therefore, net rather than gross section properties were used when modeling the floor systems.

Again, predicted system frequencies based on the AISC Design Guide are calculated using the techniques discussed in Section 2.2. SCI predictions of system frequencies are calculated using the techniques presented in Section 1.4.3. Tables 2.13 and 2.14 summarize the comparison between measured and predicted bay frequencies using the AISC and SCI methods. Measured frequencies are plotted against predicted system frequencies in Figure 2.11. Again, the predicted frequencies that are of interest for comparison are Dunkerly’s estimate, f_n^2, as well as approximations using f_n^4 and f_n^6. Predicted beam and girder frequencies are not evaluated in this section due to poor correlation with measured bay frequencies. In Tables 2.13 and 2.14, f_n^2 is replaced with f_{bay}. In addition, system properties are investigated and compared for an example floor system originally tested by SCI. Specifically, differences in effective width and composite moment of inertia values are examined.

2.5.1 AISC FREQUENCY EVALUATION OF BRITISH FLOORS

The AISC Design Guide proved to be a fairly accurate tool for predicting the fundamental natural frequencies of the British floor systems. From Table 2.13, the average ratio of predicted system frequency to measured frequency (f_{bay}/f_m) is 0.93. However, a modest standard deviation of 0.18 suggests that the data is moderately scattered. The average ratio of predicted system frequency to measured frequency (f_n^4/f_m) is 1.00 with a standard deviation of 0.15, and for (f_n^6/f_m) is 1.02 with a modest standard deviation of 0.15.
Table 2.13 – System Frequency Comparison for British Floors Using AISC Method

<table>
<thead>
<tr>
<th>Building</th>
<th>File</th>
<th>Bay</th>
<th>Predicted Frequencies (AISC)</th>
<th>Meas. Frequencies</th>
<th>Frequency Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>f_h f_g f_{bay} f_n^4 f_n^6</td>
<td>f_h f_g f_{bay} f_n^4 f_n^6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Hz) (Hz) (Hz) (Hz) (Hz) (Hz)</td>
<td>(Hz) (Hz) (Hz) (Hz) (Hz)</td>
<td></td>
</tr>
<tr>
<td>Cardington</td>
<td>BR1</td>
<td>1</td>
<td>5.82 9.17 4.97 5.61 5.76</td>
<td>5.86</td>
<td>0.848 1.008 1.037</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>5.26 N/A 5.26 5.26 5.26</td>
<td>4.13</td>
<td>1.275 1.275 1.275</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>4.96 N/A 4.96 4.96 4.96</td>
<td>4.19</td>
<td>1.184 1.184 1.184</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>4.55 N/A 4.55 4.55 4.55</td>
<td>4.44</td>
<td>1.025 1.025 1.025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>4.34 N/A 4.34 4.34 4.34</td>
<td>4.06</td>
<td>1.068 1.068 1.068</td>
</tr>
<tr>
<td>Le Colisee</td>
<td>BR2</td>
<td>1</td>
<td>4.29 N/A 4.29 4.29 4.29</td>
<td>4.50</td>
<td>0.953 0.953 0.953</td>
</tr>
<tr>
<td>SCI HQ</td>
<td>BR3</td>
<td>1</td>
<td>11.56 9.77 7.46 8.81 9.28</td>
<td>8.38</td>
<td>0.890 1.052 1.107</td>
</tr>
<tr>
<td>Appold St.</td>
<td>BR4</td>
<td>1</td>
<td>5.87 N/A 5.87 5.87 5.87</td>
<td>5.88</td>
<td>0.998 0.998 0.998</td>
</tr>
<tr>
<td>Finsbury</td>
<td>BR5</td>
<td>1</td>
<td>6.38 6.38 4.51 5.36 5.68</td>
<td>6.40</td>
<td>0.705 0.838 0.888</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>5.98 6.00 4.23 5.04 5.34</td>
<td>6.00</td>
<td>0.705 0.839 0.891</td>
</tr>
<tr>
<td>Grosvenor</td>
<td>BR6</td>
<td>1</td>
<td>6.04 6.89 4.54 5.38 5.67</td>
<td>6.40</td>
<td>0.705 0.838 0.888</td>
</tr>
<tr>
<td>Lloyds</td>
<td>BR7</td>
<td>1</td>
<td>9.85 5.24 4.63 5.14 5.22</td>
<td>5.32</td>
<td>0.870 0.966 0.981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>8.53 4.66 4.09 4.56 4.64</td>
<td>5.52</td>
<td>0.741 0.826 0.841</td>
</tr>
<tr>
<td>West Bldg.</td>
<td>BR8</td>
<td>1</td>
<td>6.27 12.51 5.77 6.17 6.25</td>
<td>7.38</td>
<td>0.782 0.837 0.847</td>
</tr>
</tbody>
</table>

Average - 0.934 1.003 1.024
Standard Deviation - 0.175 0.147 0.147

Table 2.14 – System Frequency Comparison for British Floors Using SCI Method

<table>
<thead>
<tr>
<th>Building</th>
<th>File</th>
<th>Bay</th>
<th>Predicted Frequencies (SCI)</th>
<th>Meas. Frequencies</th>
<th>Frequency Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>f_h f_g f_{bay} f_n^4 f_n^6</td>
<td>f_h f_g f_{bay} f_n^4 f_n^6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Hz) (Hz) (Hz) (Hz) (Hz) (Hz)</td>
<td>(Hz) (Hz) (Hz) (Hz) (Hz)</td>
<td></td>
</tr>
<tr>
<td>Cardington</td>
<td>BR1</td>
<td>1</td>
<td>9.03 8.07 5.98 7.13 7.53</td>
<td>5.86</td>
<td>1.020 1.217 1.286 0.831</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>5.31 N/A 5.31 5.31 5.31</td>
<td>4.13</td>
<td>1.287 1.287 1.287 0.991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>5.05 N/A 5.05 5.05 5.05</td>
<td>4.19</td>
<td>1.206 1.206 1.206 0.982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>5.69 N/A 5.69 5.69 5.69</td>
<td>4.44</td>
<td>1.282 1.282 1.282 0.800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>5.43 N/A 5.43 5.43 5.43</td>
<td>4.06</td>
<td>1.337 1.337 1.337 0.799</td>
</tr>
<tr>
<td>Le Colisee</td>
<td>BR2</td>
<td>1</td>
<td>4.33 N/A 4.33 4.33 4.33</td>
<td>4.50</td>
<td>0.962 0.962 0.962 0.991</td>
</tr>
<tr>
<td>SCI HQ</td>
<td>BR3</td>
<td>1</td>
<td>25.45 10.19 9.40 10.13 10.18</td>
<td>8.38</td>
<td>1.122 1.208 1.215 0.794</td>
</tr>
<tr>
<td>Appold St.</td>
<td>BR4</td>
<td>1</td>
<td>5.90 N/A 5.90 5.90 5.90</td>
<td>5.88</td>
<td>1.003 1.003 1.003 0.995</td>
</tr>
<tr>
<td>Finsbury</td>
<td>BR5</td>
<td>1</td>
<td>13.60 6.67 5.95 6.57 6.65</td>
<td>6.40</td>
<td>0.930 1.027 1.039 0.758</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>12.74 6.26 5.59 6.17 6.25</td>
<td>6.00</td>
<td>0.932 1.029 1.041 0.757</td>
</tr>
<tr>
<td>Grosvenor</td>
<td>BR6</td>
<td>1</td>
<td>9.53 6.73 5.48 6.37 6.60</td>
<td>4.40</td>
<td>1.245 1.447 1.501 0.828</td>
</tr>
<tr>
<td>Lloyds</td>
<td>BR7</td>
<td>1</td>
<td>21.43 5.18 5.02 5.18 5.18</td>
<td>5.32</td>
<td>0.944 0.973 0.974 0.922</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>18.56 4.61 4.47 4.61 4.61</td>
<td>5.52</td>
<td>0.810 0.834 0.835 0.915</td>
</tr>
<tr>
<td>West Bldg.</td>
<td>BR8</td>
<td>1</td>
<td>6.47 N/A 6.47 6.47 6.47</td>
<td>7.38</td>
<td>0.877 0.877 0.877 0.892</td>
</tr>
</tbody>
</table>

Average - 1.068 1.121 1.132 0.875
Standard Deviation - 0.174 0.186 0.196 0.091
Figure 2.11 – Measured Bay Frequency vs. Predicted AISC and SCI Bay Frequency for British Tested Floors
The predicted bay frequencies, f_n^2, are plotted against the measured system frequencies in Figure 2.11(a). This figure illustrates that the predicted bay frequencies are within 10% of the measured bay frequencies for only 6 of the 14 floors studied by SCI but using the AISC prediction method. The predicted bay frequencies, using the revision f_n^4, are plotted against the measured system frequencies in Figure 2.11(b), where the predicted system frequencies are within 10% of the measured bay frequencies for 7 of the 14 floors. The predicted bay frequencies, using the revision f_n^6, are plotted against the measured frequencies in Figure 2.11(c), where the predicted system frequencies are within 10% of the measured bay frequencies for 7 of the 14 floors studied by SCI.

2.5.2 SCI FREQUENCY EVALUATION OF BRITISH FLOORS

The methods provided by Steel Construction Institute also proved to be a fairly accurate tool for predicting the fundamental natural frequencies of the British floor systems. From Table 2.14, the average ratio of predicted system frequency to measured frequency (f_{bay}/f_m) is 1.07. However, a modest standard deviation of 0.17 suggests that the data is moderately scattered. The average ratio of predicted system frequency to measured frequency (f_n^4/f_m) is 1.12 with a standard deviation of 0.19, and for (f_n^6/f_m) is 1.13 with a standard deviation of 0.20.

The predicted bay frequencies, f_n^2, are plotted against the measured system frequencies in Figure 2.11(a). This figure illustrates that the predicted bay frequencies are within 10% of the measured bay frequencies for only 6 of the 14 floors studied by SCI. The predicted bay frequencies, using the revision f_n^4, are plotted against the measured system frequencies in Figure 2.11(b). This figure illustrates that the predicted system frequencies are within 10% of the measured bay frequencies for only 5 of the 14 British case studies. The predicted bay frequencies, using the revision f_n^6, are plotted against the measured frequencies in Figure 2.11(c). This figure illustrates that the predicted system frequencies are within 10% of the measured bay frequencies for 5 of 14 British case studies.
2.5.3 EXAMPLE EVALUATION OF A SCI TESTED FLOOR

To further explore the differences between the AISC and SCI methods, basic system properties are investigated and compared in this section. Specifically, differences in effective width, composite moment of inertia, and frequency are examined for a particular floor tested by SCI. In Section 2.5.2, the SCI method assumes a fixed-ended boundary condition for the secondary framing when evaluating a floor based on the flexibility of the primary framing. However, for purposes of comparison, simply supported conditions are assumed for both beam and girder frequency calculations in this section. Also, reductions of deflections due to stiffening provided by adjacent bays are neglected for both methods.

The floor system used in the comparison, shown in Figure 2.11, is of the SCI headquarters in Ascot, Great Britain. The secondary floor framing of a typical bay consists of 305X127UB42 beams spaced at 98 in. with a span of 19 ft-8in. The beams are supported by 686X152 castellated girders. The girders span 24 ft-5 in. The floor slab is 5-1/8 in. total depth normal weight concrete supported by 2 in. deep composite form deck. The loading on the bay includes the self-weight of the slab and decking as well as non-structural components such as services, ceilings, raised floors, mechanical ductwork, and office furniture.

Table 2.15 shows the general, beam mode and girder mode properties for the AISC and SCI methods. The concrete compressive strength \(f'_{c} \) is not used in the United Kingdom. The equivalent concrete compressive strength used in AISC calculations is found by back calculating from the dynamic modular ratio of 5.29 used by SCI for normal weight concrete. The dynamic modular ratio is taken as the modulus of elasticity for steel \(E_s \) divided by 1.35 times the modulus of elasticity for concrete \(E_c \). To account for dynamic effects under load, the modulus of elasticity for concrete is increased. The resulting equivalent concrete compressive strength used in the AISC calculations is 5.0 ksi. (Note: For lightweight concrete, the dynamic modular ratio used by SCI is 9.31 and the corresponding concrete compressive strength is 3.8 ksi.)
Figure 2.12 – First Floor Framing Plan SCI Headquarters (Hicks, et al. 2000)

Table 2.15 – AISC vs. SCI Comparison of Parameters for the SCI Headquarters Framing

<table>
<thead>
<tr>
<th></th>
<th>AISC</th>
<th>SCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f'_c (ksi)</td>
<td>5.0</td>
<td>N/A</td>
</tr>
<tr>
<td>E_c (ksi)</td>
<td>3985</td>
<td>5510</td>
</tr>
<tr>
<td>E_s (ksi)</td>
<td>29000</td>
<td>29725</td>
</tr>
<tr>
<td>Modular Ratio n</td>
<td>5.39</td>
<td>5.39</td>
</tr>
<tr>
<td>Total Weight (psf)</td>
<td>85.9</td>
<td>85.9</td>
</tr>
<tr>
<td>Beam Mode Properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_{off} (ft)</td>
<td>8.15</td>
<td>4.92</td>
</tr>
<tr>
<td>I_{comp} (in.(^4))</td>
<td>910.6</td>
<td>840.7</td>
</tr>
<tr>
<td>w_j (lb./ft)</td>
<td>727.7</td>
<td>727.7</td>
</tr>
<tr>
<td>Δ_b (in.)</td>
<td>0.094</td>
<td>0.101</td>
</tr>
<tr>
<td>f_b (Hz)</td>
<td>11.56</td>
<td>11.14</td>
</tr>
<tr>
<td>Girder Mode Properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_{off} (ft)</td>
<td>9.78</td>
<td>6.11</td>
</tr>
<tr>
<td>I_{comp} (in.(^4))</td>
<td>3778.3</td>
<td>3604.9</td>
</tr>
<tr>
<td>w_g (lb./ft)</td>
<td>1788.9</td>
<td>1788.9</td>
</tr>
<tr>
<td>Δ_g (in.)</td>
<td>0.131</td>
<td>0.137</td>
</tr>
<tr>
<td>f_g (Hz)</td>
<td>9.77</td>
<td>9.54</td>
</tr>
<tr>
<td>Combined</td>
<td>$f_n^2 = f_{bay}$ (Hz)</td>
<td>7.46</td>
</tr>
</tbody>
</table>

Beam Properties
- 305X127X42
 - Area = 8.28 in.\(^2\)
 - I_x = 197 in.\(^4\)
 - e.n.a. y_c = 6.05 in.
 - Weight = 28.3 plf

Girder Properties
- 686X152X60
 - Area = 8.94 in.\(^2\)
 - I_x = 1423 in.\(^4\)
 - e.n.a. y_c = 13.5 in.
 - Weight = 30.4 plf

Note: e.n.a. is taken from top of steel
From Table 2.15, the effective width of the concrete slab for the secondary beams is the member spacing of 8.15 ft according to the AISC Design Guide. In contrast, SCI estimates the effective width of slab to be much smaller, 4.92 ft. Subsequently in the SCI method, the composite moment of inertia (I_{comp}) is reduced and the member deflection (Δ_b) increases. The final deflections based on the AISC and SCI techniques are 0.094 in. and 0.101 in., respectively. The corresponding natural frequencies are 11.56 Hz and 11.14 Hz for the AISC and SCI methods, respectively.

The effective width of the concrete slab for the primary beams is 40% of the girder span or 9.78 ft according to the AISC Design Guide. In contrast, SCI again estimates the effective width of concrete slab for the girders to be much smaller with a value of 25% of the girder length or 6.11 ft. Subsequently in the SCI method, the composite moment of inertia (I_{comp}) is reduced and the member deflection (Δ_g) increases. The final deflections based on AISC and SCI techniques are 0.131 in. and 0.137 in., respectively, and the corresponding natural frequencies are 9.77 Hz and 9.54 Hz. The bay frequency using Dunkerly’s estimation is 7.46 Hz based on the AISC Design Guide and 7.25 Hz based on the SCI method. Example frequency calculations using both methods are found in Appendix A to this report.

2.6 SUMMARY

The primary goal of this part of this floor vibrations study was to compare predicted and measured frequencies for floor systems currently occupied and under construction in the United States and Europe. This comparison was compiled in an attempt to improve predictions of floor response due to occupant-induced excitations. Floor system properties and framing for 103 case studies were scrutinized using AISC and SCI methods to find correlations between predicted and measured frequencies. Table 2.16 summarizes the major results of the frequency studies.

Hot-Rolled Framing. For structural floor systems with hot-rolled framing, the comparison of predicted and measured floor frequencies shows that the system frequency, f_n^2, estimated using Equation 1.12 and the AISC Design Guide, is not a reliable prediction of bay frequency (avg. $f_n^2/f_m = 0.797$ with $\sigma = 0.132$). In many of these case studies, floor motion is limited to the beam motion, because the girders have
significant rigidity and do not affect the system frequencies. This comparison shows that the predicted beam frequency calculated using the Design Guide is more indicative of the actual bay frequency than Dunkerly’s estimate of f_n^2. In addition, the modifications to Dunkerly’s equation, f_n^4 and f_n^6, only marginally improve the estimate of the actual system frequency than predictions using f_n^2 for floors with hot-rolled framing. However, the scatter is quite significant for these modified predictions. Floors with hot-rolled framing did not have significant correlations between predicted girder and measured system frequencies.

Table 2.16 – Summary of Results of Frequency Study

<table>
<thead>
<tr>
<th>Type of Framing</th>
<th>AISC Design Guide 11</th>
<th>SCI 076</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H-R w/J</td>
<td>H-R w/Cast</td>
</tr>
<tr>
<td>Avg. f_{beam}/f_m</td>
<td>1.034</td>
<td>1.058</td>
</tr>
<tr>
<td>Std. Dev. σ</td>
<td>0.176</td>
<td>0.178</td>
</tr>
<tr>
<td>Avg. f_n^2/f_m</td>
<td>0.797</td>
<td>0.858</td>
</tr>
<tr>
<td>Std. Dev. σ</td>
<td>0.132</td>
<td>0.176</td>
</tr>
<tr>
<td>Avg. f_n^4/f_m</td>
<td>0.897</td>
<td>0.965</td>
</tr>
<tr>
<td>Std. Dev. σ</td>
<td>0.151</td>
<td>0.147</td>
</tr>
<tr>
<td>Avg. f_n^6/f_m</td>
<td>0.931</td>
<td>1.002</td>
</tr>
<tr>
<td>Std. Dev. σ</td>
<td>0.158</td>
<td>0.147</td>
</tr>
</tbody>
</table>

* Floors where $f_{beam}=f_{meas.}$ (%)
| | 64 | 39 | 80 | N/A | N/A | N/A | N/A | N/A | N/A |

* Floors where $f_n^2=f_{meas.}$ (%)
| | 28 | 40 | 32 | 100 | 36 | 36 | 36 | 41 |

* Floors where $f_n^4=f_{meas.}$ (%)
| | 40 | 33 | 29 | 100 | 36 | 36 | 36 | 41 |

* Floors where $f_n^6=f_{meas.}$ (%)
| | 28 | 40 | 32 | 100 | 36 | 36 | 36 | 41 |

* These rows measure the percentage of case studies that have predicted beam/bay frequencies within a tolerance of ±10% of the measured frequency.
The methods used by the Steel Construction Institute Guide are reliable for predicting bay frequencies, f_n^2, for floors constructed of hot-rolled shapes (avg. $f_n^2/f_m = 0.961$ with $\sigma = 0.196$). The modifications to Dunkerly’s equation, f_n^4 and f_n^6, also provide better estimates of the system frequency than predictions using f_n^2 for floors with hot-rolled framing. However, the scatter is quite significant for these modified predictions. Floors with hot-rolled framing evaluated using SCI techniques did not have significant correlations between predicted beam or girder and measured system frequencies.

Hot-Rolled Girders and Joist Beams. For structural floor systems with hot-rolled girders and joist framing, the comparison of predicted and measured floor frequencies reveals that the system frequency, f_n^2, estimated using Equation 1.12 and the AISC Design Guide, is again not a reliable prediction of bay frequency (avg. $f_n^2/f_m = 0.896$ with $\sigma = 0.196$). This comparison also shows that the predicted beam frequency is not an accurate prediction of the fundamental natural frequency of floor systems utilizing hot-rolled and joist framing. The modifications to Dunkerly’s equation, f_n^4 and f_n^6, estimate the system frequency with the same accuracy as predictions using f_{beam}. However, the scatter is quite significant for these modified predictions.

The methods used by the Steel Construction Institute Guide are reliable for predicting bay frequencies using Dunkerly’s approximation, f_n^2, for floors constructed of hot-rolled girders and joists (avg. $f_n^2/f_m = 0.981$ with $\sigma = 0.217$). In addition, the modifications to Dunkerly’s equation, f_n^4 and f_n^6, estimate the system frequency with better accuracy than predictions using f_n^2 for floors with hot-rolled girders and joist framing. However, the scatter is quite significant for these modified predictions. Floors with hot-rolled girders and joist framing evaluated using SCI techniques did not have significant correlations between predicted beam or girder and measured system frequencies.

Joist Girders and Joists. For structural floor systems with joist girders and joists, the comparison of predicted and measured floor frequencies shows that the system frequency, f_n^2, estimated using Equation 1.12 and the AISC Design Guide, is not a reliable prediction of bay frequency (avg. $f_n^2/f_m = 0.759$ with $\sigma = 0.166$). This comparison also shows that the predicted joist frequency is not an accurate prediction of the fundamental natural frequency of floor systems utilizing joist girder and joist framing.
The modifications to Dunkerly’s equation, \(f_n^4 \) and \(f_n^6 \), estimate the system frequency with less accuracy than predictions using \(f_n^2 \). The scatter is quite significant for these modified predictions.

The methods used by the Steel Construction Institute Guide are also not reliable for predicting bay frequencies, \(f_n^2 \), of floors constructed with joist girders and joists (avg. \(f_n^2/lf_m = 0.783 \) with \(\sigma = 0.170 \)). In addition, the modifications to Dunkerly’s equation, \(f_n^4 \) and \(f_n^6 \), marginally improve the estimate of the system frequency than predictions using \(f_n^2 \) for floors with joist girders and joists. However, the scatter is quite significant for these modified predictions. Floors with joist girders and joist framing evaluated using SCI techniques did not have significant correlations between predicted beam or girder and measured system frequencies.

Hot-Rolled Girders and Castellated Beams. Only six case studies of bays with hot-rolled girders and castellated framing were evaluated in the study. For structural floor systems with hot-rolled girders and castellated beams, the comparison of predicted and measured floor frequencies shows that the system frequency, \(f_n^2 \), estimated using Equation 1.12 and the AISC Design Guide, is reliable for about 50% of the predictions (avg. \(f_n^2/lf_m = 0.858 \) with \(\sigma = 0.090 \)). This comparison shows that the predicted beam frequency is more indicative of the bay frequency than Dunkerly’s estimate of \(f_n^2 \). In addition, the modifications to Dunkerly’s equation, \(f_n^4 \) and \(f_n^6 \), estimate the system frequency with better accuracy than predictions using \(f_n^2 \) for floors with hot-rolled girders and castellated framing. In addition, the scatter in the data is quite low for these modified predictions.

The methods used by the Steel Construction Institute Guide are reliable for predicting bay frequencies, \(f_n^2 \), for floors constructed of hot-rolled girders and castellated framing (avg. \(f_n^2/lf_m = 0.992 \) with \(\sigma = 0.026 \)). The modifications to Dunkerly’s equation, \(f_n^4 \) and \(f_n^6 \), also estimate the system frequency with good accuracy for floors with hot-rolled and castellated framing. However, the scatter is quite significant for these modified predictions. Floors with hot-rolled girders and castellated framing evaluated using SCI techniques did not have significant correlations between predicted beam or girder and measured system frequencies.
British Floors. The AISC Design Guide on average underestimated the bay frequency by 7% for the floor systems previously evaluated in the SCI publication *Design Guide for Vibration of Long Span Composite Floors* (Hicks, et al. 2000). The SCI method on average overestimated the bay frequency by 7% for the same floor systems. Modest scatter in the data suggests that the predicted bay frequency, f_n^2, calculated using both methods is a moderately reliable prediction for these tested floors. The differences between the predicted frequencies arise from varying assumptions on deflection reductions and boundary conditions for deflection estimations. The AISC Design Guide and SCI also have different definitions for the effective width of slab, which has significantly affects the estimation of the composite moment of inertia for primary and secondary beams.
CHAPTER III – FLOOR VIBRATIONS CRITERIA COMPARISONS

3.1 INTRODUCTION

Predicting the response of framing systems is important when evaluating floors for acceptability. Many criteria are used in the United States and the United Kingdom to help determine the tolerability of floor system response due to occupant-induced vibrations. This chapter evaluates occupied floor systems for case studies using four separate acceptability criteria and compares the results with subjective analyses based on field observations. The four acceptability criteria used to evaluate these case studies in this chapter are the American Institute of Steel Construction Design Guide 11 Floor Vibrations Due to Human Activity (Murray, et al. 1997), the Modified Reiher-Meister scale, the Murray Criterion, and enhancements to the Steel Construction Institute criteria outlined in Design Guide for Vibrations of Long Span Composite Floors (Hicks, et al. 2000). Details of the backgrounds of these four acceptability criteria are discussed in Chapter I of this study. The AISC and SCI acceptability criteria are the most current methods used for evaluating floor system behavior in the United States and Great Britain. With the advent of light-weight and stronger construction materials, past assumptions and methods required for the Modified Reiher-Meister scale and the Murray Criterion are becoming outdated. Therefore, comparing past and present acceptability criteria will provide insight into the development and progress of floor vibration research. Through comparison of analyses and experimental data for existing floor systems, the correlation between predicted and measured behavior may be improved.

This chapter provides a comparison of predicted and observed behavior from 51 case studies involving office floors currently being occupied and used in the United States. The type of framing used during construction differentiates the structural floor systems. Similar to the previous chapter, the classifications for framing are “hot-rolled beams”, “hot-rolled beams with joists”, and “joist girders with joists”. The controlling girder, which has the most deflection and the lowest frequency, is considered when
classifying a floor system with two different types of girders used in the framing. (The castellated framing case studies were not fully constructed at the time of testing. Therefore, these case studies are not evaluated in this chapter.) The results from the acceptability evaluations are then compared with subjective field observations of actual floor behavior and system properties at the time of the testing. The subjective analyses are based on the expertise of the measurement team present, as well as, the opinions of the occupants who were occupying the office spaces at the time of testing.

Supplemental material for this report is found in the publication by Boice and Murray (2003) and contains summary sheets of the case studies used in the frequency and criteria comparisons. These sheets include floor systems properties such as damping, framing, loading, predicted and measured fundamental frequencies, accelerations, and slab properties. In addition, the supplemental material contains framing plans for the floor systems evaluated in this chapter. Appendix A provides example calculations for determining floor acceptability based on the Steel Construction Institute criteria. The sample calculations for SCI accelerations and acceptability are based on predicted SCI system frequencies.

3.2 CRITERIA COMPARISON RESULTS

Tables 3.1 through 3.3 summarize the results from the acceptability evaluations for the assessed case studies. Agreement between subjective analyses and acceptability criteria presented in the Design Guide is based on the predicted peak accelerations of the office floor systems. For example, floors with predicted peak accelerations above 0.50% of gravity should exhibit annoying floor vibrations and subsequently have complaints from the occupants. Agreement between subjective analyses and the Murray Criterion is based on a minimum required damping value needed to limit vibrations of office floor systems. For the Murray Criterion, building owners with floor systems having required damping value above 4.5% should receive complaints from the occupants due to the vibrations. Agreement between subjective analyses and the Modified Reiher-Meister scale is based on the chart shown in Figure 1.6. According to the figure, floor systems that plot above the upper one-half of the distinctly perceptible range will result in complaints from the occupants (Murray 1975). Agreement between subjective analyses
and acceptability criteria presented by the Steel Construction Institute is based on the root-mean-square (rms) accelerations of the office floor systems. For example, floors with root-mean-square accelerations above the acceleration limits should also exhibit annoying floor vibrations and subsequently have complaints from the occupants. The acceleration limits are based on the type of office environment and established using Equations 1.21 and 1.22. In addition, the damping value, β, corresponding to recommendations in the AISC Design Guide for the location at the time of testing, as well as, predicted and measured system frequencies are provided in Tables 3.1 through 3.3 in order to draw a parallel with the results of the criteria comparisons.

3.2.1 FLOORS WITH HOT-ROLLED SHAPES

Table 3.1 shows the results of the criteria comparisons for floor systems comprised of hot-rolled shapes for primary members. From the data presented, 17 of 19 or about 89% of the case studies analyzed using the Design Guide criteria agree with the corresponding subjective analyses of the behavior of the floor systems. When the case studies were evaluated using the Murray Criterion, about 68% of the floor systems comply with the corresponding subjective analyses. The case studies evaluated using the Modified Reiher-Meister acceptability scale have the least compliance with only 47% of the floor systems agreeing with the subjective analyses of the system performance. The case studies evaluated using the Steel Construction Institute acceptability criteria have about 68% compliance with the subjective evaluations. Only about 42% of the case studies have complete agreement between all four of the acceptability criteria and the corresponding subjective analyses. Only about 11% of the case studies show complete disagreement between all four of the acceptability criteria and the corresponding subjective analyses.

3.2.2 FLOORS WITH HOT-ROLLED GIRDERS AND JOISTS

Table 3.2 shows the results of the criteria comparisons for floor systems comprised of hot-rolled shapes for primary members and joist framing for secondary members. From the data presented, 13 of 15 or about 87% of the case studies analyzed using the Design Guide criteria agree with the corresponding subjective analyses of the behavior of the floor systems. When the case studies were evaluated using the Murray
Table 3.1 – Acceptability Criteria Comparison for Floors with Hot-Rolled Shapes

<table>
<thead>
<tr>
<th>Building</th>
<th>Bay</th>
<th>β (%)</th>
<th>Pred. f_{bay} (Hz)</th>
<th>f_{meas} (Hz)</th>
<th>Subjective Analysis</th>
<th>D.G. 11 a_{peak}/g (%)</th>
<th>Murray Criterion Rqd. Damping (%)</th>
<th>Modified Reiher-Meister</th>
<th>SCI a_{peak}/g (%)</th>
<th>a_{rms}/g (%)</th>
<th>a_{int}/g (%)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Jersey Lil Club</td>
<td>1</td>
<td>3.0</td>
<td>3.15</td>
<td>3.23</td>
<td>N-C</td>
<td>0.34</td>
<td>3.2</td>
<td>N-P</td>
<td>0.80</td>
<td>0.57</td>
<td>0.41</td>
<td>X</td>
</tr>
<tr>
<td>ISU</td>
<td>1</td>
<td>2.5</td>
<td>3.19</td>
<td>4.07</td>
<td>M-C</td>
<td>1.08</td>
<td>4.1</td>
<td>S-P</td>
<td>0.53</td>
<td>0.37</td>
<td>0.41</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>2,3</td>
<td>2.5</td>
<td>3.82</td>
<td>4.20</td>
<td>M-C</td>
<td>0.71</td>
<td>4.2</td>
<td>S-P</td>
<td>0.54</td>
<td>0.38</td>
<td>0.41</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.5</td>
<td>3.82</td>
<td>4.12</td>
<td>M-C</td>
<td>0.71</td>
<td>4.2</td>
<td>S-P</td>
<td>0.54</td>
<td>0.38</td>
<td>0.41</td>
<td>X</td>
</tr>
<tr>
<td>Newgen Building Ext.</td>
<td>3.0</td>
<td>4.64</td>
<td>5.60</td>
<td>6.50</td>
<td>N-C</td>
<td>0.52</td>
<td>4.4</td>
<td>A/D-P</td>
<td>0.55</td>
<td>0.39</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>Penn State</td>
<td>1</td>
<td>3.0</td>
<td>4.23</td>
<td>5.68</td>
<td>N-C</td>
<td>0.42</td>
<td>3.7</td>
<td>S-P</td>
<td>0.58</td>
<td>0.41</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>Oracle Building</td>
<td>1,2</td>
<td>2.5</td>
<td>3.81</td>
<td>4.89</td>
<td>C</td>
<td>0.69</td>
<td>4.0</td>
<td>X</td>
<td>0.39</td>
<td>0.28</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,4</td>
<td>2.5</td>
<td>3.81</td>
<td>4.89</td>
<td>C</td>
<td>0.69</td>
<td>4.0</td>
<td>X</td>
<td>0.39</td>
<td>0.28</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.5</td>
<td>3.88</td>
<td>4.93</td>
<td>C</td>
<td>0.73</td>
<td>4.2</td>
<td>X</td>
<td>0.38</td>
<td>0.27</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Newport V Typ.</td>
<td>2.5</td>
<td>3.38</td>
<td>3.84</td>
<td>4.00</td>
<td>N-C</td>
<td>0.46</td>
<td>3.4</td>
<td>S-P</td>
<td>0.34</td>
<td>0.24</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>Doylestown Hosp. Typ.</td>
<td>2.5</td>
<td>4.69</td>
<td>5.73</td>
<td>7.00</td>
<td>N-C</td>
<td>0.31</td>
<td>3.6</td>
<td>S-P</td>
<td>0.25</td>
<td>0.18</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>Stanley D. Lindsey</td>
<td>Typ.</td>
<td>3.0</td>
<td>3.29</td>
<td>3.96</td>
<td>N/A</td>
<td>0.40</td>
<td>X</td>
<td>S-P</td>
<td>0.25</td>
<td>0.18</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>AMEX Typ.</td>
<td>2.5</td>
<td>4.24</td>
<td>4.24</td>
<td>5.25</td>
<td>C</td>
<td>0.56</td>
<td>3.5</td>
<td>S-P</td>
<td>0.71</td>
<td>0.50</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>GTE Typ.</td>
<td>3.0</td>
<td>4.00</td>
<td>5.08</td>
<td>5.50</td>
<td>M-C</td>
<td>0.43</td>
<td>3.8</td>
<td>S-P</td>
<td>0.44</td>
<td>0.31</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>Three Parkwood</td>
<td>1</td>
<td>3.0</td>
<td>4.20</td>
<td>5.70</td>
<td>M-C</td>
<td>0.59</td>
<td>4.4</td>
<td>A/D-P</td>
<td>0.68</td>
<td>0.48</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.0</td>
<td>3.65</td>
<td>4.87</td>
<td>M-C</td>
<td>0.75</td>
<td>4.0</td>
<td>S-P</td>
<td>0.89</td>
<td>0.63</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>Norman Pointe I</td>
<td>1</td>
<td>3.0</td>
<td>4.35</td>
<td>5.32</td>
<td>N-C</td>
<td>0.38</td>
<td>3.8</td>
<td>S-P</td>
<td>0.43</td>
<td>0.30</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.0</td>
<td>3.38</td>
<td>4.68</td>
<td>N-C</td>
<td>0.37</td>
<td>3.7</td>
<td>S-P</td>
<td>0.20</td>
<td>0.14</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.0</td>
<td>4.35</td>
<td>5.32</td>
<td>N-C</td>
<td>0.38</td>
<td>3.8</td>
<td>S-P</td>
<td>0.43</td>
<td>0.30</td>
<td>0.41</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. The gray shading in the Design Guide 11 column indicates that the a_{peak}/g of the floor system is less than or equal to 0.50 % of gravity and is an acceptable floor.
2. The gray shading in the SCI column indicates that the a_{rms}/g of the floor system is less than or equal to the corresponding a_{int}/g and is an acceptable floor.
3. The check marks indicate that the particular criterion complies with the corresponding subjective analysis. The “X” marks indicate that the particular criterion does not comply with the corresponding subjective analysis.
4. In the Subjective Analysis column, “N-C” represents no complaints, “C” represents complaints, and “M-C” represents many complaints.
Table 3.2 – Acceptability Criteria Comparison for Floors with Hot-Rolled Girders and Joists

<table>
<thead>
<tr>
<th>Building</th>
<th>Bay</th>
<th>β (%)</th>
<th>Pred. f_{meq} (Hz)</th>
<th>f_{meq} (Hz)</th>
<th>Subjective Analysis</th>
<th>D.G. 11 a_{peak}/g (%)</th>
<th>Murray Criterion Rqd. Damping (%)</th>
<th>Modified Reiher-Meister</th>
<th>SCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIC Building</td>
<td>1</td>
<td>3.0</td>
<td>5.55</td>
<td>5.55</td>
<td>N-C</td>
<td>0.29</td>
<td>3.6</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S-P</td>
<td>✓</td>
<td>0.57</td>
</tr>
<tr>
<td>Camron Univ.</td>
<td>Rm.271</td>
<td>3.0</td>
<td>5.65</td>
<td>6.16</td>
<td>7.00</td>
<td>N-C</td>
<td>0.35</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S-P</td>
<td>✓</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>Rm.273</td>
<td>3.0</td>
<td>5.39</td>
<td>5.88</td>
<td>6.75</td>
<td>N-C</td>
<td>0.35</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S-P</td>
<td>✓</td>
<td>0.68</td>
</tr>
<tr>
<td>Melroe Corp. Head</td>
<td>1</td>
<td>3.0</td>
<td>3.80</td>
<td>5.46</td>
<td>5.30</td>
<td>M-C</td>
<td>0.74</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S-P</td>
<td>0.68</td>
<td>0.41</td>
</tr>
<tr>
<td>Steel Case</td>
<td>Mezz.</td>
<td>2.5</td>
<td>3.59</td>
<td>4.45</td>
<td>4.75</td>
<td>C</td>
<td>0.89</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Int.</td>
<td>2.5</td>
<td>3.19</td>
<td>3.46</td>
<td>4.75</td>
<td>N-C</td>
<td>0.51</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S-P</td>
<td>✓</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.0</td>
<td>5.97</td>
<td>6.58</td>
<td>4.50</td>
<td>N-C</td>
<td>0.42</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.0</td>
<td>5.75</td>
<td>6.58</td>
<td>4.50</td>
<td>C</td>
<td>0.45</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3.0</td>
<td>4.68</td>
<td>5.47</td>
<td>4.50</td>
<td>C</td>
<td>0.62</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Patterson Ave Fac.</td>
<td>4</td>
<td>3.0</td>
<td>5.97</td>
<td>6.58</td>
<td>4.50</td>
<td>N-C</td>
<td>0.42</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.0</td>
<td>5.75</td>
<td>6.58</td>
<td>4.50</td>
<td>C</td>
<td>0.45</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3.0</td>
<td>4.68</td>
<td>5.47</td>
<td>4.50</td>
<td>C</td>
<td>0.62</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>InterQuest/ Ford</td>
<td>1</td>
<td>2.5</td>
<td>3.97</td>
<td>5.04</td>
<td>4.75</td>
<td>C</td>
<td>0.73</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2.5</td>
<td>3.93</td>
<td>5.05</td>
<td>4.75</td>
<td>M-C</td>
<td>0.61</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.5</td>
<td>5.16</td>
<td>5.16</td>
<td>5.25</td>
<td>M-C</td>
<td>0.73</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Civic Center</td>
<td>1</td>
<td>2.5</td>
<td>5.16</td>
<td>5.16</td>
<td>5.25</td>
<td>M-C</td>
<td>0.73</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.5</td>
<td>5.26</td>
<td>5.26</td>
<td>5.25</td>
<td>M-C</td>
<td>0.73</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gateway 800 Bridge</td>
<td>Typ.</td>
<td>3.0</td>
<td>2.22</td>
<td>2.52</td>
<td>4.00</td>
<td>N-C</td>
<td>0.47</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Midwest Kentworth</td>
<td>Typ.</td>
<td>2.5</td>
<td>4.04</td>
<td>4.04</td>
<td>5.75</td>
<td>N-C</td>
<td>0.57</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Notes:

1. The gray shading in the Design Guide 11 column indicates that the a_{peak}/g of the floor system is less than or equal to 0.50 % of gravity and is an acceptable floor.
2. The gray shading in the SCI column indicates that the a_{rms}/g of the floor system is less than or equal to the corresponding a_{rms}/g and is an acceptable floor.
3. The check marks indicate that the particular criterion complies with the corresponding subjective analysis. The “X” marks indicate that the particular criterion does not comply with the corresponding subjective analysis.
4. In the Subjective Analysis column, “N-C” represents no complaints, “C” represents complaints, and “M-C” represents many complaints.
Table 3.3 – Acceptability Criteria Comparison for Floors with Joist Girders and Joist Framing

<table>
<thead>
<tr>
<th>Building</th>
<th>Bay</th>
<th>(\beta) (%)</th>
<th>Pred. (f_{bay}) (Hz)</th>
<th>(f_{max}) (Hz)</th>
<th>Subjective Analysis</th>
<th>D.G. 11 (a_{peak}/g) (%)</th>
<th>Murray Criterion Rqd. Damping (%)</th>
<th>Modified Reiher-Meister</th>
<th>SCI (a_{peak}/g) (%)</th>
<th>(a_{rms}/g) (%)</th>
<th>(a_{int}/g) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patterson Ave Fac.</td>
<td>6</td>
<td>3.0</td>
<td>4.67</td>
<td>4.72</td>
<td>5.00</td>
<td>N-C</td>
<td>0.53 (\checkmark)</td>
<td>S-P (\checkmark)</td>
<td>1.04</td>
<td>0.74</td>
<td>0.41</td>
</tr>
<tr>
<td>Toyota Motor Corp</td>
<td>1</td>
<td>2.0</td>
<td>4.53</td>
<td>4.94</td>
<td>5.63</td>
<td>M-C</td>
<td>0.66 (\checkmark)</td>
<td>S-P (\checkmark)</td>
<td>0.86</td>
<td>0.61</td>
<td>0.20</td>
</tr>
<tr>
<td>Sony Corp Building</td>
<td>1</td>
<td>2.5</td>
<td>3.45</td>
<td>3.83</td>
<td>5.50</td>
<td>M-C</td>
<td>0.95 (\checkmark)</td>
<td>A/D-P (\checkmark)</td>
<td>1.15</td>
<td>0.81</td>
<td>0.20</td>
</tr>
<tr>
<td>Diversa Building Ext.</td>
<td>3.0</td>
<td>3.43</td>
<td>4.02</td>
<td>5.00</td>
<td>M-C</td>
<td>1.12 (\checkmark)</td>
<td>4.3 (\checkmark)</td>
<td>A/D-P (\checkmark)</td>
<td>0.76</td>
<td>0.54</td>
<td>0.41</td>
</tr>
<tr>
<td>Pacific Tech Typ.</td>
<td>3.0</td>
<td>3.74</td>
<td>4.44</td>
<td>6.00</td>
<td>M-C</td>
<td>0.77 (\checkmark)</td>
<td>4.3 (\checkmark)</td>
<td>A/D-P (\checkmark)</td>
<td>0.87</td>
<td>0.62</td>
<td>0.41</td>
</tr>
<tr>
<td>Garmin Int. Bld. Int./Ext.</td>
<td>2.5</td>
<td>3.66</td>
<td>3.94</td>
<td>6.25</td>
<td>C</td>
<td>1.08 (\checkmark)</td>
<td>5.8 (\checkmark)</td>
<td>A/D-P (\checkmark)</td>
<td>1.45</td>
<td>1.03</td>
<td>0.20</td>
</tr>
<tr>
<td>IBM</td>
<td>1</td>
<td>2.5</td>
<td>6.78</td>
<td>6.78</td>
<td>6.00</td>
<td>C</td>
<td>0.54 (\checkmark)</td>
<td>4.4 (\checkmark)</td>
<td>A/D-P (\checkmark)</td>
<td>1.09</td>
<td>0.77</td>
</tr>
<tr>
<td>Southern Bell</td>
<td>2</td>
<td>3.0</td>
<td>3.91</td>
<td>4.51</td>
<td>6.25</td>
<td>N-C</td>
<td>0.48 (\checkmark)</td>
<td>3.7 (\checkmark)</td>
<td>S-P (\checkmark)</td>
<td>0.70</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>5,7</td>
<td>3.0</td>
<td>3.91</td>
<td>4.51</td>
<td>6.75</td>
<td>N-C</td>
<td>0.48 (\checkmark)</td>
<td>3.7 (\checkmark)</td>
<td>S-P (\checkmark)</td>
<td>0.70</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3.0</td>
<td>4.54</td>
<td>4.77</td>
<td>9.50</td>
<td>N-C</td>
<td>0.54 (\checkmark)</td>
<td>4.5 (\checkmark)</td>
<td>A/D-P (\checkmark)</td>
<td>1.04</td>
<td>0.74</td>
</tr>
<tr>
<td>Wholesale Grocers</td>
<td>1</td>
<td>3.0</td>
<td>2.45</td>
<td>2.45</td>
<td>3.50</td>
<td>N-C</td>
<td>0.21 (\checkmark)</td>
<td>2.7 (\checkmark)</td>
<td>N-P (\checkmark)</td>
<td>0.57</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.0</td>
<td>2.53</td>
<td>2.53</td>
<td>4.25</td>
<td>N-C</td>
<td>0.21 (\checkmark)</td>
<td>2.7 (\checkmark)</td>
<td>N-P (\checkmark)</td>
<td>0.57</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.0</td>
<td>2.03</td>
<td>2.03</td>
<td>3.00</td>
<td>N-C</td>
<td>0.22 (\checkmark)</td>
<td>2.8 (\checkmark)</td>
<td>N-P (\checkmark)</td>
<td>0.51</td>
<td>0.36</td>
</tr>
<tr>
<td>R.S.I. Bldg.</td>
<td>1</td>
<td>2.0</td>
<td>8.54</td>
<td>8.54</td>
<td>9.50</td>
<td>C</td>
<td>0.97 (\checkmark)</td>
<td>7.6 (\checkmark)</td>
<td>U/D-P (\checkmark)</td>
<td>5.57</td>
<td>3.94</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.0</td>
<td>8.54</td>
<td>8.54</td>
<td>9.75</td>
<td>C</td>
<td>0.97 (\checkmark)</td>
<td>7.6 (\checkmark)</td>
<td>U/D-P (\checkmark)</td>
<td>5.57</td>
<td>3.94</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.0</td>
<td>9.61</td>
<td>9.61</td>
<td>9.75</td>
<td>C</td>
<td>0.68 (\checkmark)</td>
<td>6.3 (\checkmark)</td>
<td>U/D-P (\checkmark)</td>
<td>3.08</td>
<td>2.18</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5.0</td>
<td>6.87</td>
<td>6.87</td>
<td>7.25</td>
<td>C</td>
<td>0.54 (\checkmark)</td>
<td>6.3 (\checkmark)</td>
<td>U/D-P (\checkmark)</td>
<td>1.56</td>
<td>1.10</td>
</tr>
</tbody>
</table>

Notes:

1. The gray shading in the Design Guide 11 column indicates that the \(a_{peak}/g\) of the floor system is less than or equal to 0.50 \% of gravity and is an acceptable floor.
2. The gray shading in the SCI column indicates that the \(a_{rms}/g\) of the floor system is less than or equal to the corresponding \(a_{lim}/g\) and is an acceptable floor.
3. The check marks indicate that the particular criterion complies with the corresponding subjective analysis. The “X” marks indicate that the particular criterion does not comply with the corresponding subjective analysis.
4. In the Subjective Analysis column, “N-C” represents no complaints, “C” represents complaints, and “M-C” represents many complaints.
Criterion, about 67% of the floor systems comply with the corresponding subjective analyses. The case studies evaluated using the Modified Reiher-Meister acceptability scale have the least compliance with only 47% of the floor systems agreeing with the subjective analyses. The case studies evaluated using the Steel Construction Institute acceptability criteria have about 53% compliance with the subjective evaluations. For about 7% of the case studies, all four of the acceptability criteria and the corresponding subjective analyses have complete agreement. None of the case studies have complete disagreement between all four of the acceptability criteria and the corresponding subjective analyses.

3.2.3 FLOORS WITH JOIST GIRDERS AND JOISTS

Table 3.3 shows the results of the criteria comparisons for floor systems comprised of joist girders for primary members and joist framing for secondary members. From the data presented, 15 of 17 or about 88% of the case studies analyzed using the Design Guide criteria agree with the corresponding subjective analyses of the behavior of the floor systems. When the case studies were evaluated using the Murray Criterion, about 71% of the floor systems comply with the corresponding subjective analyses. The case studies evaluated using the Modified Reiher-Meister acceptability scale have the least compliance with only 65% of the floor systems agreeing with the subjective analyses. The case studies evaluated using the Steel Construction Institute acceptability criteria have about 82% compliance with the subjective evaluations. For about 41% of the case studies, all four of the acceptability criteria and the corresponding subjective analyses have complete agreement. None of the case studies have complete disagreement between all four of the acceptability criteria and the corresponding subjective analyses.

3.3 SUMMARY

The primary goal of this part of the study was to determine which floor vibrations criteria has the best accuracy for predicting floor response. Table 3.4 summarizes the major results from the acceptability criteria comparisons.
Table 3.4 – Criteria Comparison Summary

<table>
<thead>
<tr>
<th>Framing</th>
<th>Agreement: Design Guide 11 (%)</th>
<th>Agreement: Modified Reiher-Meister (%)</th>
<th>Agreement: Murray Criterion (%)</th>
<th>Agreement: SCI Criteria (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot-Rolled Shapes</td>
<td>89</td>
<td>47</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>Hot-Rolled w/Joists</td>
<td>87</td>
<td>47</td>
<td>67</td>
<td>53</td>
</tr>
<tr>
<td>Joist Girders w/Joists</td>
<td>88</td>
<td>65</td>
<td>71</td>
<td>82</td>
</tr>
</tbody>
</table>

Note: Agreement refers to the percentage of cases studies where the subjective analyses complies with the specific criteria.

From this study, the methods and criteria established in the AISC Design Guide give the best results for predicting the behavior of floor systems for all three types of framing analyzed. With the exception of floor systems comprised of hot-rolled primary members and secondary joist framing, the criteria presented by the Steel Construction Institute is second best for studying and predicting floor performance. The Modified Reiher-Meister scale and Murray Criterion are not very good for predicting floor acceptability for all types of framing schemes evaluated.

Recommendations. Based on findings from the criteria comparisons, it is recommended that the methods provided by the AISC Design Guide be used to evaluate the acceptability of office floor systems due to occupant-induced vibrations.
CHAPTER IV – AISC AND SCI ACCELERATIONS COMPARISON

4.1 INTRODUCTION

The final part of this study compares predicted accelerations for a number of case studies calculated using the American Institute of Steel Construction Design Guide 11 *Floor Vibrations Due to Human Activity* (Murray, et al. 1997) and enhancements to the Steel Construction Institute criteria outlined in *Design Guide for Vibrations of Long Span Composite Floors* (Hicks, et al. 2000). The case studies are of buildings under construction or being occupied in the United States. The predicted accelerations and floor behavior acceptability are compared to assess the line of agreement between the AISC and SCI methods.

This chapter provides a comparison of predicted accelerations and acceptability from 78 case studies involving floors currently being occupied and constructed in the United States. The type of framing used during construction differentiates the structural floor systems. The classifications for framing are “hot-rolled beams”, “hot-rolled beams with joists”, “hot-rolled and castellated beams”, and “joist girders with joists”. The controlling girder, which allows the most deflection and thus the lower frequency, is considered when classifying a floor system with two different types of girders used in the framing. The bays for these case studies are modeled using the design software FLOORVIB2 (Murray and Elhouar 1994) to predict accelerations and acceptability. The FLOORVIB2 software is based on the AISC Design Guide. In addition, accelerations are also predicted using the methods outlined in the SCI Publication *Design Guide for Vibrations of Long Span Composite Floors* (Hicks, et al. 2000). The predicted accelerations for the AISC and SCI methods are then compared for agreement. This acceptability comparison is based on future or final occupancy of the case study offices. Many of the floor systems evaluated in Chapter I were under construction with very light...
loading during testing. When modeling these case studies for acceleration estimates, damping is assumed to be 3% with 4 psf of dead load and 11 psf of live load. The actual office fit-out and loading conditions acting on the floor systems were noted and used for modeling purposes for floor systems that were occupied during testing. The values for damping and loading are based on the subjective expertise of the measurement team.

Supplemental material for this report is found in the publication by Boice and Murray (2003) and contains summary sheets of the case studies used in the frequency and criteria comparisons. These sheets include floor systems properties such as damping, framing, loading, predicted and measured fundamental frequencies, accelerations, and slab properties. In addition, this supplemental material contains framing plans for the floor systems evaluated in this chapter. Appendix A provides calculations for determining floor acceptability based on the Steel Construction Institute criteria.

4.2 AISC VS. SCI ACCEPTABILITY COMPARISON

Tables 4.1 through 4.4 illustrate the results from the acceleration comparison acceptability evaluations for the assessed case studies. The peak acceleration limit of 0.50% of gravity, shown in Figure 1.8, is used in the AISC Design Guide to rate a floor for acceptability. In this comparison, the case studies are assumed to be “General Offices” when the SCI method is used to evaluate floor acceptability. Therefore, the response factor is 8 and Equations 1.21 and 1.22 control the limiting rms acceleration. The “General Office” is “appropriate for floors where normal activities and text operations on computers are performed” (Wyatt 1989). In the predicted acceleration columns of Tables 4.1 through 4.4, the gray shading indicates that the predicted acceleration is less than or equal to the limiting acceleration and the corresponding floor system should be acceptable for occupant-induced vibrations. The gray shading in the agreement column in Tables 4.1 through 4.4 illustrates that the predictions on acceptability using the AISC Design Guide and the SCI methods concur. The agreement column uses a scale, which begins with “Strongly Disagree”, followed by “Disagree”, “Agree”, then “Strongly Agree”. The phrase “Strongly Disagree” means that the solutions between the AISC and SCI methods differ by more than 15% of each other. The term “Disagree” means that the solutions between the AISC and SCI methods differ
within 15% of each other. The phrase “Agree” means that the solutions between the AISC and SCI methods concur by more than 15% each other. The phrase “Strongly Agree” means that the solutions between the AISC and SCI methods concur within 15% of each other.

Table 4.1 – AISC vs. SCI Acceptability for Framing Using Hot-Rolled Shapes

<table>
<thead>
<tr>
<th>Building</th>
<th>Bay</th>
<th>β (%)</th>
<th>f_{bay} (Hz)</th>
<th>Acceleration Limits</th>
<th>Predicted Accelerations</th>
<th>Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D.G. 11 SCI 076</td>
<td>D.G. 11 SCI 076</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D.G. 11</td>
<td>SCI 076</td>
<td>a_{peak}/g (%)</td>
<td>a_{rms}/g (%)</td>
<td>a_{peak}/g (%)</td>
</tr>
<tr>
<td>The Jersey Lil Club</td>
<td>Typ.</td>
<td>3.0</td>
<td>3.15 3.23</td>
<td>0.50 0.41</td>
<td>0.34 0.80 0.57</td>
<td>Disagree</td>
</tr>
<tr>
<td>ISU</td>
<td>1</td>
<td>2.5</td>
<td>3.19 4.07</td>
<td>0.50 0.41</td>
<td>1.08 0.53 0.37</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>3.82 4.20</td>
<td>0.50 0.41</td>
<td>0.71 0.54 0.38</td>
<td>Strongly Disagree</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.5</td>
<td>3.82 4.12</td>
<td>0.50 0.41</td>
<td>0.71 0.54 0.38</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>Newgen Building</td>
<td>Ext.</td>
<td>3.0</td>
<td>4.64 5.60</td>
<td>0.50 0.41</td>
<td>0.52 0.55 0.39</td>
<td>Disagree</td>
</tr>
<tr>
<td>Penn State</td>
<td>Typ.</td>
<td>3.0</td>
<td>4.23 5.68</td>
<td>0.50 0.41</td>
<td>0.42 0.58 0.41</td>
<td>Agree</td>
</tr>
<tr>
<td>Oracle Building</td>
<td>1,2,3,4</td>
<td>2.5</td>
<td>3.81 4.89</td>
<td>0.50 0.41</td>
<td>0.86 0.60 0.42</td>
<td>Agree</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.5</td>
<td>3.88 4.93</td>
<td>0.50 0.41</td>
<td>0.94 0.64 0.45</td>
<td>Agree</td>
</tr>
<tr>
<td>42nd St. Building</td>
<td>Typ.</td>
<td>3.0</td>
<td>3.38 3.76</td>
<td>0.50 0.41</td>
<td>0.60 0.59 0.42</td>
<td>Agree</td>
</tr>
<tr>
<td>Mercy Health Chr.</td>
<td>Int.</td>
<td>3.0</td>
<td>6.09 6.92</td>
<td>0.50 0.41</td>
<td>0.26 0.36 0.25</td>
<td>Strongly Agree</td>
</tr>
<tr>
<td></td>
<td>Ext.</td>
<td>3.0</td>
<td>6.09 7.06</td>
<td>0.50 0.41</td>
<td>0.25 0.36 0.25</td>
<td>Strongly Agree</td>
</tr>
<tr>
<td>Newport V</td>
<td>Typ.</td>
<td>2.5</td>
<td>3.38 3.84</td>
<td>0.50 0.41</td>
<td>0.46 0.34 0.24</td>
<td>Agree</td>
</tr>
<tr>
<td>Doylestown Hosp.</td>
<td>C</td>
<td>3.0</td>
<td>7.73 9.22</td>
<td>0.50 0.47</td>
<td>0.27 0.50 0.35</td>
<td>Agreement</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>3.0</td>
<td>5.66 6.27</td>
<td>0.50 0.41</td>
<td>0.23 0.40 0.28</td>
<td>Agreement</td>
</tr>
<tr>
<td>Stanley D. Lindsey</td>
<td>Typ.</td>
<td>3.0</td>
<td>3.29 3.96</td>
<td>0.50 0.41</td>
<td>0.40 0.27 0.19</td>
<td>Agree</td>
</tr>
<tr>
<td>One Texas Court</td>
<td>1</td>
<td>2.5</td>
<td>3.96 4.97</td>
<td>0.50 0.41</td>
<td>0.55 0.85 0.60</td>
<td>Agree</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.5</td>
<td>4.61 5.64</td>
<td>0.50 0.41</td>
<td>0.60 0.52 0.37</td>
<td>Agree</td>
</tr>
<tr>
<td>AMEX</td>
<td>Typ.</td>
<td>2.5</td>
<td>4.24 4.24</td>
<td>0.50 0.41</td>
<td>0.56 0.71 0.50</td>
<td>Strongly Agree</td>
</tr>
<tr>
<td>GTE</td>
<td>Typ.</td>
<td>3.0</td>
<td>4.00 5.08</td>
<td>0.50 0.41</td>
<td>0.43 0.44 0.31</td>
<td>Strongly Agree</td>
</tr>
<tr>
<td>Three Parkwood</td>
<td>1</td>
<td>3.0</td>
<td>4.20 5.70</td>
<td>0.50 0.41</td>
<td>0.59 0.68 0.48</td>
<td>Strongly Agree</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.0</td>
<td>3.65 4.45</td>
<td>0.50 0.41</td>
<td>0.75 0.85 0.60</td>
<td>Strongly Agree</td>
</tr>
<tr>
<td>Norman Pointe 1</td>
<td>1,4</td>
<td>3.0</td>
<td>4.35 5.72</td>
<td>0.50 0.41</td>
<td>0.38 0.45 0.32</td>
<td>Strongly Agree</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.0</td>
<td>3.39 4.39</td>
<td>0.50 0.41</td>
<td>0.37 0.34 0.24</td>
<td>Agree</td>
</tr>
<tr>
<td>Two Parkwood</td>
<td>Typ.</td>
<td>3.0</td>
<td>4.58 5.79</td>
<td>0.50 0.41</td>
<td>0.57 0.72 0.51</td>
<td>Strongly Agree</td>
</tr>
<tr>
<td>Virginia Tech Physics</td>
<td>1</td>
<td>3.0</td>
<td>4.64 5.91</td>
<td>0.50 0.41</td>
<td>0.42 0.56 0.40</td>
<td>Strongly Agree</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.0</td>
<td>4.60 5.81</td>
<td>0.50 0.41</td>
<td>0.42 0.55 0.39</td>
<td>Strongly Agree</td>
</tr>
</tbody>
</table>

4.2.1 FLOORS WITH HOT-ROLLED SHAPES

The accelerations and acceptability from 27 case studies with hot-rolled framing are analyzed in this subsection. From Table 4.1, 21 of 27 (78%) of the case studies with hot-rolled framing have concurring predictions, indicating fair correlation between the AISC and SCI methods. For 10 of 27 (37%) of the case studies constructed of hot-rolled shapes are predicted to have concurring acceptability solutions with a classification of “Strongly Agree”. For 11 of 27 (41%) of the case studies are classified as “Agree”. However, 6 of 27 (22%) of the case studies with the same framing scheme did not have
acceptability predictions in accord between the two methods. Of these, 3 of 27 (11%) of these case studies are predicted to have differing acceptability solutions with a classification of “Disagree”. For 3 of 27 (11%) of the case studies, the classification is “Strongly Disagree”.

Many of the case studies with differing vibrations behavior have higher predicted accelerations using the AISC than SCI predictions. Differences between the acceleration predictions arise from variations of assumptions on the mass participating in the vibration of the floor systems. For these specific case studies, the effective lengths and widths, L_{eff} and S, used in Equation 1.31 are larger using the SCI methods, which increases the mass and reduces the peak and rms accelerations.

The Steel Construction Institute method predicts a high peak acceleration for the Jersey Lil Building because the predicted bay frequency of 3.23 Hz is below 3.55 Hz. The only Fourier coefficient that is considered in Equation 1.27 when the fundamental frequency of a floor system is greater than or equal to 3.55 Hz is $\alpha_n = 0.10$. This Fourier coefficient is “appropriate for walking frequencies greater than the first harmonic” (Hicks, et al. 2000). The first harmonic is considered and $\alpha_n = 0.40$ when evaluating floors with predicted frequencies of less than 3.55 Hz. Therefore, the peak acceleration is increased by a factor of four for the Jersey Lil Building causing disagreement between the acceptability predictions.

4.2.2 FLOORS WITH HOT-ROLLED GIRDERS AND JOISTS

The accelerations and acceptability from 26 case studies with hot-rolled girders and joist secondary members are analyzed in this subsection. From Table 4.2, 19 of 26 (73%) of the case studies have concurring predictions, indicating fair correlation between the AISC and SCI methods. For 11 of 26 (42%) of the case studies constructed are predicted to have concurring acceptability solutions with a classification of “Strongly Agree”. For 8 of 26 (31%) of the case studies are classified with “Agree”. However, 7 of 26 (27%) of the case studies did not have acceptability predictions in accord between the two methods. Of these, one (4%) of these case studies has differing acceptability solutions with a classification of “Disagree”. For 6 of 26 (23%) of the case studies, the classification is “Strongly Disagree”.

75
Several factors contribute to disagreement between the AISC Design Guide and the SCI approach to floor vibrations for hot-rolled girders and joist framing. For example, like the Jersey Lil Building, the predictions of peak system accelerations for the Gateway 800 Bridge and Bay 2 of the Ruby Tuesday Headquarters are high using SCI methods. From Table 4.2, the predicted system frequencies for the Gateway 800 Bridge and Ruby Tuesday Headquarters according to the SCI method are 2.52 Hz and 3.43 Hz, respectively. The first harmonic is considered for these cases and $\alpha_n = 0.40$ is used in Equation 1.27 when evaluating floors with predicted frequencies less than 3.55 Hz. Therefore, the peak acceleration and rms acceleration is increased by a factor of four for the Gateway 800 Bridge and the Ruby Tuesday Headquarters causing disagreement between the acceptability predictions. Also, for some case studies with differing acceptability predictions, predicted peak accelerations using the SCI methods are higher.
when compared to predictions based on the AISC Design Guide. These case studies include the Premier Club and the Camron University bays. The effective lengths, L_{eff}, used in Equation 1.31, limits the predicted effective mass participating in the motion of these floor systems below that used in the AISC predictions.

4.2.3 FLOORS WITH JOIST GIRDERS AND JOISTS

The accelerations and acceptability from 19 case studies with joist girders and joist framing are analyzed in this subsection. From Table 4.3, of the case studies with joist girders and joist secondary framing, 18 of 19 (95%) have concurring predictions. For 3 of 19 (16%) of the case studies, the acceptability solutions are classified as “Strongly Agree”. For 13 of 16 (79%), the classification is “Agree”. Only one case study has differing acceptability predictions and a classification of “Disagree”. Based on the results of this comparison, the correlation between the AISC and SCI methods for predicted floor acceptability is very good.

<table>
<thead>
<tr>
<th>Building</th>
<th>Bay</th>
<th>β (%)</th>
<th>f_{bay} (Hz)</th>
<th>Acceleration Limits</th>
<th>Predicted Accelerations</th>
<th>Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D.G. 11</td>
<td>SCI 076</td>
<td>D.G. 11</td>
</tr>
<tr>
<td>Z.C.M.I. Dept. Store</td>
<td>1,4,7,8,11</td>
<td>3.0</td>
<td>4.72</td>
<td>5.16</td>
<td>0.50</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3.0</td>
<td>5.00</td>
<td>5.51</td>
<td>0.50</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>5,10</td>
<td>3.0</td>
<td>4.03</td>
<td>4.37</td>
<td>0.50</td>
<td>0.41</td>
</tr>
<tr>
<td>Patterson Ave Fac.</td>
<td>6</td>
<td>3.0</td>
<td>4.67</td>
<td>4.72</td>
<td>0.50</td>
<td>0.41</td>
</tr>
<tr>
<td>Toyota Motor Corp</td>
<td>Typ.</td>
<td>2.0</td>
<td>4.53</td>
<td>4.94</td>
<td>0.50</td>
<td>0.41</td>
</tr>
<tr>
<td>Sony Corp Building</td>
<td>Typ.</td>
<td>2.5</td>
<td>3.45</td>
<td>3.83</td>
<td>0.50</td>
<td>0.41</td>
</tr>
<tr>
<td>Diversa Building</td>
<td>Ext.</td>
<td>3.0</td>
<td>3.43</td>
<td>4.02</td>
<td>0.50</td>
<td>0.41</td>
</tr>
<tr>
<td>Pacific Tech</td>
<td>Typ.</td>
<td>3.0</td>
<td>3.74</td>
<td>4.44</td>
<td>0.50</td>
<td>0.41</td>
</tr>
<tr>
<td>Garmin Int. Bld.</td>
<td>Int./Ext.</td>
<td>2.5</td>
<td>3.66</td>
<td>3.94</td>
<td>0.50</td>
<td>0.41</td>
</tr>
<tr>
<td>IBM</td>
<td>Typ.</td>
<td>2.5</td>
<td>6.78</td>
<td>6.78</td>
<td>0.50</td>
<td>0.41</td>
</tr>
<tr>
<td>Southern Bell</td>
<td>2,5,7</td>
<td>3.0</td>
<td>3.91</td>
<td>4.51</td>
<td>0.50</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3.0</td>
<td>4.54</td>
<td>4.77</td>
<td>0.50</td>
<td>0.41</td>
</tr>
<tr>
<td>Wholesale Grocers</td>
<td>1</td>
<td>3.0</td>
<td>2.45</td>
<td>2.45</td>
<td>0.50</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.0</td>
<td>2.53</td>
<td>2.53</td>
<td>0.50</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.0</td>
<td>2.03</td>
<td>2.03</td>
<td>0.50</td>
<td>0.41</td>
</tr>
<tr>
<td>Eight Parkwood</td>
<td>1,4,5</td>
<td>3.0</td>
<td>3.64</td>
<td>3.69</td>
<td>0.50</td>
<td>0.41</td>
</tr>
<tr>
<td>R.S.I. Bldg.</td>
<td>1,2</td>
<td>2.0</td>
<td>5.84</td>
<td>8.54</td>
<td>0.50</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.0</td>
<td>6.91</td>
<td>9.61</td>
<td>0.50</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5.0</td>
<td>6.87</td>
<td>6.87</td>
<td>0.50</td>
<td>0.41</td>
</tr>
</tbody>
</table>

For many of the case studies constructed of joist girders and joists the AISC and SCI methods predict unacceptable floor systems. Joists and joist girders lack continuity effects between bays, and therefore, the effective length, the effective mass of these floor systems is limited.
systems in the direction of the secondary framing is not as large as for other floor systems. The accelerations increase with reduced effective mass participating in the predicted behavior, resulting in increased predicted peak and rms accelerations.

4.2.4 HOT-ROLLED GIRDERS AND CASTELLATED BEAMS

The accelerations and acceptability from 6 case studies with hot-rolled and castellated framing are analyzed in this subsection. From Table 4.4, of the case studies with hot-rolled girders and castellated beams, all had concurring predictions. Four of the case studies constructed of hot-rolled girders and castellated beams are predicted to have concurring acceptability solutions with a classification of “Strongly Agree”, and two are classified as “Agree”. Although the test sample of office floors with hot-rolled girders and castellated framing is limited, the correlation between the AISC and SCI methods for floor acceptability is very good.

Table 4.4 – AISC vs. SCI Acceptability for Framing Using Hot-Rolled Girders and Castellated Beams

<table>
<thead>
<tr>
<th>Building</th>
<th>Bay</th>
<th>Predicted f_{bay} (Hz)</th>
<th>Acceleration Limits</th>
<th>Predicted Accelerations a_{peak}/g (%)</th>
<th>Predicted Accelerations a_{rms}/g (%)</th>
<th>Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>D.G. 11</td>
<td>SCI 076</td>
<td>D.G. 11</td>
<td>SCI 076</td>
<td></td>
</tr>
<tr>
<td>Lennox Garage 1.3</td>
<td>3.0</td>
<td>2.85 3.05</td>
<td>0.50</td>
<td>0.41</td>
<td>0.58</td>
<td>Agree</td>
</tr>
<tr>
<td>Wal-Mart 4.5</td>
<td>3.0</td>
<td>4.15 4.36</td>
<td>0.50</td>
<td>0.41</td>
<td>0.16</td>
<td>Strongly Agree</td>
</tr>
<tr>
<td>AMAT Building 34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>3.0</td>
<td>5.84 6.58</td>
<td>0.50</td>
<td>0.41</td>
<td>0.10</td>
<td>Strongly Agree</td>
</tr>
<tr>
<td>B</td>
<td>3.0</td>
<td>4.77 6.24</td>
<td>0.50</td>
<td>0.41</td>
<td>0.17</td>
<td>Strongly Agree</td>
</tr>
<tr>
<td>C</td>
<td>3.0</td>
<td>3.57 4.21</td>
<td>0.50</td>
<td>0.41</td>
<td>0.43</td>
<td>Agree</td>
</tr>
<tr>
<td>D</td>
<td>3.0</td>
<td>4.58 5.82</td>
<td>0.50</td>
<td>0.41</td>
<td>0.18</td>
<td>Strongly Agree</td>
</tr>
</tbody>
</table>

4.3 SUMMARY

Table 4.5 summarizes the results from the acceptability and acceleration AISC and SCI comparisons for the 78 case studies. The two prediction methods are in agreement for 82 % (64 of 78) of the case studies, and strongly disagree on only 12 % (9 of 78) of the case studies. The case studies with hot-rolled girders and castellated beams have the best correlations between behavior predictions, but the sample of floor systems is limited. Floors with joist girders and joists provide the next higher percentage of correlations, followed by floors constructed only of hot-rolled shapes, then floors with both hot-rolled girders and joist beams.
Table 4.5 – AISC vs. SCI Acceptability Comparison Summary

<table>
<thead>
<tr>
<th>Agreement</th>
<th>Strongly Agree (%)</th>
<th>Agree (%)</th>
<th>Disagree (%)</th>
<th>Strongly Disagree (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot-Rolled Shapes</td>
<td>37</td>
<td>41</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Hot-Rolled w/Joists</td>
<td>42</td>
<td>31</td>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>Hot-Rolled w/Cast.</td>
<td>67</td>
<td>33</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Joist Girders w/Joists</td>
<td>16</td>
<td>79</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>All Systems</td>
<td>36</td>
<td>46</td>
<td>6</td>
<td>12</td>
</tr>
</tbody>
</table>

Note: Agreement refers to the percentage of cases studies evaluated using the AISC Design Guide 11 and the SCI method with concurring or differing acceptability predictions.

Differences between acceleration predictions arise from variations of assumptions on the mass participating in the vibration of the floor systems. For example, when using the SCI method, the effective lengths, L_{eff}, used in Equation 1.31, result in relatively small effective mass participating in the motion of floor systems with hot-rolled girders and joists. A larger participating mass is predicted by the AISC method. Another difference between the methods resides with predictions of low frequency floors. When using the SCI method, only the first harmonic is considered and $\alpha_n = 0.40$ is used in Equation 1.27, when evaluating floors with predicted frequencies less than 3.55 Hz. Therefore, the relative peak and subsequent the rms accelerations are increased by a factor of four with respect to floors having frequencies greater than 3.55 Hz.
CHAPTER V – CONCLUSIONS AND RECOMMENDATIONS

5.1 SUMMARY

The purpose of this study was to suggest methods for improving the correlation between predicted and actual field behavior of office floor systems due to occupant-induced walking excitations. The focus of this research was divided into three main topics in which case studies were evaluated. The first focused on comparing field-measured frequencies with predicted natural frequencies using the methods outlined in the AISC Design Guide and the SCI Publication Design Guide on the Vibration of Floors (Wyatt 1989). The second is a comparison of current acceptability criteria and subjective field analyses of observed floor system behavior. The four acceptability criteria used to evaluate these case studies were the AISC Design Guide, enhancements to the Steel Construction Institute criteria outlined in Design Guide for Vibrations of Long Span Composite Floors (Hicks, et al. 2000) the Murray Criterion, and the Modified Reiher-Meister scale. Comparison of predicted accelerations and acceptability from the AISC and the SCI criteria, were assessed in the final topic.

5.2 CONCLUSIONS

5.2.1 NATURAL FREQUENCY STUDY

The purpose of this part of the study was to compare predicted and measured frequencies of floor systems for 103 case studies currently occupied and under construction in the United States and Europe. This comparison was compiled in an attempt to improve predictions of floor response due to occupant-induced excitations. Floor system properties and framing for these case studies were scrutinized using AISC and SCI methods to find correlations between predicted and measured frequencies. Based on the results of the comparisons, it can be reasonably concluded that the predicted bay frequency using Dunkerly’s estimate \(f_{n2} \) is not the most accurate method for predicting the system frequency using the AISC Design Guide procedures for all types of
framing analyzed. The predicted beam frequency using AISC methods provided sound correlations with the measured bay frequencies, although the scatter of the data was modest. On the other hand, with the exception of floor systems with joist girders and joists, the results showed that the SCI methods provided more accurate predictions of bay frequency despite a fair amount of data scatter. In addition, revisions to Dunkerly’s estimate, \(f_n^d \) (Equation 2.1) and \(f_n^6 \) (Equation 2.2), marginally improved the correlation for predicting system frequencies using between predicted and measured frequencies for both the AISC Design Guide and SCI methods. However, the scatter of data for these modified system predictions were moderately high.

5.2.2 FLOOR VIBRATION CRITERIA COMPARISON

The primary goal of this part of the research was to determine which floor vibration criteria best predicts floor response. From the results of the four methods used to examine the case studies, the AISC Design Guide criterion is judged the most accurate method for predicting floor vibrations acceptability. The SCI criterion is the next most consistent method, followed by the Murray Criterion then the Modified Reiher-Meister scale.

5.2.3 AISC AND SCI ACCELERATION COMPARISONS

The final part of this study compares predicted accelerations and floor behavior tolerability for 78 case studies evaluated using the AISC and the SCI criteria. The two prediction methods are in agreement for 82 % (64 of 78) of the case studies, and strongly disagree for only 12 % (9 of 78) of the case studies. The case studies with hot-rolled girders and castellated beams have the best correlations between behavior predictions, but the sample of floor systems is very limited. Floors with joist girders and joists provide the next higher percentage of correlations, followed by floors constructed only of hot-rolled shapes, then floors with hot-rolled girders and joist beams.

5.3 COMMENTS

When evaluating a floor system for acceptability using the SCI criteria, several considerations should be made for the effective length, \(L_{eff} \), used in the effective mass, \(M \), Equation 1.31. Floor systems comprised solely of hot-rolled framing members should
strictly use the guidelines presented in Table 1.1 for determining effective lengths and widths. However, when floors are comprised of hot-rolled shapes with joists or joist girders with joists, continuity effects of secondary framing members need to be considered. Table 1.1 should be used as outlined by SCI when the predicted motion of the secondary beams controls the floor system behavior. When the predicted motion of the floor system is controlled by the primary framing and the relative flexibility, \(RF_{\text{main_beam}} \), is greater than 0.60, only the length of the secondary beam should be used as \(L_{\text{max}} \) and subsequently \(L_{\text{eff}} \). The term \(L_{\text{max}} \) is defined as the total length of the secondary beam when considered to act continuously. Unlike hot-rolled secondary framing, joists are not considered to act continuously from bay to bay. Another recommendation that should be considered when using the SCI criteria for floor acceptability is that actual corridor dimensions for computing the resonant build-up factor, \(R_{1} \), should be used. The resonant build-up factor, Equation 1.28, is a function of \(D \). The property \(D \) is taken conservatively as the longer of the floors plan dimensions or, when known, the longest architectural corridor length. The architectural corridor lengths were not known and the resonant build-up factors were calculated to be 1.0 for the case studies evaluated. The resonant build-up factor is used as a reduction of the peak acceleration. In future studies, architectural corridor features should be noted to provide more accurate predictions of floor behavior using SCI methods.

5.4 AREAS FOR FURTHER RESEARCH

Many of the floor systems in the natural frequency study showed the best correlation between predicted beam frequency and measured bay frequency when evaluated using the AISC Design Guide. Future floor vibration research should study the framing member properties that would cause the girder frequency to be neglected when calculating bay frequencies for each type of framing scheme. These member properties should include span-to-depth ratios for girders and beams, as well as, girder span-to-beam span ratios. Moreover, this study showed that the modifications to Dunkerly’s equation, \(f_{n}^{4} \) and \(f_{n}^{6} \), on average marginally provide more reliable predictions than estimations using \(f_{n}^{2} \) for AISC and SCI methods. Further study of these modifications is recommended for both methods. In addition, only six case studies of floors with hot-rolled girders and
castellated beams were used in this study. Therefore, in future research, a broader sample of floor systems with hot-rolled girders and castellated beams should be considered to compare measured and predicted frequencies, accelerations, and behavioral acceptability.
LIST OF REFERENCES

APPENDIX A – EXAMPLE CALCULATIONS
APPENDIX A.1 AISC DESIGN GUIDE 11 CALCULATIONS
Appendix A.1 AISC Design Guide 11 Calculations

A.1.1 HOT-ROLLED SHAPES

Newport V
File # 596
Typical Bay

Knowledge Base FLOORVIB2 Version 1.1B2

Licensed to: STRUCTURAL ENGINEERS, INC.
537 Wisteria Drive
Radford, VA 24141

Date: 01/22/03 By: MDB Page 1
Job Id: Newport Office Center V
Id: J-K/J-4

VIBRATION ANALYSIS:

Activity: Walking
Occupancy Category: Office or Residence
Evaluation Criterion: Walking, AISC Design Guide, Chapter 4

Constant Force, Po = 65 lb
Modal Damping Ratio, S = 0.025
Acceleration Limit, ao/g x 100% = 0.50 %
Joint bottom chords are not extended
Girders are not continuous at columns

<table>
<thead>
<tr>
<th>Section</th>
<th>w, plf</th>
<th>Itr, in4</th>
<th>f, Hz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam</td>
<td>W21x44</td>
<td>724.4</td>
<td>2825.3</td>
</tr>
<tr>
<td>Left Wall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right Girder</td>
<td>W27x84</td>
<td>3027.0</td>
<td>7841.1</td>
</tr>
<tr>
<td>Bay (Using smaller girder frequency)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evaluation:

-- Continued --
Appendix A.1.1
AISC Design Guide 11 Calculations
Hot-Rolled Shapes (Cont.)

Newport V
File # 596
Typical Bay

Combined Mode ap/g = 0.46 % ≤ 0.50 %
The system SATISFIES THE CRITERION.

LOADING DATA:
Slab + 1.0 psf Deck = 41.7 psf
Dead loads = 4.0 psf
Collateral loads = 12.5 psf
Live loads = 8.0 psf
Actual beam and girder weights

Tributary width for left girder = 45.83/2 = 22.92 ft.
Tributary width for right girder = 45.83/2 + 37.67/2 = 41.75 ft.

CONCRETE/SLAB DATA:
Concrete dc = 5.25 in. fc' = 3.5 Ksi
wt = 115pcf Ec = 2307 Ksi

Modular ratio, n = Es/(1.35 Ec) = 9.31

Deck height: 2 in.
Effective concrete thickness in deck: 1 in.

BEAM CALCULATIONS:
Beam section: W21x44 d = 20.660 in. A = 13.00 in.² Ix = 843 in.⁴
Spacing: S = 123.33 in.
Span: Lb = 45.83 ft.
Uniform load: wb = (41.7 + 4.0 + 12.5 + 8.0) x 123.33/12 + 44.0
= 724.4 plf

Transformed moment of inertia:
Effective concrete width = min(0.4 Lb, S) = 123.330 in.
Effective concrete depth = 3.250 in.
Transformed concrete width = 13.245 in.
Transformed concrete area = 43.046 in.²
Distance to neutral axis = 10.718 in. (Above beam c. g.)
Transformed moment of inertia = 2825.3 in.⁴

\[
\delta b = \frac{5 \times wb \times Lb^4}{384 \times Eb \times lb} = \frac{5 \times 724.4 \times 45.83^4 \times 1728}{384 \times Eb \times 2825.3} = 0.878 \text{ in.}
\]

Frequency = 0.18 \times \left[\frac{g}{\delta b}\right]^{0.5}

-- Continued --
Appendix A.1.1
AISC Design Guide 11 Calculations
Hot-Rolled Shapes (Cont.)

Newport V
File # 596
Typical Bay

Date: 01/22/03
Job Id: Newport Office Center V
Id: J-K/J-4

\[C_j = 2.0 \]
\[\text{Floor Width} = 200.00 \text{ ft.} \]
\[D_s = (12 \times 4.25^3)/(12 \times 9.31) = 8.24 \text{ in}^4/\text{ft.} \]
\[D_b = \frac{I_{tr}}{S} = \frac{2825.3}{10.28} = 274.90 \text{ in}^4/\text{ft.} \]
\[B_b = \min(C_j (D_s/D_b)^0.25 \text{ Lb} = 38.14 \text{ ft.; } 2/3 \times 200.00 \text{ ft.} = 133.33 \text{ ft.}) = 38.14 \text{ ft.} \]
Continuity Factor=1.5 since Continuous
and max. adj. Lb=37.67 ft > 0.7 Lb=32.08 ft.
\[W_b = 1.5 \times (0.724/10.28) \times 38.14 \times 45.83 = 184.8 \text{ Kips} \]

RIGHT GIRDERS CALCULATIONS:

Girder section: W27x84 \(d = 26.710 \text{ in.} \quad A = 24.80 \text{ in}^2 \quad I_x = 2850 \text{ in}^4 \)

Tributary width = 41.75 ft.
Span:
Equivalent uniform load: \(w_g = 41.75 \times \frac{724.4}{10.28} + 84.0 = 3027.0 \text{ plf} \)

Transformed moment of inertia:
\[\min(0.2 L_g, 45.83 \times 12/2) + \min(0.2 L_g, 37.67 \times 12/2) = 147.998" \text{ (15.894" transformed)} \]

\[\begin{align*}
\text{Effective concrete width} & = 147.998 \text{ in. and } 73.999 \text{ in.} \\
\text{Transformed concrete width} & = 15.894 \text{ in. and } 7.947 \text{ in.} \\
\text{Transformed concrete area} & = 51.656 \text{ in}^2 \text{ and } 15.894 \text{ in}^2 \\
\text{Distance to neutral axis} & = 11.968 \text{ in. (Above girder c. g.)} \\
\text{Transformed moment of inertia} & = 7841.1 \text{ in}^4 \\
\delta g & = \frac{5 W_g L_g^4}{304 E_s I_g} = \frac{5 \times 3027.0 \times 30.63^4 \times 1728}{304 \times E_s \times 7841.12} = 0.271 \text{ in.} \\
\text{Frequency} & = 0.18 \times \left[\frac{g}{\delta g} \right]^{0.5} = 0.18 \times \left[\frac{386}{0.271} \right]^{0.5} = 6.80 \text{ Hz.} \]

-- Continued --
Appendix A.1.1
AISC Design Guide 11 Calculations
Hot-Rolled Shapes (Cont.)

Newport V
File # 596
Typical Bay

Date: 01/22/03
Job Id: Newport Office Center V
Id: J-K/4

L 0.271

Cg = 1.8
Floor Length= 129.33 ft.
Db = Itr/S = 2825.3/10.28 = 274.90 in4/ft.
Dg = Itr/Avg. Lb = 7841.1/41.75 = 187.82 in4/ft.
Bg = min[Cg (Db/Dg)^0.25 Lg= 61.04 ft.; 2/3 x 129.33 ft. = 86.22 ft.]
 = 61.04 ft.
Continuity Factor= 1.0 since Not Continuous
Wg = 1.0 x (3.027/41.75) x 61.04 x 30.83 = 136.5 Kips

COMBINED MODAL CALCULATIONS:

δb = 0.878 in. δrg = 0.271 in. (Right girder controls)

Because the girder span, Lg=30.83 ft., is less than Bb=38.14 ft.,
the girder deflection is reduced by the factor = Lg/Bb ≈ 0.5.

max(Lg/Bb, 0.5) = max(30.83/38.14, 0.5) = 0.808

Therefore:
δg = 0.808 x 0.271 = 0.219 in.

System frequency, fn = 0.18 \sqrt{\frac{386}{\delta_b + \delta_g}} = 3.38 Hz

Wb = 184.8 Kips
Wg = 136.5 kips

Wc = \frac{\delta_b}{\delta_b + \delta_g} \frac{Wb}{Wb} + \frac{\delta_g}{\delta_b + \delta_g} \frac{Wg}{Wg}

= \frac{0.878}{1.096} x 184.8 + \frac{0.219}{1.096} x 136.5 = 175.2 Kips = 175167 lbs

S = modal damping ratio = 0.025

(ap/g) = Po exp(-0.35 fn)/(S Wc)

= 65 exp(-0.35 x 3.38)/(0.025 x 175167)

= 0.46 \% ≤ 0.50 \% - SATISFIES CRITERION

Since fn = 3.38 Hz ≤ 9 Hz - Stiffness criterion does not need to be checked.

-- End --
Appendix A.1 AISC Design Guide 11 Calculations

A.1.2 HOT-ROLLED GIRDERS WITH JOISTS

Melroe Corporation
File # 563
Typical Bay

Knowledge Base FLOORVIB2 Version 1.1B2

Licensed to: STRUCTURAL ENGINEERS, INC.
537 Wisteria Drive
Radford, VA 24141

Date: 01/23/03 By: MDB Page 1
Job Id: Melroe Corp. Building --- West Fargo, N.D.
Id: Typ.

VIBRATION ANALYSIS:

Activity: Walking
Occupancy Category: Office or Residence
Evaluation Criterion: Walking, AISC Design Guide, Chapter 4

Constant Force, \(P_0 = 65 \text{ lb} \)
Modal Damping Ratio, \(S = 0.03 \)
Acceleration Limit, \(\ddot{a}/g \times 100\% = 0.50 \% \)
Joist bottom chords are not extended
Girders are not continuous at columns

<table>
<thead>
<tr>
<th>Section</th>
<th>w, psf</th>
<th>Itr, in4</th>
<th>f, Hz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joist</td>
<td>24K8</td>
<td>108.5</td>
<td>435.1</td>
</tr>
<tr>
<td>Left Girder</td>
<td>W24x76</td>
<td>2204.4</td>
<td>3089.6</td>
</tr>
<tr>
<td>Right Girder</td>
<td>W24x76</td>
<td>2204.4</td>
<td>3089.6</td>
</tr>
<tr>
<td>Bay (Using smaller girder frequency)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evaluation:

-- Continued --
Appendix A.1.2
AISC Design Guide 11 Calculations
Hot-Rolled Girders with Joists (Cont.)

Melroe Corporation
File # 563
Typical Bay

Date: 01/23/03 By: MDB Page 2
Job Id: Melroe Corp. Building --- West Fargo, N.D.
_Id: Typ.

Combined mode ap/g = 0.74 % > 0.50 %

The system DOES NOT SATISFY THE CRITERION.

LOADING DATA:

Slab + 1.0 psf Deck = 30.5 psf
Dead loads = 7.0 psf
Collateral loads = 0.0 psf
Live loads = 11.0 psf
Actual beam and girder weights

Tributary width for girder = 40.13/2 + 38.38/2 = 39.25 ft.

CONCRETE/SLAB DATA:

Concrete dc= 2.75 in. fc'= 3 Ksi
wt= 145 pcf Ec= 3024 Ksi

Modular ratio, n= Es/(1.35 Ec) = 7.10

Deck height: 0.625 in.
Effective concrete thickness in deck: 0.3125 in.

JOIST CALCULATIONS:

Joist: 24K8 (11.5 plf)
d= 24.000 in. A= 2.157 in.2 Ix= 282 in.4 yc= 10.72 in.

Spacing: S = 24 in.
Span: Lj= 38.38 ft.
Uniform load: wj = (30.5 + 7.0 + 0.0 + 11.0) x 24.00/12 + 11.5
= 108.5 plf

Transformed moment of inertia:
Effective concrete width = min(0.4 Lb, S) = 24.000 in.
Effective concrete depth = 2.125 in.
Transformed concrete width = 3.379 in.
Transformed concrete area = 7.179 in.2
Distance to neutral axis = 9.543 in. (Above beam c. g.)
Transformed moment of inertia = 539.8 in.4

6 ≤ Lj/D = 19.19 ≤ 24
Cr = 0.9 [1 - e^(-0.28 Lj/D)]^2.8 = 0.89
r = (1/Cr) - 1 = 0.126
Effective moment of inertia = 1/[(r/Ichords+1/Icomp)] = 435.1 in.4

δj = 5 wj Lj^4 = 5 x 108.5 x 38.38^4 x 1728
384 Es Ij = 384 x Es x 435.1
= 0.420 in.

-- Continued --
Frequency = \(0.18 \times \left[\frac{g}{\delta_j} \right]^{0.5}\)

\[= 0.18 \times \left[\frac{386}{0.420} \right]^{0.5} = 5.46 \text{ Hz.}\]

\(C_j = 2.0\)

Floor Width = 210.00 ft.

\[D_s = \frac{12 \times 2.4375^3}{12 \times 7.10} = 2.04 \text{ in}^4/\text{ft.}\]

\[D_j = \frac{\text{Itr}}{S} = \frac{435.1/2}{217.55 \text{ in}^4/\text{ft.}} = 2.38 \text{ ft.}\]

\[B_j = \min \{C_j \times (D_s/D_j)^{0.25} \times L_j = 23.88 \text{ ft.; } 2/3 \times 210.00 \text{ ft.} = 140.00 \text{ ft.} \} \]

\[= 23.88 \text{ ft.}\]

Continuity Factor = 1.0 since joist bottom chords are not extended

\[W_j = 1.0 \times (0.108/2.00) \times 23.88 \times 38.38 = 49.7 \text{ Kips}\]

LEF'T GIRDER CALCULATIONS:

Girder section: \(W24\times 76\)

\(d = 23.920 \text{ in.} \quad A = 22.40 \text{ in}^2 \quad I_x = 2100 \text{ in}^4\)

Tributary width = 39.25 ft.

Span:

\(L_g = 30.00 \text{ ft.}\)

Equivalent uniform load: \(w_g = 39.25 \times (108.5/2.00) + 76.0 = 2204.4 \text{ plf}\)

Transformed moment of inertia:

\[\min (0.2 \times L_g, 40.13 \times 12/2) + \min (0.2 \times L_g, 38.38 \times 12/2)\]

\[= 144.000" \text{ (20.271" transformed)}\]

\[2.125" \quad 0.625" \quad 2.5" \text{ (Joist Seat)}\]

72.000" \text{ (10.136" transformed)}

Effective concrete width = 144.000 in. and 72.000 in.

Transformed concrete width = 20.271 in. and 10.136 in.

Transformed concrete area = 43.076 in.\(^2\) and 6.335 in.\(^2\)

Joist seat depth = 2.5 in.

Distance to neutral axis = 10.989 in. (Above girder c. g.)

Transformed moment of inertia = 6058.3 in.\(^4\)

Effective moment of inertia = \(I_g + (\text{Itr}-I_g)/4 = 3089.6 \text{ in.}^4\)

\[\delta_g = \frac{5 \times w_g \times L_g^4}{384 \times E_s \times I_g} = \frac{5 \times 2204.4 \times 30.00^4 \times 1728}{384 \times E_s \times 3089.59} = 0.448 \text{ in.}\]

-- Continued --
Appendix A.1.2
AISC Design Guide 11 Calculations
Hot-Rolled Girders with Joists (Cont.)

Melroe Corporation
File # 563
Typical Bay

Date: 01/23/03
Job Id: Melroe Corp. Building --- West Fargo, N.D.

Frequency = 0.18 x \[\left(\frac{g}{\delta g} \right)^{0.5} \]

= 0.18 x \[\left(\frac{386}{0.448} \right)^{0.5} \] = 5.28 Hz.

\(C_g = 1.6 \)
Floor Length = 118.60 ft.
\(D_j = \frac{I_i}{S} = 435.1/2 = 217.55 \text{ in}^4/\text{ft.} \)
\(D_g = \frac{I_i}{\text{Avg. } I_j} = 3089.6/39.25 = 78.72 \text{ in}^4/\text{ft.} \)
\(B_g = \min \{ C_g \ (D_j/D_g)^{0.25} L_g = 61.89 \text{ ft.} ; \ 2/3 \times 118.60 \text{ ft.} = 79.07 \text{ ft.} \} \)

= 61.89 ft.
Continuity Factor = 1.0 since Not Continuous
\(W_g = 1.0 \times (2.204/39.25) \times 61.89 \times 30.00 = 104.3 \text{ Kips} \)

RIGHT GIRDER CALCULATIONS:

Girder section: W24x76 \(d = 23.920 \text{ in.} \) \(A = 22.40 \text{ in.}^2 \) \(I_x = 2100 \text{ in.}^4 \)

Same as Left girder.

COMBINED MODE CALCULATIONS:

Using girder with smaller frequency:
\(\delta j = 0.420 \text{ in.} \)
\(\delta g = 0.448 \text{ in.} \)

System frequency, \(f_n = 0.18 \left(\frac{386}{\delta j + \delta g} \right) = 3.80 \text{ Hz} \)

\(W_j = 49.7 \text{ Kips} \)
\(W_g = 104.3 \text{ kips} \)

\(W_c = \frac{\delta j}{\delta j + \delta g} W_b + \frac{\delta g}{\delta j + \delta g} W_g \)

\(= \frac{0.420}{0.868} \times 49.7 + \frac{0.448}{0.868} \times 104.3 = 77.9 \text{ Kips} = 77900 \text{ lbs} \)

\(\beta = \text{modal damping ratio} = 0.03 \)

\((a_p/g) = \frac{P_o exp(-0.35 f_n)}{(\beta W_c)} \)

\(= 65 \times \exp(-0.35 \times 3.80) / (0.03 \times 77900) \)

\(= 0.74 \% > 0.50 \% - \text{DOES NOT SATISFY CRITERION} \)

-- Continued --
Since $f_n = 3.80$ Hz ≤ 9 Hz - Stiffness criterion does not need to be checked.

Warning:

The effective girder panel width cannot exceed $2/3$ times the total floor length. Thus, the total floor length is a required input.

The length of the floor should be at least equal to the specified joist span length plus the adjoining span lengths.

Specified floor length = 118'-7.2" $< 118'$-7.5"

(The user has elected to ignore this condition.)

Warning:

The floor system does not satisfy the specified criterion.

-- End --
Appendix A.1 AISC Design Guide 11 Calculations

A.1.3 JOIST GIRDERS WITH JOISTS

Garmin International
File # 506
Typical Exterior Bay

Vibration Analysis:

Activity: Walking
Occupancy Category: Office or Residence
Evaluation Criterion: Walking, AISC Design Guide, Chapter 4

<table>
<thead>
<tr>
<th>Constant Force, Po</th>
<th>65 lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modal Damping Ratio, η</td>
<td>0.025</td>
</tr>
<tr>
<td>Acceleration Limit, ao/g × 100%</td>
<td>0.50%</td>
</tr>
</tbody>
</table>

Joist bottom chords are not extended
Girders are not continuous at columns

<table>
<thead>
<tr>
<th>Section</th>
<th>w, plf</th>
<th>Itr, in4</th>
<th>f, Hz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joist</td>
<td>18K4</td>
<td>115.4</td>
<td>171.8</td>
</tr>
<tr>
<td>Left Wall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right Joist Girder</td>
<td>36G14N4.05</td>
<td>1320.8</td>
<td>2508.0</td>
</tr>
<tr>
<td>Bay (Using smaller girder frequency)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evaluation:

-- Continued --
Combined mode $sp/g = 1.08 \% > 0.50 \%$

The system DOES NOT SATISFY THE CRITERION.

LOADING DATA:

Slab + 1.0 psf Deck = 28.3 psf
Dead loads = 4.0 psf
Collateral loads = 0.0 psf
Live loads = 11.0 psf

Actual beam and girder weights

Tributary width for left girder = 28.00/2 = 14.00 ft.
Tributary width for right girder = 2 x (28.00/2) = 28.00 ft.

CONCRETE/SLAB DATA:

Concrete $dc = 2.50$ in.
$fc' = 3.5$ Ksi
$wt = 150$ pcf
$Ec = 3437$ Ksi

Modular ratio, $n = Es/(1.35 Ec) = 6.25$

Deck height: 0.625 in.
Effective concrete thickness in deck: 0.3125 in.

JOIST CALCULATIONS:

Joist: 18K4 (7.2 plf)
d = 18.000 in.
A = 1.431 in.2
Ix = 102 in.4
yc = 8.06 in.

Spacing: $S = 30$ in.
Span: $L_j = 28.00$ ft.
Uniform load: $w_j = (28.3 + 4.0 + 0.0 + 11.0) x 30.00/12 + 7.2$

$= 115.4$ plf

Transformed moment of inertia:

Effective concrete width = $\min(0.4 \times Lb, S) = 30.000$ in.
Effective concrete depth = 1.875 in.
Transformed concrete width = 4.800 in.
Transformed concrete area = 9.000 in.2
Distance to neutral axis = 8.299 in.
(Above beam c. g.)

Transformed moment of inertia = 219.0 in.4

$6 x Lj/D = 18.67 \leq 24$

$Cr = 0.9 \times [1 - e^{- (0.28 \times Lj/D)^2}] = 0.89$

$r = (1/Cr) - 1 = 0.128$

Effective moment of inertia = $1/[r/Ichords + 1/Icomp] = 171.8$ in.4

$\delta_j = \frac{5 \times w_j \times L_j^4}{384 \times Es \times I_j} = \frac{5 \times 115.4 \times 28.00^4 \times 1728}{384 \times Es \times 171.8} = 0.320$ in.

-- Continued --
Appendix A.1.3
AISC Design Guide 11 Calculations
Joist Girders with Joists (Cont.)

Garmin International
File # 506
Typical Exterior Bay

Date: 01/27/03 By: MDB Page 3
Job Id: Garmin Int. Bldg. -- Olathe, KS
Id: Typ. Ext. #506

\[
\text{Frequency} = 0.18 \times \left[\frac{g}{h_j} \right]^{0.5} = 0.18 \times \left[\frac{386}{0.320} \right]^{0.5} = 6.25 \text{ Hz.}
\]

\(C_j = 2.0\)
Floor Width = 345.00 ft.
\(D_s = (12 \text{ de}^3)/(12 \text{ n}) = (12 \times 2.1875^3)/(12 \times 6.25) = 1.67 \text{ in}^4/\text{ft.}\)
\(D_j = Itr/S = 171.8/2.5 = 68.72 \text{ in}^4/\text{ft.}\)
\(B_j = \min\{C_j \cdot (D_s/D_j)^{0.25} \cdot L_j = 22.13 \text{ ft.} \cdot 2/3 \times 345.00 \text{ ft.} = 230.00 \text{ ft.} \} = 22.13 \text{ ft.}\)
Continuity Factor=1.0 since joist bottom chords are not extended
\(W_j = 1.0 \times (0.115/2.50) \times 22.13 \times 28.00 = 28.6 \text{ Kips}\)

RIGHT GIRDER CALCULATIONS:

<table>
<thead>
<tr>
<th>Joist Girder:</th>
<th>36G14N4.05 (27.1 plf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>6.38 in^2</td>
</tr>
<tr>
<td>(I_x)</td>
<td>1929 in.4</td>
</tr>
<tr>
<td>(y_c)</td>
<td>16.06 in.</td>
</tr>
</tbody>
</table>

\(\text{Tributary width} = 28.00 \text{ ft.}\)
\(\text{Span:} \quad L_g = 35.00 \text{ ft.}\)
\(\text{Equivalent uniform load:} \quad w_g = 28.00 \times (115.4/2.50) + 27.1 = 1320.8 \text{ plf}\)

\(\text{Transformed moment of inertia:}\)
\(\text{min}(0.2 \cdot L_g, 28.00\times l/2) + \text{min}(0.2 \cdot L_g, 28.00\times l/2) = 168.000" \quad (26.880" \text{ transformed})\)

\(\text{Effective concrete width} = 168.000 \text{ in.} \quad \text{and} \quad 84.000 \text{ in.}\)
\(\text{Transformed concrete width} = 26.880 \text{ in.} \quad \text{and} \quad 13.440 \text{ in.}\)
\(\text{Transformed concrete area} = 50.399 \text{ in.}^2 \quad \text{and} \quad 8.400 \text{ in.}^2\)
\(\text{Joist seat depth} = 2.5 \text{ in.}\)
\(\text{Distance to neutral axis} = 17.988 \text{ in.} \quad \text{(Above girder c. g.)}\)
\(\text{Transformed moment of inertia} = 4243.7 \text{ in.}^4\)
\(\text{Effective moment of inertia} = I_g + (I_t - I_g)/4 = 2508.0 \text{ in.}^4\)

\[\delta g = \frac{5 \cdot w_g \cdot L_g^4}{5 \times 1320. \times 35.00^4 \times 1728} = 0.613 \text{ in.}\]

--- Continued ---
Appendix A.1.3
AISC Design Guide 11 Calculations
Joist Girders with Joists (Cont.)

Garmin International
File # 506
Typical Exterior Bay

Date: 01/27/03 By: MDB
Job Id: Garmin Int. Bldg. -- Olathe, KS
Id: Typ. Ext. #506

Page 4

384 Es Ig = 384 x Es x 2507.96

Frequency = 0.18 x \[\frac{g}{\delta g} \] ^0.5

= 0.18 x \[\frac{386}{0.613} \]^0.5 = 4.52 Hz.

Cg = 1.6
Floor Length= 180.00 ft.
Dj = Itx/S = 171.8/2.5 = 68.72 in4/ft.
Dg = Itx/Avg. Lj = 2500.0/28.00 = 89.57 in4/ft.
Bg = min[Cg (Dj/Dg)] = 0.25 Lg/2 = 52.41 ft.; 2/3 x 180.00 ft. = 120.00 ft.
= 52.41 ft.
Continuity Factor= 1.0 since Not Continuous
Wg = 1.0 x (1.321/28.00) x 52.41 x 35.00 = 86.5 Kips

COMBINED MODE CALCULATIONS:

\[\delta j = 0.320 \text{ in.} \quad \delta rg = 0.613 \text{ in.} \text{ (Right girder controls)} \]

System frequency, fn= 0.18 \[\sqrt{ \frac{386}{\delta j + \delta g} } \] = 3.66 Hz

Wj = 28.6 Kips

\[Wg = 86.5 \text{ kips} \]

\[Wc = \frac{\delta j}{\delta j + \delta g} \times Wb + \frac{\delta g}{\delta j + \delta g} \times Wg \]

\[= \frac{0.320}{0.934} \times 28.6 + \frac{0.613}{0.934} \times 86.5 = 66.6 \text{ Kips} = 66648 \text{ lbs} \]

\[\delta = \text{modal damping ratio} = 0.025 \]

\[(ap/g) = Po \exp(-0.35 \times \text{fn})/\delta \times Wc \]

\[= 65 \exp(-0.35 \times 3.66)/(0.025 \times 66648) \]

\[= 1.08 \% > 0.50 \% \text{ - DOES NOT SATISFY CRITERION} \]

Since fn= 3.66 Hz < 9 Hz - Stiffness criterion does not need to be checked.

Warning:
The floor system does not satisfy the specified criterion.

--- End ---
Appendix A.1 AISC Design Guide 11 Calculations

A.1.4 HOT-ROLLED GIRDERS WITH CASTELLATED BEAMS

AMAT Building 34
File # Boice7
Bay “B”

Knowledge Base FLOORVIB2 Version 1.1B2

Licensed to: STRUCTURAL ENGINEERS, INC.
537 Wisteria Drive
Radford, VA 24141

Date: 01/22/03 By: MDB
Page 1

Job Id: AMAT Building 34 --- Austin, TX
Id: "B" as Tested

VIBRATION ANALYSIS:

Activity: Walking
Occupancy Category: Office or Residence
Evaluation Criterion: Walking, AISC Design Guide, Chapter 4

Constant Force, Po = 65 lb
Modal Damping Ratio, β = 0.01
Acceleration Limit, ac/g x 100% = 0.50%
Joint bottom chords are not extended
Girders are not continuous at columns

<table>
<thead>
<tr>
<th>Section</th>
<th>w, plf</th>
<th>Itr, in²</th>
<th>f, Hz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam</td>
<td>CB27x35/46</td>
<td>617.8</td>
<td>4717.0</td>
</tr>
<tr>
<td>Left Girder</td>
<td>W36x182</td>
<td>3270.9</td>
<td>32273.6</td>
</tr>
<tr>
<td>Right Girder</td>
<td>W36x182</td>
<td>3270.9</td>
<td>32273.6</td>
</tr>
<tr>
<td>Bay (Using smaller girder frequency)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evaluation:

-- Continued --
Appendix A.1.4
AISC Design Guide 11 Calculations
Hot-Rolled Girders with Castellated Beams (Cont.)

AMAT Building 34
File # Boice7
Bay "B"

Date: 01/22/03 By: MDB
Job Id: AMAT Building 34 --- Austin, TX
Id: "B" as Tested

Combined mode ap/g = 0.53 % > 0.50%
The system DOES NOT SATISFY THE CRITERION.

LOADING DATA:
Slab + 1.0 psf Deck = 73.5 psf
Dead loads = 0.0 psf
Collateral loads = 0.0 psf
Live loads = 0.001 psf
Actual beam and girder weights

Tributary width for girder = 2 x (40.00/2) = 40.00 ft.

CONCRETE/SLAB DATA:
Concrete dc= 7.00 in. fc' = 4 Ksi
wt= 145 pcf Ec= 3492 Ksi

Modular ratio, n = Rs/(1.35 Rc) = 6.15

Deck height: 2 in.
Effective concrete thickness in deck: 1 in.

SUPPORTED MEMBER CALCULATIONS:
Built-up member: CB27x35/46 (29.8 plf)
A= 8.750 in.2 Ix= 1407 in.4 yc= 15.50 in.

Spacing: S = 96 in.
Span: Lb = 40.00 ft.
Uniform load: wb = (73.5 + 0.0 + 0.0 + 0.001) x 96.00/12 + 29.8
= 617.8 plf

Transformed moment of inertia:
Effective concrete width = min(0.4 Lb, S) = 96.000 in.
Effective concrete depth = 5.000 in.
Transformed concrete width = 15.606 in.
Transformed concrete area = 78.928 in.2
Distance to neutral axis = 17.985 in. (Above beam c. g.)
Transformed moment of inertia = 4717.0 in.4

δb = \(\frac{5 \times \text{wb} \times \text{Lb}^4}{384 \times \text{Bs} \times \text{Ib}} \) = \(\frac{5 \times 617.8 \times 40.00^4 \times 1728}{384 \times \text{Bs} \times 4717.0} \) = 0.260 in.

Frequency = 0.18 x \(\left[\frac{g}{\delta b} \right]^{0.5} \)

-- Continued --
Appendix A.1.4
AISC Design Guide 11 Calculations
Hot-Rolled Girders with Castellated Beams (Cont.)

AMAT Building 34
File # Boice7
Bay “B”

Date: 01/22/03 By:MDB
Job Id: AMAT Building 34 --- Austin, TX
Id: "B" as Tested

= 0.18 x \left[\frac{386}{0.260} \right]^{0.5} = 6.93 \text{ Hz.}

Cj = 2.0
Floor Width = 120.00 \text{ ft.}
Dw = (12 \text{ in}^3) / (12 \text{ in}) = (12 \times 6^3) / (12 \times 6.15) = 35.11 \text{ in}^4 / \text{ft.}
Db = Itt/S = 4717.0 / 8.00 = 589.62 \text{ in}^4 / \text{ft.}
Wb = \min\{Cj \cdot (Dw/Db)^{0.25} \text{ Lb} = 39.52 \text{ ft.}; \text{ 2/3 x 120.00 ft. = 80.00 ft.}\} = 39.52 \text{ ft.}
Continuity Factor = 1.5 since Continuous
and max. adj. Lb = 40.00 \text{ ft} > 0.7 Lb = 28.00 \text{ ft.}
Wb = 1.5 \times (0.618 / 8.00) \times 39.52 \times 40.00 = 183.1 \text{ Kips}

LEFT GIRDER CALCULATIONS:

Girder section: W36x182 d = 36.330 \text{ in.} A = 53.60 \text{ in.}^2 Ix = 11300 \text{ in.}^4
Tributary width = 40.00 \text{ ft.}
Span: Lg = 40.00 \text{ ft.}
Equivalent uniform load: wg = 40.00 \times (617.8 / 8.00) + 182.0 = 3270.9 \text{ plf}

Transformed moment of inertia:
\min\{0.2 Lg, 40.00 \times 12/2\} + \min\{0.2 Lg, 40.00 \times 12/2\} = 192.000" (31.211" transformed)

Effective concrete width = 192.000 in. and 96.000 in.
Transformed concrete width = 31.211 in. and 15.606 in.
Transformed concrete area = 156.056 in. and 31.211 in.²
Distance to neutral axis = 17.168 in. (Above girder c. g.)
Transformed moment of inertia = 32273.6 in.⁴

\delta g = \frac{5 \text{ wg} Lg^4}{384 \text{ Es} Ig} = \frac{5 \times 3270. \times 40.00^4 \times 1728}{384 \times \text{Es} \times 32273.62} = 0.201 \text{ in.}

Frequency = 0.18 x \left[\frac{g}{\delta g} \right]^{0.5} = 7.86 \text{ Hz.}

-- Continued --
Appendix A.1.4
AISC Design Guide 11 Calculations
Hot-Rolled Girders with Castellated Beams (Cont.)

AMAT Building 34
File # Boice7
Bay “B”

Date: 01/22/03 By: MDB
Job Id: AMAT Building 34 --- Austin, TX
Id: "B" as Tested

L 0.201 J

Cg = 1.8
Floor Length = 120.00 ft.
Db = Itx/Es = 4717.0/8.00 = 589.62 in4/ft.
Dg = Itx/Avg. Lb = 32273.6/40.00 = 806.84 in4/ft.
Bg = min[(Cg (Db/Dg)^0.25 Lg= 66.57 ft.; 2/3 x 120.00 ft. = 80.00 ft.)
 = 66.57 ft.
Continuity Factor = 1.0 since Not Continuous
Wg = 1.0 x (3.271/40.00) x 66.57 x 40.00 = 217.7 Kips

RIGHT GIRDER CALCULATIONS:

Girder section: W36x182 d = 36.330 in. A= 53.60 in.2 Ix= 11300 in.4
Same as Left girder.

COMBINED MODB CALCULATIONS:

Using girder with smaller frequency:

\[\delta b = 0.260 \text{ in.} \quad \delta g = 0.201 \text{ in.} \]

System frequency, fn= 0.18 \[\frac{386}{\delta b + \delta g} \] = 5.21 Hz

Wb= 183.1 Kips \quad Wg = 217.7 kips

\[Wc = \frac{\delta b}{\delta b + \delta g} \times Wb + \frac{\delta g}{\delta b + \delta g} \times Wg \]

\[= \frac{0.260}{0.461} \times 183.1 + \frac{0.201}{0.461} \times 217.7 = 198.2 \text{ Kips} = 198219 \text{ lbs} \]

\[\$ = \text{modal damping ratio} = 0.01 \]

\[(ap/g) = Po \exp(-0.35 \text{ fn})/(8 Wc) \]

\[= 65 \exp(-0.35 \times 5.21)/(0.01 \times 198219) \]

\[= 0.53 \% > 0.50 \% \quad \text{- DOES NOT SATISFY CRITERION} \]

Since fn= 5.21 Hz \leq 9 Hz - Stiffness criterion does not need to be checked.

Warning:
The floor system does not satisfy the specified criterion.

-- End --
Appendix A.1 AISC Design Guide 11 Calculations

A.1.5 BRITISH FLOOR SYSTEM

SCI HeadQuarters
File # BR3
Bay 1

Knowledge Base FLOORVIB2 Version 1.1B2

Licensed to: STRUCTURAL ENGINEERS, INC.
537 Wisteria Drive
Radford, VA 24141

Date: 02/10/03 Page 1
By: MDB

Job Id: SCI Headquarters --- Ascot, G.B.
Id: C-D/2-3 Finished

VIBRATION ANALYSIS:

Activity: Walking
Occupancy Category: Office or Residence
Evaluation Criterion: Walking, AISC Design Guide, Chapter 4
Reference: Murray, T.M., Allen, D.B. and Ungar, R.E.,
"Floor Vibrations Due To Human Activity",
Design Guide, June 1997

Constant Force, Po = 65 lb
Modal Damping Ratio, $\beta = 0.03$
Acceleration limit, $a_0/g \times 100\% = 0.50\%$
Joint bottom chords are not extended.
Girders are not continuous at columns

<table>
<thead>
<tr>
<th>Section</th>
<th>w, plf</th>
<th>Itr, in4</th>
<th>f, Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam</td>
<td>305X127X42</td>
<td>727.7</td>
<td>906.1</td>
</tr>
<tr>
<td>Left Wall</td>
<td>Wall</td>
<td>1789.0</td>
<td>3778.3</td>
</tr>
<tr>
<td>Right Wall</td>
<td>Wall</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bay (Using smaller girder frequency)

Evaluation:

-- Continued --
Appendix A.1.5
AISC Design Guide 11 Calculations
British Floor System (Cont.)

SCI HeadQuarters
File # BR3
Bay 1

Date: 02/10/03 By: MDB
Job Id: SCI Headquarters --- Ascot, G.B.
Id: C-D/2-3 Finished

Combined Mode ap/g = 0.21 % ≤ 0.50 %
The system SATISFIES THE CRITERION.

LOADING DATA:
Slab + 1.0 psf Deck = 51.5 psf
Dead loads = 4.0 psf
Collateral loads = 19.4 psf
Live loads = 11.0 psf
Actual beam and girder weights

Tributary width for left girder = 19.69/2 = 9.84 ft.
Tributary width for right girder = 2 x (19.69/2) = 19.69 ft.

CONCRETE/SLAB DATA:
Concrete dc = 5.12 in. fc' = 5 Ksi
wt = 147 pcf Ec = 3985 Ksi

Modular ratio, n = Es/(1.35 Ec) = 5.39

Deck height: 2 in.
Effective concrete thickness in deck: 1 in.

SUPPORTED MEMBER CALCULATIONS:
Built-up member: 305X127X42 (28.2 plf)
A = 8.280 in.2 Ix = 197 in.4 yc = 6.05 in.

Spacing: S = 97.77 in.
Span: Lb = 19.69 ft.
Uniform load: wb = (51.5 + 4.0 + 19.4 + 11.0) x 97.77/12 + 28.2
= 727.7 plf

Transformed moment of inertia:
Effective concrete width = \text{min}(0.4 \ Lb, S) = 94.488 in.
Effective concrete depth = 3.125 in.
Transformed concrete width = 17.528 in.
Transformed concrete area = 54.776 in.2
Distance to neutral axis = 8.350 in. \ (Above beam c. g.)
Transformed moment of inertia = 906.1 in.4

$$\delta_b = \frac{5 \ wb \ Lb^4}{384 \ Es \ Ib} = \frac{5 \times 727.7 \times 19.69^4 \times 1728}{384 \times Es \times 906.1} = 0.094 \ in.$$

Frequency = 0.18 \times \left(\frac{g}{\delta_b}\right)^{0.5}

-- Continued --
Appendix A.1.5
AISC Design Guide 11 Calculations
British Floor System (Cont.)

SCI HeadQuarters
File # BR3
Bay 1

Date: 02/10/03 By: MDE
Job Id: SCI Headquarters --- Ascot, G.B.
Id: C-D/2-3 Finished

\[0.18 \times \left[\frac{386}{0.094} \right]^{0.5} = 11.56 \text{ Hz.} \]

\(C_j = 2.0 \)
Floor Width = 48.88 ft.
\(D_s = (12 \ de^{-3})/(12 \ in) = (12 \times 4.125^{-3})/(12 \times 5.39) = 13.02 \text{ in}^4/\text{ft.} \)
\(D_b = I_{tr}/S = \frac{906.1}{8.15} = 111.21 \text{ in}^4/\text{ft.} \)
\(E_b = \min\{C_j (D_s/D_b)^{0.25} \text{ Lb} = \frac{23.03}{2} \times 48.88 \text{ ft.} = 32.59 \text{ ft.} \}
\)
Continuity Factor=1.5 since Continuous
and max. adj. Lb=19.69 ft > 0.7 Lb=13.78 ft.
\(W_b = 1.5 \times (0.728/8.15) \times 23.03 \times 19.69 = 69.7 \text{ kips} \)

RIGHT GIRDAR CALCULATIONS:

Built-up member: Wall (30.4 plf)
\[A = 8.94 \text{ in.}^2 \text{ Ix} = 1423 \text{ in.}^4 \text{ yc} = 13.45 \text{ in.} \]

Tributary width = 19.69 ft.
Span:
\(L_g = 24.44 \text{ ft.} \)
Equivalent uniform load: \(w_g = 19.69 \times (727.7/8.15) + 30.4 \)
\[= 1789.0 \text{ plf} \]

Transformed moment of inertia:
\[\min(0.2 L_g, 19.69 \times 12/2) + \min(0.2 L_g, 19.69 \times 12/2) \]
\[= 117.322" \text{ (21.764" transformed)} \]

\[| 3.125" | \]
\[- 2.000" | 58.661" \text{ (10.882" transformed)} \]

Effective concrete width = 117.322 in. and 58.661 in.
Transformed concrete width = 21.764 in. and 10.882 in.
Transformed concrete area = 68.013 in. and 21.764 in.
Distance to neutral axis = 14.907 in. (Above girder c. g.)
Transformed moment of inertia = 3778.3 in.4

\[\delta_g = \frac{5 \times w_g L_g^4}{384 \ E_s I_g} = 5 \times 1788. \times 24.44^4 \times 1728 \]
\[= 384 \times E_s \times 3778.30 \]
\[= 0.131 \text{ in.} \]

Frequency = 0.18 \times \left[\frac{g}{\delta_g} \right]^{0.5}

-- Continued --
Appendix A.1.5
AISC Design Guide 11 Calculations
British Floor System (Cont.)

SCI Headquarters
File # BR3
Bay 1

= 0.18 \times \left[\frac{386}{0.131} \right]^{-0.5} = 9.77 \text{ Hz.}

C_g = 1.8
Floor Length = 78.74 \text{ ft.}
Db = I_{tr}/S = 906.1/8.15 = 111.21 \text{ in}^4/\text{ft.}
Dg = I_{tr}/\text{Avg. Lb} = 3778.3/19.69 = 191.94 \text{ in}^4/\text{ft.}
B_g = \min[C_g \cdot (D_b/D_g)^{0.25} L_g] = 38.38 \text{ ft.}; \quad 2/3 \times 78.74 \text{ ft.} = 52.49 \text{ ft.}
= 38.38 \text{ ft.}
Continuity Factor = 1.0 since Not Continuous
W_g = 1.0 \times (1.789/19.69) \times 38.38 \times 24.44 = 85.3 \text{ Kips}

COMBINED MODE CALCULATIONS:

$$\delta_b = 0.094 \text{ in.} \quad \delta_{rg} = 0.131 \text{ in.} \quad \text{(Right girder controls)}$$

System frequency, $f_n = 0.18 \sqrt{\frac{386}{\delta_b + \delta_{rg}}} = 7.46 \text{ Hz}$

$W_b = 60.7 \text{ Kips} \quad W_g = 85.3 \text{ kips}$

$$W_c = \frac{\delta_b}{\delta_b + \delta_{rg}} W_b + \frac{\delta_{rg}}{\delta_b + \delta_{rg}} W_g$$

$$= \frac{0.094}{0.094 + 0.131} \times 60.7 + \frac{0.131}{0.094 + 0.131} \times 85.3 = 75.0 \text{ Kips} = 75049 \text{ lbs}$$

$\zeta = \text{modal damping ratio} = 0.03$

$$(a_p/g) = P_o \exp(-0.35 f_n)/(\zeta W_c) = 65 \exp(-0.35 \times 7.46)/(0.03 \times 75049) = 0.21 \% < 0.50 \% \quad \text{- Satisfies Criterion}$$

Since $f_n = 7.46 \text{ Hz} < 9 \text{ Hz}$ - Stiffness criterion does not need to be checked.

-- End --
APPENDIX A.2 SCI FREQUENCY CALCULATIONS
Appendix A.2 SCI Frequency Calculations

A.2.1 HOT-ROLLED SHAPES

Newport V
File # 596
Typical Bay

Typical Bay

Loading and Damping

DL := 4 psf
CL := 12.5 psf
LL := 8 psf

Note: The collateral load accounts for raised flooring and is not indicative of most offices.

Decks Properties

Compressive Strength: $f_c := 3.5$ ksi
Concrete: $w_c := 115$ pcf
Total Floor Thickness: $t_{conc} := 5.25$ in.
Deck Height: $d_c := 2$ in.
Slab/Deck Weight: $w_{psf} := 41.7$ psf

Beam Properties

Main Beam
W21X44
$w_{mb} := 44.0$ lb./ft
$A_{mb} := 13.0$ in.2
$I_{x_{mb}} := 843$ in.4
$y_{c_{mb}} := 10.33$ in.
$L_{mb} := 45.83$ ft

Adjacent Beam
W18X35
$w_{ab} := 35.0$ lb./ft
$A_{ab} := 10.3$ in.2
$I_{x_{ab}} := 510$ in.4
$y_{c_{ab}} := 8.85$ in.
$L_{ab} := 37.67$ ft

Girder Properties

Main Girder
W27X84
$w_{mg} := 84.0$ lb./ft
$A_{mg} := 24.8$ in.2
$I_{x_{mg}} := 2850$ in.4
$y_{c_{mg}} := 13.36$ in.
$L_{mg} := 30.83$ ft

Adjacent Girder
W27X84
$w_{ag} := 84.0$ lb./ft
$A_{ag} := 24.8$ in.2
$I_{x_{ag}} := 2850$ in.4
$y_{c_{ag}} := 13.36$ in.
$L_{ag} := 30.00$ ft

Note: The elastic neutral axis (e.n.a) is taken from the top of the beam, joist, or girder.
Appendix A.2.1
SCI Frequency Calculations
Hot-Rolled Shapes (Cont.)

Newport V
File # 596
Typical Bay

Secondary Framing Composite Properties

For the typical corner bay, the effective concrete slab width is the minimum value between \(L_{mb}/4 = 11' - 5.5" \) and the beam spacing of \(10' - 3" \).

Therefore, \(b_{eff_b} := \frac{L_{mg}}{3} \quad b_{eff_b} = 10.28 \text{ ft} \)

For the beam only the concrete above the steel form deck and a dynamic concrete modulus of elasticity of \(1.35E_c \) are used in the calculations.

\[E_s := 29000 \quad \text{ksi} \]

\[E_c := w_c \sqrt{f_c} \quad E_c = 2307 \quad \text{ksi} \]

Modular Ratio \(n := \frac{E_s}{1.35E_c} \)

\[n = 9.31 \]

\[y_{bar} := \left[\left(A_{mb} \right) \left(d_h + y_{c_mb} \right) - \left(\frac{b_{eff_b}}{n} \right)^2 \left(t_{conc} - d_h \right) \right] \]

\[A_{mb} + \left(\frac{b_{eff_b}}{n} \right)^2 \left(t_{conc} - d_h \right) \]

\[y_{bar} = 1.61 \quad \text{in.} \]

below top of form deck

\[I_{b_{comp}} := I_{x_{mb}} + A_{mb} \left(d_h + y_{c_mb} - y_{bar} \right)^2 + \left(\frac{b_{eff_b}}{n} \right)^2 \left(t_{conc} - d_h \right)^3 + \left(\frac{b_{eff_b}}{n} \right) \left(t_{conc} - d_h \right) \left[y_{bar} + \frac{t_{conc} - d_h}{2} \right]^2 \]

\[I_{b_{comp}} = 2825.32 \]

Primary Framing Composite Properties

For the typical corner bay, the effective concrete slab width is the minimum value between

Girder Spacing : \(Sp := \frac{L_{mb} + L_{lab}}{2} \quad Sp = 41.75 \quad \text{ft} \quad \text{and} \quad \frac{L_{mg}}{4} = 7.71 \quad \text{ft} \)

Therefore, \(b_{eff_g} := \frac{L_{mg}}{4} \quad b_{eff_g} = 7.71 \quad \text{ft} \)

For the girder the concrete above the steel form deck and one half the deck height and a dynamic concrete modulus of elasticity of \(1.35E_c \) are used.

\[y_{bar} := \left[\left(A_{mg} \right) \left(\frac{d_h}{2} + y_{c_mg} \right) - \left(\frac{b_{eff_g}}{n} \right)^2 \left(t_{conc} - \frac{d_h}{2} \right) \right] \]

\[A_{mg} + \left(\frac{b_{eff_g}}{n} \right)^2 \left(t_{conc} - \frac{d_h}{2} \right) \]

\[y_{bar} = 3.98 \text{ in.} \]

below effective slab
Appendix A.2.1
SCI Frequency Calculations
Hot-Rolled Shapes (Cont.)

Newport V
File # 596
Typical Bay

\[\text{I}_{g_\text{comp}} := \text{I}_{x_mg} + A_{mg} \left(\frac{d_h}{2} + y_{e_mg} - y_{\text{bar}} \right)^2 + \left(\frac{b_{eff_g} \cdot 12}{n} \right) \left(\frac{t_{\text{conc}} - d_h}{2} \right)^3 + \left(\frac{b_{eff_g} \cdot 12}{n} \right) \left(t_{\text{conc}} - \frac{d_h}{2} \right) \left[y_{\text{bar}} + \left(\frac{t_{\text{conc}} - d_h}{2} \right) \right]^2 \]

\[\text{I}_{g_\text{comp}} = 7159.12 \text{ in.}^4 \]

MODE SHAPES AND BEAM/GIRDER BOUNDARY CONDITIONS
The fundamental mode is that which gives the lowest frequency and subsequently the highest deflection

Mode A

Uniform Distributed Loading : \(w_j := b_{\text{eff_b}} \left(DL + CL + LL + d_w + \frac{w_{mb}}{b_{\text{eff_b}}} \right) \)

\(w_j = 724.32 \text{ lb/ft} \)

Beam/Joist Deflection : Secondary Framing (pin-pin boundary conditions)

\[\delta_b = \frac{5 w_j L_{mb}^4}{384 E_s 1000 I_{b_\text{comp}}} = 0.877 \text{ in.} \]

To account for the stiffening effect offered by the shorter adjacent span, the above deflection needs to be modified. Since the bay is in the corner, only two continuous spans are considered for deflection reduction. Therefore, Equation 3.6 from the AISC publication *Floor Vibrations Due to Human Activity* (Murray, et al. 1997) is used to reduce the deflection of the floor

Main Beam Properties

\[k_m := \frac{L_{b_\text{comp}}}{I_{mb} \cdot 12} \quad k_m = 5.14 \text{ in.}^3 \]

Adjacent Beam Properties

\[b_{eff_ab} := \frac{L_{ab}}{4} \quad b_{eff_ab} = 9.42 \text{ ft} \]

\[y_{\text{bar}} := \left(\frac{A_{ab} \left(d_h + y_{e_ab} \right) - \left(\frac{b_{eff_ab} \cdot 12}{n} \right) \left(t_{\text{conc}} - d_h \right) \frac{2}{2}}{A_{ab} + \left(\frac{b_{eff_ab} \cdot 12}{n} \right) \left(t_{\text{conc}} - d_h \right)} \right) \quad y_{\text{bar}} = 0.96 \text{ in.} \]

below top of form deck

\[L_{ab_\text{comp}} := I_{x_ab} + A_{ab} \left(d_h + y_{e_ab} - y_{\text{bar}} \right)^2 + \left(\frac{b_{eff_ab} \cdot 12}{n} \right) \left(t_{\text{conc}} - \frac{d_h}{12} \right) + \left(\frac{b_{eff_ab} \cdot 12}{n} \right) \left(t_{\text{conc}} - d_h \right) \left[y_{\text{bar}} + \left(\frac{t_{\text{conc}} - d_h}{2} \right) \right]^2 \]

\[L_{ab_\text{comp}} = 1815.78 \text{ in.}^4 \]
Appendix A.2.1
SCI Frequency Calculations
Hot-Rolled Shapes (Cont.)

Newport V
File # 596
Typical Bay

\[k_s := \frac{I_{ab,\text{comp}}}{L_{ab,12}} \]

\[k_s = 4.02 \text{ in}^3 \]

\[\Delta_b := \left[\frac{0.4 + \frac{k_m}{k_s} \left(1 + 0.6 \frac{L_{ab}}{L_{mb}} \right)}{1 + \frac{k_m}{k_s}} \right] \delta_b \]

\[\Delta_b = 0.846 \]

Natural Frequency for Mode A :

\[f_A := 0.18 \sqrt{\frac{386}{\Delta_b}} \]

\[f_A = 3.84 \text{ Hz} \]

Mode B

Uniform Distributed Loading :

\[w_g := \left(\frac{L_{mb} + L_{ab}}{2} \right) \left(\frac{w_j}{b_{\text{eff},b}} \right) + w_{mg} \]

\[w_g = 3027 \text{ lb./ft} \]

Beam/Joist Deflection : Secondary Framing (fixed-ended boundary conditions)

\[\delta_b := \frac{w_j L_{mb} \cdot 1.728}{384E_s \cdot 1000 I_{b,\text{comp}}} \]

\[\delta_b = 0.175 \text{ in.} \]

Girder Deflection : Primary Framing (pin-pin boundary conditions)

\[\delta_g := \frac{5 w_g L_{mg} \cdot 1.728}{384E_s \cdot 1000 I_{g,\text{comp}}} \]

\[\delta_g = 0.296 \text{ in.} \]

To account for the stiffening effect offered by the shorter adjacent span, the above deflection needs to be modified. Since the bay is in the corner, only two continuous spans are considered for deflection reduction. Therefore, Equation 3.6 from the AISC publication *Floor Vibrations Due to Human Activity* (Murray, et al. 1997) is used to reduce the deflection of the floor.

Main Girder Properties

\[k_m := \frac{I_{g,\text{comp}}}{L_{mg,12}} \]

\[k_m = 19.35 \text{ in}^3 \]
Appendix A.2.1
SCI Frequency Calculations
Hot-Rolled Shapes (Cont.)

Newport V
File # 596
Typical Bay

Adjacent Girder Properties

\[k_s := \frac{L_{g,\text{comp}}}{L_{ag} \cdot 12} \quad k_s = 19.89 \text{ in.}^3 \]

\[
\Delta_g := \frac{0.4 + \frac{k_m}{k_s} \left(1 + 0.6 \frac{L_{ag}}{L_{mg}} \right) \delta_g}{1 + \frac{k_m}{k_s}} \delta_g \Delta_g = 0.289
\]

Natural Frequency for Mode B :

\[
f_B := 0.18 \sqrt{\frac{386}{\delta_b + \Delta_g}} \quad f_B = 5.19 \text{ Hz}
\]

\(f_B > f_A \), therefore, Mode A controls the motion of the Floor and the corresponding Natural Frequency is 3.84 Hz.
Appendix A.2 SCI Frequency Calculations

A.2.2 HOT-ROLLED GIRDERS WITH JOISTS

Melroe Corporation
File # 563
Typical Bay

Loading and Damping
- DL := 7 psf
- CL := 0 psf
- LL := 11 psf
- Damping : $\zeta = 3.0 \%$

Deck Properties
- Compressive Strength : $f_c := 3.0$ ksi
- Concrete : $w_c := 145$ pcf
- Total Floor Thickness : $t_{conc} := 2.75$ in.
- Deck Height : $d_h := 0.625$ in.
- Slab/Deck Weight : $d_w := 30.5$ psf

Beam Properties
- **Main Beam** 24K8
 - $w_{mb} := 11.5$ lb./ft
 - $A_{mb} := 2.157$ in.2
 - $I_{x_{mb}} := 282$ in.4
 - $y_{c_{mb}} := 10.72$ in.
 - $L_{mb} := 38.375$ ft
 - Depth $D_{mb} := 24$ in.

- **Adjacent Beam** 24K8
 - $w_{ab} := 11.5$ lb./ft
 - $A_{ab} := 2.157$ in.2
 - $I_{x_{ab}} := 282$ in.4
 - $y_{c_{ab}} := 10.72$ in.
 - $L_{ab} := 40.125$ ft
 - Depth $D_{ab} := 24$ in.

Girder Properties
- **Main Girder** W24X76
 - $w_{mg} := 76.0$ lb./ft
 - $A_{mg} := 22.40$ in.2
 - $I_{x_{mg}} := 2100$ in.4
 - $y_{c_{mg}} := 11.96$ in.
 - $L_{mg} := 30.00$ ft

- **Adjacent Girder** W24X76
 - $w_{ag} := 76.0$ lb./ft
 - $A_{ag} := 22.40$ in.2
 - $I_{x_{ag}} := 2100$ in.4
 - $y_{c_{ag}} := 11.96$ in.
 - $L_{ag} := 30.00$ ft

Note: The elastic neutral axis (e.n.a) is taken from the top of the beam, joist, or girder.
Appendix A.2.2
SCI Frequency Calculations
Hot-Rolled Girders with Joists (Cont.)

Melroe Corporation
File # 563
Typical Bay

Secondary Framing Composite Properties

For the typical corner bay, the effective concrete slab width is the minimum value between \(\frac{L_{mb}}{4} = 9' - 7" \) and the beam spacing of 2' - 0".

Therefore, \(b_{eff_b} := \frac{L_{mb}}{15} \) \(b_{eff_b} = 2 \) ft

For the beam only the concrete above the steel form deck and a dynamic concrete modulus of elasticity of 1.35\(E_c \) are used in the calculations.

\[
E_s := 29000 \text{ ksi}
\]
\[
E_c := w_c \sqrt{f_c} \quad E_c = 3024 \text{ ksi}
\]

Modular Ratio
\[
n := \frac{E_s}{1.35E_c} \quad n = 7.1
\]

\[
\gamma_{bar} := \left[\frac{A_{mb}}{A_{mb} + \left(b_{eff_b} \cdot \frac{12}{n}\right)} \right] \left(t_{concrete} - d_h \right) \quad \gamma_{bar} = 1.8 \text{ in. below top of form deck}
\]

\[
l_{b_{comp}} := I_{x_{mb}} + A_{mb} \left[d_h + y_{c_{mb}} - y_{bar} \right]^2 + \left(\frac{b_{eff_b} \cdot \frac{12}{n}}{12} \right) \left(t_{concrete} - d_h \right)^3 + \left(\frac{b_{eff_b} \cdot \frac{12}{n}}{n} \right) \left[t_{concrete} - d_h \right] \left[y_{bar} + \frac{t_{concrete} - d_h}{2} \right]^2
\]

\[
l_{b_{comp}} = 540.05 \text{ in.}^4
\]

Since the secondary framing member is a joist, shear deformations due to the web are taken into account and the above composite moment of inertia needs to be reduced. Equations form chapter 3 of the AISC Design Guide 11Floor Vibrations Due to Human Activity (Murray, et al. 1997) are used to reduce the moment of inertia for open web joists.

\[
C_r := 0.9 \left[1 - 0.28 \left(\frac{L_{mb}}{12} \frac{D_{mb}}{L_{mb}} \right) \right]^{2.8} \quad C_r = 0.89 \quad \text{(Equation 3.16, AISC Design Guide)}
\]

\[
\gamma := \frac{1}{C_r} - 1 \quad \gamma = 0.13 \quad \text{(Equation 3.19, AISC Design Guide)}
\]

\[
l_{b_{eff}} := \frac{1}{l_{x_{mb}}} \quad \frac{1}{l_{b_{comp}}} \quad l_{b_{eff}} = 435.28 \text{ in.}^4 \quad \text{(Equation 3.18, AISC Design Guide)}
\]
Appendix A.2.2
SCI Frequency Calculations
Hot-Rolled Girders with Joists (Cont.)

Melroe Corporation
File # 563
Typical Bay

Primary Framing Composite Properties

For the typical corner bay, the effective concrete slab width is the minimum value between

\[
\text{Girder Spacing : } \quad \text{Sp} := \frac{L_{mb} + L_{ab}}{2} \quad \text{Sp} = 39.25 \text{ ft} \quad \text{and} \quad \frac{L_{mg}}{4} = 7.5 \text{ ft}
\]

Therefore, \(b_{eff_g} := \frac{L_{mg}}{4} \quad b_{eff_g} = 7.5 \text{ ft} \)

For the girder the concrete above the steel form deck and one half the deck height and a dynamic concrete modulus of elasticity of 1.35E_\text{c}\ are used.

\[
y_{bar} := \left(\frac{A_{mg}}{2} + y_{c_mg} \right) - \left(\frac{b_{eff_g} \cdot 12}{n} \right) \left(\frac{t_{conc} - \frac{d_{h}}{2}}{2} \right)
\]

\[
A_{mg} + \left(\frac{b_{eff_g} \cdot 12}{n} \right) \left(\frac{t_{conc} - \frac{d_{h}}{2}}{2} \right)
\]

\[
\begin{align*}
y_{bar} &= 4.45 \text{ in.} \\
&= \text{below effective slab}
\end{align*}
\]

\[
I_{g_comp} := I_{x_mg} + A_{mg} \left(\frac{d_{h}}{2} + y_{c_mg} - y_{bar} \right)^2 + \left(\frac{b_{eff_g} \cdot 12}{n} \right) \left(\frac{t_{conc} - \frac{d_{h}}{2}}{2} \right)^3 + \left(\frac{b_{eff_g} \cdot 12}{n} \right) \left(\frac{t_{conc} - \frac{d_{h}}{2}}{2} \right) \left(\frac{y_{bar} + \left(\frac{t_{conc} - \frac{d_{h}}{2}}{2} \right)}{2} \right)^2
\]

\[
I_{g_comp} = 4478.43 \text{ in.}^4
\]

Since the secondary framing member is a joist, the above girder composite moment of inertia needs to be reduced due to lack of stiffness of the joist seats. Equations from chapter 3 of the AISC Design Guide 11 _Floor Vibrations Due to Human Activity_ (Murray, et al. 1997) are used to reduce the moment of inertia.

\[
I_{g_eff} := I_{x_mg} + \frac{(I_{g_comp} - I_{x_mg})}{4} \quad I_{g_eff} = 2694.61 \text{ in.}^4 \quad \text{(Equation 3.14, AISC Design Guide)}
\]

MODE SHAPES AND BEAM/GIRDER BOUNDARY CONDITIONS

The fundamental mode is that which gives the lowest frequency and subsequently the highest deflection

Mode A

Uniform Distributed Loading : \(w_j := b_{eff_b} \left(DL + CL + LL + d_w + \frac{w_{mb}}{b_{eff_b}} \right) \quad w_j = 108.5 \text{ lb./ft} \)
Appendix A.2.2
SCI Frequency Calculations
Hot-Rolled Girders with Joists (Cont.)

Melroe Corporation
File # 563
Typical Bay

Beam/Joist Deflection: Secondary Framing (pin-pin boundary conditions)
\[
\delta_b := \frac{5 \cdot w_j \cdot L_{mb}^4 \cdot 1728}{384E_s \cdot 1000 \cdot I_{b_{eff}}} \quad \delta_b = 0.419 \text{ in.}
\]

Joist framing lacks continuity between adjacent beams. Therefore, the above deflection needs does not need to be modified.

Natural Frequency for Mode A:
\[
f_A := 0.18 \cdot \sqrt{\frac{386.4}{\delta_b}} \quad f_A = 5.46 \text{ Hz}
\]

Mode B

Uniform Distributed Loading:
\[
w_g := \left(\frac{L_{mb} + L_{ab}}{2} \right) \left(\frac{w_j}{I_{b_{eff}} b_{eff}} \right) + w_{mg} \quad w_g = 2205 \text{ lb./ft}
\]

Beam/Joist Deflection: Secondary Framing (fixed-ended boundary conditions)
\[
\delta_b := \frac{w_j \cdot L_{mb}^4 \cdot 1728}{384E_s \cdot 1000 \cdot I_{b_{eff}}} \quad \delta_b = 0.084 \text{ in.}
\]

Girder Deflection: Primary Framing (pin-pin boundary conditions)
\[
\delta_g := \frac{5 \cdot w_g \cdot L_{mg}^4 \cdot 1728}{384E_s \cdot 1000 \cdot I_{g_{eff}}} \quad \delta_g = 0.514 \text{ in.}
\]

To account for the stiffening effect offered by the adjacent span, the above deflection needs to be modified. Therefore, Equation 3.7 from the AISC publication *Floor Vibrations Due to Human Activity* (Murray, et al. 1997) is used to reduce the deflection of the floor for three continuous spans.

Main Girder Properties
\[
k_m := \frac{I_{g_{eff}}}{L_{mg} \cdot 12} \quad k_m = 7.49 \text{ in.}^3
\]

Adjacent Girder Properties
\[
k_s := \frac{I_{g_{eff}}}{L_{ag} \cdot 12} \quad k_s = 7.49 \text{ in.}^3
\]
Appendix A.2.2
SCI Frequency Calculations
Hot-Rolled Girders with Joists (Cont.)

Melroe Corporation
File # 563
Typical Bay

\[\Delta_g := \left[\frac{0.6 + 2 \cdot \frac{k_m}{k_s} \left(1 + 1.2 \cdot \frac{L_{ag}}{L_{mg}} \right)^2}{3 + 2 \cdot \frac{k_m}{k_s}} \right] \delta_g \quad \Delta_g = 0.514 \]

Natural Frequency for Mode B:

\[f_B := 0.18 \sqrt{\frac{386.4}{\delta_b + \Delta_g}} \quad f_B = 4.57 \text{ Hz} \]

Since \(f_A > f_B \), therefore, Mode B controls the motion of the Floor and the corresponding Natural Frequency is 4.57 Hz.
Appendix A.2 SCI Frequency Calculations

A.2.3 JOIST GIRDERS WITH JOISTS

Garmin International
File # 506
Typical Exterior Bay

Loading and Damping

DL := 4 psf
CL := 0 psf
LL := 11 psf

Damping : \(\zeta := 2.5 \% \)

Deck Properties

Compressive Strength :
\(f_c := 3.5 \text{ ksi} \)
Concrete : \(w_c := 150 \text{ pcf} \)
Total Floor Thickness :
\(t_{conc} := 2.50 \text{ in.} \)
Deck Height : \(d_h := 0.625 \text{ in.} \)
Slab/Deck Weight :
\(d_w := 28.3 \text{ psf} \)

Note : The elastic neutral axis (e.n.a) is taken from the top of the beam, joist, or girder.

Beam Properties

Main Beam

18K4

\(w_{mb} := 7.2 \text{ lb./ft} \)
\(A_{mb} := 1.431 \text{ in.}^2 \)
\(I_{x_{mb}} := 102 \text{ in.}^4 \)
\(y_{c_{mb}} := 8.06 \text{ in.} \)
\(L_{mb} := 28.00 \text{ ft} \)
\(D_{mb} := 18 \text{ in.} \)

Adjacent Beam

18K4

\(w_{ab} := 7.2 \text{ lb./ft} \)
\(A_{ab} := 1.431 \text{ in.}^2 \)
\(I_{x_{ab}} := 102 \text{ in.}^4 \)
\(y_{c_{ab}} := 8.06 \text{ in.} \)
\(L_{ab} := 28.00 \text{ ft} \)
\(D_{ab} := 18 \text{ in.} \)

Girder Properties

Main Girder

36G14N6.3K

\(w_{mg} := 27.1 \text{ lb./ft} \)
\(A_{mg} := 6.38 \text{ in.}^2 \)
\(I_{x_{mg}} := 1929 \text{ in.}^4 \)
\(y_{c_{mg}} := 16.06 \text{ in.} \)
\(L_{mg} := 35.00 \text{ ft} \)
\(D_{mg} := 36 \text{ in.} \)

Adjacent Girder

36G14N6.3K

\(w_{ag} := 27.1 \text{ lb./ft} \)
\(A_{ag} := 6.38 \text{ in.}^2 \)
\(I_{x_{ag}} := 1929 \text{ in.}^4 \)
\(y_{c_{ag}} := 16.06 \text{ in.} \)
\(L_{ag} := 35.00 \text{ ft} \)
\(D_{ag} := 36 \text{ in.} \)
Secondary Framing Composite Properties

For the typical corner bay, the effective concrete slab width is the minimum value between \(L_{mb}/4 = 7' - 0'' \) and the beam spacing of 2' - 6''.

Therefore, \(b_{eff} := \frac{L_{mg}}{14} \) \(b_{eff} = 2.5 \) ft

For the beam only the concrete above the steel form deck and a dynamic concrete modulus of elasticity of 1.35E_c are used in the calculations.

\[E_s := 29000 \text{ ksi} \]
\[E_c := w_c \frac{1.5}{\sqrt{c}} \quad E_c = 3437 \text{ ksi} \]

Modular Ratio \(n := \frac{E_s}{1.35E_c} \) \(n = 6.25 \)

\[y_{bar} := \frac{\left(A_{mb} \left(d_h + y_{c,mb} \right) - \left(\frac{b_{eff} \cdot 12}{n} \right) \left(t_{conc} - d_h \right) \right)^2}{A_{mb} + \left(\frac{b_{eff} \cdot 12}{n} \right) \left(t_{conc} - d_h \right)} \]

\[y_{bar} = 0.38 \text{ in.} \]

\[I_{b,comp} := I_{x,mb} + A_{mb} \left(d_h + y_{c,mb} - y_{bar} \right)^2 + \left(\frac{b_{eff} \cdot 12}{n} \right) \left(t_{conc} - d_h \right)^2 \]

\[I_{b,comp} = 218.96 \text{ in.}^4 \]

Since the secondary framing member is a joist, shear deformations due to the web are taken into account and the above composite moment of inertia needs to be reduced. Equations form chapter 3 of the AISC Design Guide 11 *Floor Vibrations Due to Human Activity* (Murray, et al. 1997) are used to reduce the moment of inertia for open web joists.

\[C_r := 0.9 \left(1 - 0.28 \left(\frac{L_{mb}}{D_{mb}} \right) \right)^{2.8} \]
\[C_r = 0.89 \] \hspace{2cm} (Equation 3.16, AISC Design Guide)

\[\gamma := \frac{1}{C_r} - 1 \]
\[\gamma = 0.13 \] \hspace{2cm} (Equation 3.19, AISC Design Guide)

\[I_{b,eff} := \frac{1}{I_{x,mb} + \frac{1}{I_{b,comp}}} \]
\[I_{b,eff} = 171.76 \text{ in.}^4 \] \hspace{2cm} (Equation 3.18, AISC Design Guide)
Appendix A.2.3
SCI Frequency Calculations
Joist Girders with Joists (Cont.)

Garmin International
File # 506
Typical Exterior Bay

Primary Framing Composite Properties

For the typical corner bay, the effective concrete slab width is the minimum value between

\[
\text{Girder Spacing : } \quad \text{Sp} := \frac{L_{mb} + L_{ab}}{2} \quad \text{Sp} = 28 \text{ ft and } \frac{L_{mg}}{4} = 8.75 \text{ ft}
\]

Therefore, \(b_{eff-g} := \frac{L_{mg}}{4} \quad b_{eff-g} = 8.75 \text{ ft} \)

For the girder the concrete above the steel form deck and one half the deck height and a dynamic concrete modulus of elasticity of 1.35E \(c \) are used.

\[
y_{bar} := \left[\left(A_{mg} \right) \left(\frac{d_h}{2} + y_{c_{mg}} \right) - \left(\frac{b_{eff-g} \cdot 12}{n} \right) \left(t_{conc} - \frac{d_h}{2} \right)^2 \right]
\]

\[
A_{mg} + \left(\frac{b_{eff-g} \cdot 12}{n} \right) \left(t_{conc} - \frac{d_h}{2} \right)
\]

\[
y_{bar} = 1.49 \text{ in. below effective slab}
\]

\[
I_{g_{comp}} := I_{x_{mg}} + A_{mg} \left(\frac{d_h}{2} + y_{c_{mg}} - y_{bar} \right)^2 + \left(\frac{b_{eff-g} \cdot 12}{n} \right) \left(t_{conc} - \frac{d_h}{2} \right)^3 + \left(\frac{b_{eff-g} \cdot 12}{n} \right) \left(t_{conc} - \frac{d_h}{2} \right) \left[y_{bar} + \left(\frac{t_{conc} - \frac{d_h}{2}}{2} \right)^2 \right]
\]

\[
I_{g_{comp}} = 3602.08 \text{ in.}^4
\]

Since the primary framing member is a joist girder, shear deformations due to the web are taken into account and the above composite moment of inertia needs to be reduced.

Equations form chapter 3 of the AISC Design Guide 11 Floor Vibrations Due to Human Activity (Murray, et al. 1997) are used to reduce the moment of inertia for open web joists.

\[
C_r := 0.9 \quad 1 - \epsilon \quad \left(\frac{L_{mg}}{12} \frac{D_{mg}}{L_{mg}} \right)^{2.8} \quad C_r = 0.81 \quad \text{(Equation 3.16, AISC Design Guide)}
\]

\[
\gamma := \frac{1}{C_r} - 1 \quad \gamma = 0.24 \quad \text{(Equation 3.19, AISC Design Guide)}
\]

\[
I_{g_{eff}} := \frac{1}{\gamma} + \frac{1}{I_{g_{comp}}} \quad I_{g_{eff}} = 2490.89 \text{ in.}^4 \quad \text{(Equation 3.18, AISC Design Guide)}
\]

122
Appendix A.2.3
SCI Frequency Calculations
Joist Girders with Joists (Cont.)

Garmin International
File # 506
Typical Exterior Bay

Since the secondary framing member is a joist, the above girder effective composite moment of inertia needs to be reduced due to lack of stiffness of the joist seats. Equations from chapter 3 of the AISC Design Guide 11 *Floor Vibrations Due to Human Activity* (Murray, et al. 1997) are used to reduce the moment of inertia.

\[
I_{g_{fin}} := I_{x_{mg}} + \frac{(I_{g_{eff}} - I_{x_{mg}})}{4} \quad I_{g_{fin}} = 2069.47 \ \text{in.}^4 \quad \text{(Equation 3.14, AISC Design Guide)}
\]

MODE SHAPES AND BEAM/GIRDER BOUNDARY CONDITIONS
The fundamental mode is that which gives the lowest frequency and subsequently the highest deflection.

Mode A

Uniform Distributed Loading:
\[
w_j := b_{eff _b} \left(DL + CL + LL + d_w + \frac{w_{mb}}{b_{eff _b}} \right) \quad w_j = 115.5 \ \text{lb./ft}
\]

Beam/Joist Deflection: Secondary Framing (pin-pin boundary conditions)
\[
\delta_b := \frac{5 \cdot w_j \cdot L_{mb}^4 \cdot 1728}{384E_s \cdot 1000 \cdot I_{b_{eff}}} \quad \delta_b = 0.321 \ \text{in.}
\]

Joist framing lacks continuity between adjacent beams. Therefore, the above deflection does not need to be modified.

Natural Frequency for Mode A:
\[
f_A := 0.18 \sqrt{\frac{386.4}{\delta_b}} \quad f_A = 6.25 \ \text{Hz}
\]

Mode B

Uniform Distributed Loading:
\[
w_g := \left(\frac{L_{mb} + L_{ab}}{2} \right) \left(\frac{w_j}{b_{eff _b}} \right) + w_{mg} \quad w_g = 1320 \ \text{lb./ft}
\]

Beam/Joist Deflection: Secondary Framing (fixed-ended boundary conditions)
\[
\delta_b := \frac{w_j \cdot L_{mb}^4 \cdot 1728}{384E_s \cdot 1000 \cdot I_{b_{eff}}} \quad \delta_b = 0.064 \ \text{in.}
\]
Appendix A.2.3
SCI Frequency Calculations
Joist Girders with Joists (Cont.)

Garmin International
File # 506
Typical Exterior Bay

Girder Deflection: Primary Framing (pin-pin boundary conditions)

\[
\delta_g := \frac{5 \cdot w_g \cdot L_{mg}^4 \cdot 1728}{384 E_s \cdot 1000 I_{g\text{fin}}} \quad \delta_g = 0.743 \text{ in.}
\]

Joist framing lacks continuity between adjacent beams. Therefore, the above deflection does not need to be modified.

Natural Frequency for Mode B:

\[
f_B := 0.18 \sqrt{\frac{386.4}{\delta_b + \delta_g}} \quad f_B = 3.94 \text{ Hz}
\]

\(f_A > f_B \), therefore, Mode B controls the motion of the Floor and the corresponding Natural Frequency is 3.94 Hz.
Appendix A.2 SCI Frequency Calculations

A.2.4 HOT-ROLLED GIRDERS WITH CASTELLATED BEAMS

AMAT Building 34
File # Boice7
Bay “B”

Loading and Damping

- DL := 0 psf
- CL := 0 psf
- LL := 0 psf

Damping : \(\zeta := 1.0 \% \)

Deck Properties

- Compressive Strength : \(f_c := 4.0 \) ksi
- Concrete : \(w_c := 145 \) pcf
- Total Floor Thickness : \(t_{conc} := 7.00 \) in.
- Deck Height : \(d_h := 2 \) in.
- Slab/Deck Weight : \(d_w := 73.5 \) psf

Beam Properties

<table>
<thead>
<tr>
<th>Beam Properties</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Beam</td>
<td>Girder Properties</td>
</tr>
<tr>
<td>CB27X35/46</td>
<td>W36X182</td>
</tr>
<tr>
<td>(w_{mb} := 29.8) lb/ft</td>
<td>(w_{mg} := 182.0) lb/ft</td>
</tr>
<tr>
<td>(A_{mb} := 8.75) in(^2)</td>
<td>(A_{mg} := 53.60) in(^2)</td>
</tr>
<tr>
<td>(I_{x_{mb}} := 1407) in(^4)</td>
<td>(I_{x_{mg}} := 11300) in(^4)</td>
</tr>
<tr>
<td>e.n.a. (y_{c_{mb}} := 15.50) in.</td>
<td>e.n.a. (y_{c_{mg}} := 18.17) in.</td>
</tr>
<tr>
<td>(L_{mb} := 40.00) ft</td>
<td>(L_{mg} := 40.00) ft</td>
</tr>
</tbody>
</table>

Adjacent Beam	Adjacent Girder
CB27X35/46	W36X182
\(w_{ab} := 29.8 \) lb/ft	\(w_{ag} := 182.0 \) lb/ft
\(A_{ab} := 8.75 \) in\(^2\)	\(A_{ag} := 53.60 \) in\(^2\)
\(I_{x_{ab}} := 1407 \) in\(^4\)	\(I_{x_{ag}} := 11300 \) in\(^4\)
e.n.a. \(y_{c_{ab}} := 15.50 \) in.	e.n.a. \(y_{c_{ag}} := 18.17 \) in.
\(L_{ab} := 40.00 \) ft	\(L_{ag} := 40.00 \) ft

Note: The elastic neutral axis (e.n.a) is taken from the top of the beam, joist, or girder.
Appendix A.2.4
SCI Frequency Calculations
Hot-Rolled Girders with Castellated Beams (Cont.)

AMAT Building 34
File # Boice7
Bay “B”

Secondary Framing Composite Properties

For the typical corner bay, the effective concrete slab width is the minimum value between $L_{mb}/4 = 10’ - 0”$ and the beam spacing of $8’ - 0”$.

Therefore, $b_{eff_b} := \frac{L_{mg}}{5}$

For the beam only the concrete above the steel form deck and a dynamic concrete modulus of elasticity of $1.35E_c$ are used in the calculations.

$E_c := 29000$ ksi

$E_c := w_c \sqrt[1.5]{f_c}$

$E_c = 3492$ ksi

Modular Ratio $n := \frac{E_s}{1.35E_c}$

$n = 6.15$

$y_{bar} := \frac{\left(A_{mb} \left(\frac{d_h + y_{c_mb}}{2} \right) - \frac{b_{eff_b} \cdot 12}{n} \right) \left(t_{conc} - \frac{d_h}{2} \right)^2}{A_{mb} + \frac{b_{eff_b} \cdot 12}{n} \left(t_{conc} - \frac{d_h}{2} \right)}$

$y_{bar} = -0.48$ in. below top of form deck

$I_{b_{comp}} := I_{x_{mb}} + A_{mb} \left(\frac{d_h + y_{c_mb} - y_{bar}}{2} + \frac{b_{eff_b} \cdot 12}{n} \right) \left(t_{conc} - \frac{d_h}{2} \right)^3 + \frac{b_{eff_b} \cdot 12}{n} \left(t_{conc} - \frac{d_h}{2} \right)^2 y_{bar} + \frac{t_{conc} - \frac{d_h}{2}}{2}

I_{b_{comp}} = 4716.66$

Primary Framing Composite Properties

For the typical corner bay, the effective concrete slab width is the minimum value between

Girder Spacing : $Sp := \frac{L_{mb} + L_{ab}}{2}$

$Sp = 40$ ft and $\frac{L_{mg}}{4} = 10$ ft

Therefore, $b_{eff_g} := \frac{L_{mg}}{4}$

For the girder the concrete above the steel form deck and one half the deck height and a dynamic concrete modulus of elasticity of $1.35E_c$ are used.

$y_{bar} := \frac{\left(A_{mg} \left(\frac{d_h}{2} + y_{c_mb} \right) - \frac{b_{eff_g} \cdot 12}{n} \right) \left(t_{conc} - \frac{d_h}{2} \right)^2}{A_{mg} + \frac{b_{eff_g} \cdot 12}{n} \left(t_{conc} - \frac{d_h}{2} \right)}$

$y_{bar} = 3.96$ in. below effective slab
Appendix A.2.4
SCI Frequency Calculations
Hot-Rolled Girders with Castellated Beams (Cont.)

AMAT Building 34
File # Boice7
Bay “B”

\[I_{g,\text{comp}} := I_{x,mg} + A_{mg} \left(\frac{d_h}{2} + y_{c,mg} - y_{\bar{bar}} \right)^2 + \left(\frac{b_{\text{eff},g} \cdot 12}{n} \right) \left(\frac{t_{\text{conc}} - d_h}{12} \right)^3 + \left(\frac{b_{\text{eff},g} \cdot 12}{n} \right) \left(\frac{t_{\text{conc}} - d_h}{2} \right) \left(y_{\bar{bar}} + \frac{\left(t_{\text{conc}} - d_h \right)}{2} \right)^2 \]

\[I_{g,\text{comp}} = 29720.99 \text{ in.}^4 \]

MODE SHAPES AND BEAM/GIRDER BOUNDARY CONDITIONS

The fundamental mode is that which gives the lowest frequency and subsequently the highest deflection.

Mode A

Uniform Distributed Loading: \(w_j := b_{\text{eff},b} \left(DL + CL + LL + d_w + \frac{w_{\text{nb}}}{b_{\text{eff},b}} \right) \)

\(w_j = 617.8 \text{ lb./ft} \)

Beam/Joist Deflection: Secondary Framing (pin-pin boundary conditions)

\[\delta_b := \frac{5 \cdot w_j \cdot L_{mb}^4 \cdot 1728}{384 \cdot E_S \cdot 1000 \cdot I_{b,\text{comp}}} \]

\(\delta_b = 0.26 \text{ in.} \)

To account for the stiffening effect offered by the adjacent span, the above deflection needs to be modified. Therefore, Equation 3.7 from the AISC publication *Floor Vibrations Due to Human Activity* (Murray, et al. 1997) is used to reduce the deflection of the floor for three continuous spans.

Main Beam Properties

\[k_m := \frac{I_{b,\text{comp}}}{L_{mb} \cdot 12} \]

\(k_m = 9.83 \text{ in.}^3 \)

Adjacent Beam Properties

\[b_{\text{eff},ab} := \frac{L_{mg}}{5} \]

\(b_{\text{eff},ab} = 8 \text{ ft} \)

\[y_{\bar{bar}} := \frac{\left(A_{ab} \left(d_h + y_{c,ab} \right) - \left(\frac{b_{\text{eff},ab} \cdot 12}{n} \right) \left(t_{\text{conc}} - d_h \right)^2 \right)}{A_{ab} + \left(\frac{b_{\text{eff},ab} \cdot 12}{n} \right) \left(t_{\text{conc}} - d_h \right)} \]

\(y_{\bar{bar}} = -0.48 \text{ in.} \)

below top of form deck

\[I_{ab,\text{comp}} := I_{x,ab} + A_{ab} \left(d_h + y_{c,ab} - y_{\bar{bar}} \right)^2 + \left(\frac{b_{\text{eff},ab} \cdot 12}{n} \right) \left(t_{\text{conc}} - d_h \right)^3 + \left(\frac{b_{\text{eff},ab} \cdot 12}{n} \right) \left(t_{\text{conc}} - d_h \right) \left(y_{\bar{bar}} + \frac{\left(t_{\text{conc}} - d_h \right)}{2} \right)^2 \]

\(I_{ab,\text{comp}} = 4716.66 \text{ in.}^4 \)
Appendix A.2.4
SCI Frequency Calculations
Hot-Rolled Girders with Castellated Beams (Cont.)

AMAT Building 34
File # Boice7
Bay “B”

\[k_s := \frac{I_{ab_comp}}{L_{ab}^{12}} \]
\[k_s = 9.83 \text{ in.}^3 \]

\[\Delta_b := \frac{0.6 + 2 \cdot \frac{k_m}{k_s} \left(1 + 1.2 \cdot \frac{L_{ab}}{L_{mb}} \right)^2}{3 + 2 \frac{k_m}{k_s}} \delta_b \]
\[\Delta_b = 0.26 \text{ in.} \]

Natural Frequency for Mode A :
\[f_A := 0.18 \frac{\sqrt{386}}{\Delta_b} \]
\[f_A = 6.93 \text{ Hz} \]

Mode B

Uniform Distributed Loading :
\[w_g := \left(\frac{L_{mb} + L_{ab}}{2} \right) \left(\frac{w_j}{b_{eff_b}} \right) + w_{mg} \]
\[w_g = 3271 \text{ lb./ft} \]

Beam/Joist Deflection :
Secondary Framing (fixed-ended boundary conditions)
\[\delta_b := \frac{w_j L_{mb}^4}{384E_s 1000 I_{b_comp}} \cdot 1728 \]
\[\delta_b = 0.052 \text{ in.} \]

Girder Deflection :
Primary Framing (pin-pin boundary conditions)
\[\delta_g := \frac{5 w_g L_{mg}^4}{384E_s 1000 I_{g_comp}} \cdot 1728 \]
\[\delta_g = 0.219 \text{ in.} \]

To account for the stiffening effect offered by the adjacent span, the above deflection needs to be modified. Therefore, Equation 3.7 from the AISC publication *Floor Vibrations Due to Human Activity* (Murray, et al. 1997) is used to reduce the deflection of the floor for three continuous spans

Main Girder Properties
\[k_m := \frac{I_{g_comp}}{I_{mg}^{12}} \]
\[k_m = 61.92 \text{ in.}^3 \]
Appendix A.2.4
SCI Frequency Calculations
Hot-Rolled Girders with Castellated Beams (Cont.)

AMAT Building 34
File # Boice7
Bay “B”

Adjacent Girder Properties

\[k_s := \frac{I_{g_comp}}{L_{ag_12}} \]

\[k_s = 61.92 \text{ in.}^3 \]

\[
\Delta_g := \left[0.6 + 2 \cdot \frac{k_m}{k_s} \left(1 + 1.2 \frac{L_{ag}}{L_{mg}} \right)^2 \right] \delta_g \]

\[\Delta_g = 0.219 \]

Natural Frequency for Mode B :

\[f_B := 0.18 \sqrt{\frac{386}{\delta_b + \Delta_g}} \]

\[f_B = 6.80 \text{ Hz} \]

\[f_A > f_B, \text{ therefore, Mode B controls the motion of the Floor and the corresponding} \]

\[\text{Natural Frequency is 6.80 Hz} \]
Appendix A.2 SCI Frequency Calculations

A.2.5 BRITISH FLOOR SYSTEM

SCI HeadQuarters
File # BR3
Bay 1

Main beam sizes:
7.45 m primary beam: 686 × 152 Castellated UB 60
6.00 m secondary beam: 305 × 127 UB 42

First Floor

Floor structure: 130 mm deep normal weight concrete slab cast on top of 1.2 mm thick Super Holorib deck. Slabs supported by 6.0 m span secondary beams at 2.48 m cross-centres which, in turn, are supported by 7.45 m span castellated primary beams in the orthogonal direction on Grid-lines B to D.

LOADING

120 mm deep concrete slab = 2.79 kN/m²
Decking = 0.17 kN/m²
Ceiling and services = 0.50 kN/m²
Raised floor = 0.30 kN/m²
Ducting = 0.10 kN/m²
10% Imposed = 0.35 kN/m²

\[\frac{4.21 \text{ kN/m}^2}{\text{TOTAL}} \]
Appendix A.2.5
SCI Frequency Calculations
British Floor System (Cont.)

SCI HeadQuarters
File # BR3
Bay 1

COMPOSITE SLAB PROPERTIES

Data from deck manufacturer -

Deck neutral axis position: 17.28 mm
Deck area: 2124 mm²/m
Deck second moment of area: 8635000 mm⁴/m
Height of re-entrant ribs: 51 mm

Concrete volume for 130 mm deep slab = 0.121 m³/m
∴ Effective slab thickness = 121 mm

For dynamic behaviour, take gross uncracked inertia. Also, for normal weight concrete, take \(E_c = 38 \text{ kN/mm}^2 \)

∴ Modular ratio \(\alpha = \frac{205}{38} = 5.39 \)

Per metre width:

<table>
<thead>
<tr>
<th>Section</th>
<th>(\sqrt{\text{Area} , \text{cm}^2})</th>
<th>(y , \text{cm})</th>
<th>(\text{Area} \times y , \text{cm}^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Deck</td>
<td>12.1×100/(\alpha) = 224.49</td>
<td>12.1/2 = 6.05</td>
<td>1358.16</td>
</tr>
<tr>
<td></td>
<td>= 21.24</td>
<td>13.1-1.728 = 11.272</td>
<td>239.42</td>
</tr>
<tr>
<td></td>
<td>= 245.73</td>
<td></td>
<td>1597.58</td>
</tr>
</tbody>
</table>

∴ Position of composite slab \(\text{ENA} = \frac{1597.58}{245.73} = 6.50 \, \text{cm} \)

<table>
<thead>
<tr>
<th>Section</th>
<th>Distance from ENA</th>
<th>Area \times Distance²</th>
<th>I Local</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Deck</td>
<td>6.50 – 6.05 = 0.45</td>
<td>45.46</td>
<td>(100 \times 12.1^\frac{1}{2} \alpha) = 2738.96</td>
</tr>
<tr>
<td></td>
<td>11.272-6.50 = 4.77</td>
<td>483.27</td>
<td>863.5</td>
</tr>
<tr>
<td></td>
<td>528.73</td>
<td></td>
<td>3602.46</td>
</tr>
</tbody>
</table>

∴ Second moment of area of composite slab (per metre width)
= 528.73 + 3602.46 = 4131.19 cm⁴/m (41.31 \times 10^6 m⁴/m)
Appendix A.2.5
SCI Frequency Calculations
British Floor System (Cont.)

SCI HeadQuarters
File # BR3
Bay 1

COMPOSITE BEAM PROPERTIES

Secondary beam

Span: 6.00 m (typical) Average spacing: 2.48 m
Serial size: 305 × 127 UB 42 Self weight: 41.9 kg/m
Depth: 307.2 mm Area, A: 53.4 cm²

Second moment of area, $I_{beam} : 8196 \text{ cm}^4$

Span / 4 = 6000 / 4 = 1500 mm (< spacing 2480 mm)

:: Effective breadth = 1500 mm

Position of ENA

$$= \frac{53.4 \times 10^3 (130 + 307.2 / 2) + ((130 - 51) \times 1500 / \alpha)((130 - 51) / 2)}{53.4 \times 10^2 + ((130 - 51) \times 1500 / \alpha)}$$

$= 87.2 \text{ mm}$

Gross second moment of area:

$$= \left[8196 \times 10^4 + 53.4 \times 10^3 (130 + 307.2 / 2 - 87.2)^2 + 1500 \times (130 - 51)^3 / (12\alpha) + 1500 \times (130 - 51) / \alpha (87.2 - (130 - 51) / 2)^2 \right] / 10^4 = 34939.63 \text{ cm}^4$$

Primary beam

Span: 7.45 m (typical) Average spacing: 6.0 m
Serial size: 686 × 152 Castellated UB 60 Self weight: 59.8 kg/m
Depth: 683.1 mm Area, A: 57.7 cm²

Second moment of area, $I_{beam} : 59230 \text{ cm}^4$

Span / 4 = 7450 / 4 = 1862.5 mm (< spacing 6000 mm)

:: Effective breadth = 1862.5 mm

Position of ENA

$$= \frac{57.7 \times 10^2 (130 + 683.1 / 2) + (121 \times 1862.5 / \alpha) \times 121 / 2}{57.7 \times 10^2 + (121 \times 1862.5 / \alpha)}$$

$= 110.35 \text{ mm}$

132
Appendix A.2.5
SCI Frequency Calculations
British Floor System (Cont.)

SCI HeadQuarters
File # BR3
Bay 1

Gross second moment of area:

\[
= [59230 \times 10^4 + 57.7 \times 10^2 (130 + 683.1/2 - 110.35)^2 + 1862.5 \times 121^3 / (12\alpha) \\
+ 1862.5 \times 121 / (110.35 - 121/2)^2] / 10^4 = 150000\text{cm}^4
\]

MODE SHAPES & BEAM BOUNDARY CONDITIONS

The fundamental mode is that which gives the lowest natural frequency (i.e., the highest deflexion)

Mode A Secondary beam mode Mode B Primary beam mode

For mode A, the primary beams form nodal lines (i.e. they have zero deflexion) about which, the secondary beams vibrate as simply-supported members. In this case, the slab flexibility is affected by the approximately equal deflexions of the supports. As a result of this, the slab frequency is assessed on the basis that fixed-ended boundary conditions exist.

For mode B, the primary beams vibrate about the columns as simply-supported members. Using a similar reasoning as above, due to the equal deflexions at their supports, the secondary beams (as well as the slab) are assessed on the basis that fixed-ended boundary conditions exist.
Appendix A.2.5
SCI Frequency Calculations
British Floor System (Cont.)
SCI Headquarters
File # BR3
Bay 1

NATURAL FREQUENCY

Mode A

i) Slab (fixed-ended)
\[w = 4.21 \times 2.48 = 10.44 \text{ kN/m} \]
\[\delta_s = \frac{wL^3}{384EI} = \frac{10.44 \times 2480^3}{384 \times 205 \times 4131.19 \times 10^4} = 0.05 \text{ mm} \]

ii) Secondary beam (simple-supports)
\[W = 6 \times (10.44 + 41.9 \times 9.81/10^6) = 65.11 \text{ kN} \]
\[\delta_{sec} = \frac{5wL^3}{384EI} = \frac{5 \times 65.11 \times 6000^3}{384 \times 205 \times 34939.63 \times 10^4} = 2.56 \text{ mm} \]

Total deflexion = 0.05 + 2.56 = 2.61 mm

\[\therefore \text{Natural frequency for Mode A, } f_A = \frac{18}{\sqrt{8}} = \frac{18}{\sqrt{2.61}} = 11.14 \text{ Hz} \]

Mode B

i) Slab
As above

ii) Secondary beam (fixed-ended)
\[\delta_{sec} = \frac{wL^3}{384EI} = \frac{2.56}{5} = 0.51 \text{ mm} \]

iii) Primary beams (simple-supports)
\[P = 65.11 \text{ kN} \]
\[W = 7.45(59.8 \times 9.81/10^6) = 4.37 \text{ kN} \]
\[\delta_p = \frac{23PL^3}{648EI} + \frac{5WL^3}{384EI} = \frac{7450^3}{205 \times 150000 \times 10^4} \left(\frac{23 \times 65.11 + 5 \times 4.37}{648 + 384} \right) = 3.18 \]

Total deflexion = 0.05 + 0.51 + 3.18 = 3.74 mm

\[\therefore \text{Natural frequency for Mode B, } f_B = \frac{18}{\sqrt{6}} = \frac{18}{\sqrt{3.74}} = 9.31 \text{ Hz} \]

\[\therefore \text{Mode B governs and, hence, the fundamental frequency of the floor, } f_0 = 9.31 \text{ Hz} \]
Appendix A.2.5
SCI Frequency Calculations
British Floor System (Cont.)

SCI Headquarters
File # BR3
Bay 1

FLOOR RESPONSE (SCI P076)

As $f_0 > 7.0$ Hz, the response is to be assessed according to the ‘high frequency floor’ recommendations.

Mass $m = (3 \times 65.11 + 4.37) / (6 \times 7.45) \times 1000 / 9.81 = 455.41$ kg/m²

$40 \times 0.13 = 5.2$ m > 2.48 m spacing of secondary beams

$\therefore b_c = 2.48$ m

L_c = secondary beam span $= 6.0$ m

The response factor is therefore:

$R = \frac{30000}{mb_cL} = \frac{30000}{455.41 \times 2.48 \times 6} = 4.4$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Calculated</th>
<th>Measured</th>
<th>Correction factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>9.41</td>
<td>8.38</td>
<td>0.89</td>
</tr>
<tr>
<td>Response</td>
<td>4.4</td>
<td>2.8</td>
<td>0.64</td>
</tr>
</tbody>
</table>

FLOOR RESPONSE (SCI AD256)

As the primary beams govern the mode shape, the appropriate floor layout from Table 7.1 in SCI P076 is Case (4).

Relative flexibility of primary beam $RF_{\text{beam}} = 3.18/3.74 = 0.85$

From Table 7.1, as $RF_{\text{beam}} > 0.6$:

$L' = 3.8 \left(\frac{EI_b}{mb_{f_0}^2} \right)^{1/4} = 3.8 \left(\frac{205 \times 34939.63 \times 10}{455.41 \times 2.483 \times 9.31^2} \right)^{1/4} = 19.76$ m

Due to the presence of the stair-well, $L_{max} = 3 \times 6 = 18$ m $> W$

As $L_{max} < L'$, $L_{eff} = L_{max} = 18$ m

$W_1 = 7.45$ m $W_2 = 7.45$ m

From Table 7.1, as $W_2 = W_1$

$S = 2W_1 = 14.9$ m
Finally, as the floor has partitions orientated perpendicular to the main vibrating elements, the damping $\zeta = 4.5\%$

The response factor is therefore:

$$a_{\text{peak}} = \frac{2\alpha_n P}{mSL_{\epsilon_{\text{eff}}}^2} = \frac{2 \times 0.1 \times 76 \times 9.81}{455.41 \times 18 \times 14.9 \times 0.045} = 0.027 \text{ m/s}^2$$

$$R = \frac{0.027 \times 8}{\sqrt{2 \times 5 \times 10^{-3} \times 9.31}} = 3.3$$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Calculated</th>
<th>Measured</th>
<th>Correction factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>9.41</td>
<td>8.38</td>
<td>0.89</td>
</tr>
<tr>
<td>Damping</td>
<td>4.50%</td>
<td>4.68%</td>
<td>1.04</td>
</tr>
<tr>
<td>Response</td>
<td>3.3</td>
<td>2.8</td>
<td>0.85</td>
</tr>
</tbody>
</table>
APPENDIX A.3 SCI ACCELERATION CALCULATIONS
Appendix A.3 SCI Acceleration Calculations

A.3.1 HOT-ROLLED SHAPES

<table>
<thead>
<tr>
<th>File #</th>
<th>596</th>
<th>Newport V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bay</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $f'_c = 3.50$ ksi
- $w_{conc} = 115$ pcf
- $P = 167.6$ lbs
- $\xi = 0.025$
- $\alpha_n = 0.1$
- $d_e = 4.25$ in.
- $\zeta = 0.025$
- $M_{girder} = 2.012$ psf
- $M_{beam} = 4.281$ psf
- $M_{slab} = 16.5$ psf
- $M_{D.L.} = 11.0$ psf
- $M_{L.L.} = 16.5$ psf
- $m_{tot} = (M_{girder} + M_{beam} + M_{slab} + M_{D.L.} + M_{L.L.})/32.2$ ft/s²
- $m_{tot} = 2.345$ lb*s²/ft³
- $f_{pred} = 3.84$ Hz
- $D = 270.00$ ft
- $f_p = 1.920$ Hz
- $V = 4.536$ ft/s
- $T_w = 59.52$ s
- $S* = 66.62$ ft
- $S* \leq W = 270.00$ ft

Resonance Build-Up Factor (R_f)

$$ R_f = 1 - e^{\left(\frac{-2\pi \xi T_w}{f_p}\right)} $$

$$ T_w = \frac{D}{V} $$

Design Guide 11

<table>
<thead>
<tr>
<th>SCI AD256</th>
<th></th>
<th>Design Guide 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_{peak}/g</td>
<td>0.34%</td>
<td>$a_{peak}/g = 0.46%$</td>
</tr>
</tbody>
</table>

Check Acceptability

$$ a_{rms}/g < (0.005R/g) $$

$$ a_{rms}/g = a_{peak}/2^{0.5} $$

| a_{rms}/g | 0.24% | 0.24% |

Special Office -- $R = 4$ 0.20% No good for this case
General Office -- $R = 8$ 0.41% Good for this case
Busy Office -- $R = 12$ 0.61% Good for this case
Appendix A.3 SCI Acceleration Calculations

A.3.2 HOT-ROLLED GIRDERS WITH JOISTS

File # 563 Melroe Corp.

<table>
<thead>
<tr>
<th>Bay</th>
<th>Typ.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$ f'c = 3.00 \text{ksi} $
$ w_{conc} = 145 \text{pcf} $
$ P = 167.6 \text{lbs} $
$ \zeta = 0.03 $
$ \alpha_n = 0.1 $

Mass

Girder (primary) tributary width = 39.25 ft
Beam (secondary) spacing = 2.00 ft
$ w_{girder} = 76.00 \text{plf} $
$ w_{beam} = 11.50 \text{plf} $

$$ M_{girder} = 1.936 \text{psf} $$
$$ M_{beam} = 5.750 \text{psf} $$

$$ m_{tot} = (M_{girder} + M_{beam} + M_{slab} + M_{D.L.} + M_{L.L.})/(32.2 \text{ft/s}^2) $$

$$ m_{tot} = 1.745 \text{lb*}s^2/\text{ft}^3 $$

Resonance Build-Up Factor (R_1)

$$ R_{1} = 1 - e^{(-2\pi f_0 \zeta T_w)} \quad T_w = D/V $$

$$ f_{pred} = f_c = 4.57 \text{Hz} $$
$$ D = 210.00 \text{ft} $$
$$ f_p = 2.285 \text{Hz} $$

$$ f_b = 12.21 \text{Hz} $$
$$ V = 7.162 \text{ft/s} $$
$$ f_g = 4.93 \text{Hz} $$

$$ 1.7 \text{Hz} \leq f_p \leq 2.4 \text{Hz} $$

$$ V = 1.67f_p^2 - 4.83f_p + 4.50 $$

$$ 1.7 \text{Hz} \leq f_p \leq 2.4 \text{Hz} $$

$$ T_w = D/V = 29.32 \text{s} $$

$$ R_{1} = 1 - e^{(-2\pi f_0 \zeta T_w)} = 1.00 $$

Find L_{eff} and S

Primary Beam Controls (Mode B)
Assuming Case 4 Governs

$$ \delta_g = 0.514 \text{in} $$
$$ \delta_b = 0.084 \text{in} $$

$$ W = 30.00 \text{ft} $$
$$ S = 2W = 60.00 \text{ft} $$

$$ E_s = 29000 \text{ksi} $$
$$ I_b = 435.10 \text{in}^4 $$

$$ L^* = 3.8*(E_s I_b/(mbf_c^2))^{1/4} = 125.83 \text{ft} $$

$$ L^* \leq L_{max} = 38.38 \text{ft} $$

$$ L_{eff} = 38.38 \text{ft} $$

$$ a_{peak} = [(2\alpha_n P)/(m_{tot} L_{eff} S \zeta)]^{1/4} $$

<table>
<thead>
<tr>
<th>Design Guide 11</th>
<th>SCI AD256</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_{peak}/g = 0.86%$</td>
<td>$a_{peak}/g = 0.74%$</td>
</tr>
</tbody>
</table>

Check Acceptability

$$ a_{rms}/g < (0.005R/g) $$
$$ a_{rms} = a_{peak}/2^{0.5} $$

$$ a_{rms}/g = 0.61\% $$

Special Office -- $R = 4$
General Office -- $R = 8$
Busy Office -- $R = 12$

No good for this case
No good for this case
Good for this case
Appendix A.3 SCI Acceleration Calculations

A.3.3 JOIST GIRDCRS WITH JOISTS

<table>
<thead>
<tr>
<th>File #</th>
<th>506</th>
<th>Garmin International</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bay Ext./Int.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[f'c = 3.50 \text{ ksi} \]
\[w_{c,\text{conc}} = 150 \text{ pcf} \]
\[P = 167.6 \text{ lbs} \]
\[\zeta = 0.025 \]
\[\alpha_n = 0.1 \]

\[f_p = 3.94 \text{ Hz} \]
\[f_g = 13.97 \text{ Hz} \]
\[f_b = 4.10 \text{ Hz} \]
\[V = 4.810 \text{ ft/s} \]
\[D = 345.00 \text{ ft} \]

\[m_{tot} = 1.464 \text{ lb}*s^2/ft^3 \]

\[R_f = 1 - e^{-\frac{2\pi\zeta T_w}{f_p}} \]

Mass

Girder (primary) tributary width = 28.00 ft
Beam (secondary) spacing = 2.50 ft

\[w_{\text{girder}} = 27.10 \text{ plf} \]
\[w_{\text{beam}} = 7.20 \text{ plf} \]

\[M_{\text{girder}} = 0.968 \text{ psf} \]
\[M_{\text{beam}} = 2.880 \text{ psf} \]

\[M_{\text{slab}} = 28.38 \text{ psf} \]
\[M_{\text{D.L.}} = 4 \text{ psf} \]
\[M_{\text{L.L.}} = 11 \text{ psf} \]

\[m_{tot} = (M_{\text{girder}} + M_{\text{beam}} + M_{\text{slab}} + M_{\text{D.L.}} + M_{\text{L.L.}})/(32.2 \text{ ft/s}^2) \]

Resonance Build-Up Factor (Rf)

\[R_f = 1 - e^{-\frac{2\pi\zeta T_w}{f_p}} \]

Find L eff and S

| Primary Beam Controls (Mode B) | \(\delta_s = 0.743 \text{ in} \) |
| Assuming Case 4 Governs | \(\delta_s = 0.064 \text{ in} \) |

\[W = 35.00 \text{ ft} \]
\[S = 2W = 70.00 \text{ ft} \]
\[E_s = 29000 \text{ ksi} \]
\[I_B = 171.76 \text{ in}^4 \]

\[L^* = 3.80(E_s I_B/(m_{slab} \zeta^2))^{1/2} = 106.14 \text{ ft} \]
\[L^* \leq L_{max}, \text{ therefore } L_{eff} = 28.00 \text{ ft} \]

\[a_{peak} = [(2\alpha_n P)/(m_{tot} L_{eff} S \zeta)]^*R_1 \]

<table>
<thead>
<tr>
<th>SCI AD256</th>
<th></th>
<th>Design Guide 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_{peak}/g)</td>
<td>1.45%</td>
<td>(a_{peak}/g)</td>
</tr>
</tbody>
</table>

Check Acceptability

\[a_{rms}/g < (0.005R/g) \]

\[a_{rms} = a_{peak}/2.5 \]

Special Office	R = 4	0.20%	No good for this case
General Office	R = 8	0.41%	No good for this case
Busy Office	R = 12	0.61%	No good for this case
Appendix A.3 SCI Acceleration Calculations

A.3.4 HOT-ROLLED GIRDERS WITH CASTELLATED BEAMS

<table>
<thead>
<tr>
<th>File #</th>
<th>Boice7</th>
<th>AMAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bay</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>f'c</td>
<td>4.00 ksi</td>
<td></td>
</tr>
<tr>
<td>w'conc</td>
<td>145 pcf</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>167.6 lbs</td>
<td></td>
</tr>
<tr>
<td>ζ</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>αn</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>40.00 ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.00 ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>182.00 plf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.80 plf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120.00 ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.8* (E_s I_b) / (m_u L_eff S C)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mass

Girder (primary) tributary width = 40.00 ft
Beam (secondary) spacing = 8.00 ft
w_girder = 182.00 plf
w_beam = 29.80 plf
m_girder = 4.550 psf
m_beam = 3.725 psf
m_girder = 182.00 plf
m_beam = 29.80 plf
m_slab = 73.50 psf
m_D.L. = 4 psf
m_L.L. = 11 psf
m_tot = (M_girder + M_beam + M_slab + M_D.L. + M_L.L.) / (32.2 ft/s^2)
m_tot = 3.005 lb*s^2/ft^3

Resonance Build-Up Factor (R_1)

R_f = 1 - e(-2πfoζTw)
T_w = D/V
f_0 = 6.24 Hz
f_p = 2.080 Hz
f_b = 14.19 Hz
1.7 Hz ≤ f_p ≤ 2.4 Hz
V = 5.508 ft/s
T_w = D/V = 21.79 s
R_f = 1 - e(-2πfoζTw) = 1.00

Find L_eff and S

Primary Beam Controls (Mode B)
δ_g = 0.259 in
Assuming Case 4 Governs
δ_b = 0.062 in
W = 40.00 ft
RF_m.b. = δ_b / (δ_g + δ_b)
S = 2W = 80.00 ft
RF_m.b. = 0.8064 > 0.6
E_s = 29000 ksi
I_b = 4716.67 in^4
L^* = 3.8*(E_s I_b) / (m_u L_eff S C)
L^* ≤ L_max, therefore
L_eff = 120.00 ft
a_peak = (2a_s P) / (m_u L_eff S C) R_f
a_peak = 0.12 %
Design Guide 11
a_peak = 0.17 %

Check Acceptability

a_max = a Peak / 2^0.5
a_max = a Peak / 2^0.5
a_max / g = 0.09 %
Special Office → R = 4
General Office → R = 8
Busy Office → R = 12

Good for this case

Good for this case

Good for this case
APPENDIX A.4 MURRAY CRITERION CALCULATIONS
Appendix A.4 Murray Criterion Calculations

A.4.1 HOT-ROLLED SHAPES

Newport V
File # 596
Typical Bay

Knowledge Base FLOORVIB2 Version 1.1B2

Licensed to: STRUCTURAL ENGINEERS, INC.
537 Wisteria Drive
Radford, VA 24141

Date: 01/26/03 By: MDB Page 1
Job Id: Newport Office Center V
Id: Typ.

VIBRATION ANALYSIS:

Evaluation Criterion: Murray
Environment: Office/Residential

Required damping, D (%) = 35 Ao f + 2.5

<table>
<thead>
<tr>
<th>Section</th>
<th>w, plf</th>
<th>Itr, in^4</th>
<th>f, Hz</th>
<th>Ao, in</th>
<th>Dreq'd, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W21x44</td>
<td>724.4</td>
<td>2669.5</td>
<td>3.67</td>
<td>0.0068</td>
<td>3.4</td>
</tr>
<tr>
<td>Left Girder Wall</td>
<td>1635.1</td>
<td>0.0000</td>
<td>10000</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Right Girder</td>
<td>3027.0</td>
<td>7389.0</td>
<td>6.57</td>
<td>0.0027</td>
<td>3.1</td>
</tr>
<tr>
<td>Bay (Using smaller girder frequency)</td>
<td>3.20</td>
<td>0.0081</td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Required damping is 0.0 in the above table because the natural frequency is greater than 10 Hz.

Evaluation:

The Beam controls
The Bay controls

-- Continued --
Appendix A.4.1
Murray Criterion Calculations
Hot-Rolled Shapes (Cont.)

Newport V
File # 596
Typical Bay

Date: 01/26/03 By: MDB Page 2
Job Id: Newport Office Center V
Id: Typ.

Required damping = 3.4 % > 1 % Actual damping
The system DOES NOT SATISFY THE CRITERION.

LOADING DATA:
Slab + 1.0 psf Deck = 41.7 psf
Dead loads = 4.0 psf
Collateral loads = 12.5 psf
Live loads = 8.0 psf
Actual beam and girder weights

Tributary width for left girder = 45.83/2 = 22.92 ft.
Tributary width for right girder = 45.83/2 + 37.67/2 = 41.75 ft.

ESTIMATED DAMPING:
Bare floor: 1.0 %
Ceiling: 0.0 %
Mechanical: 0.0 %
Partition: 0.0 %
Total: 1.0 %

CONCRETE/SLAB DATA:
Concrete dc = 5.25 in. fc' = 3.5 Ksi
 wt = 115 pcf Ec = 2307 Ksi

Modular ratio, n = 12.57
Deck height: 2 in.
Effective concrete thickness in deck: 1 in.

BEAM CALCULATIONS:
Beam section: W21x44 d = 20.660 in. A = 13.00 in.2 Ix = 843 in.4
Spacing: S = 123.33 in.
Span: Lb = 45.83 ft.
Uniform load: wb = (41.7 + 4.0 + 12.5 + 8.0) x 123.33/12 + 44.0
 = 724.4 plf

Transformed moment of inertia:
Effective concrete width = min(0.4 Lb, S) = 123.330 in.
Effective concrete depth = 3.250 in.
Transformed concrete width = 9.811 in.
Transformed concrete area = 31.886 in.2
Distance to neutral axis = 9.913 in. (Above beam c. g.)
Transformed moment of inertia = 2669.5 in.4

-- Continued --
Appendix A.4.1
Murray Criterion Calculations
Hot-Rolled Shapes (Cont.)

Newport V
File # 596
Typical Bay

Frequency = 1.57 x \[\frac{386 \, \text{Es Itr}}{\text{wb L}^4} \]^{0.5}

= 1.57 x \[\frac{386 \, \text{Es x 2669.5}}{(724.4 / 12) \times (45.83 \times 12)^4} \]^{0.5} = 3.67 Hz.

Tee-Beam Amplitude:
\(\alpha = 0.1 \, \pi \, \text{fb} = 1.153 \)
since \(\text{to} = \frac{[1/(\pi \, \text{fb})] \tan^{-1}(\alpha)}{1/(\pi \times 3.67)} \times 0.86 \)
\(= 0.0743 \, \text{sec.} > 0.05 \, \text{sec.} \)

\(A_{\text{ot}} = \frac{246 \, \text{L}^3}{\text{Es lb}} \left(\frac{1}{2 \, \pi \, \text{fb}} \right) \left(2 \, [1 - \alpha \sin(\alpha) - \cos(\alpha)] + \alpha^2 \right) = 0.0147 \, \text{in.} \)

Number of Effective Tee-Beams:
\(\text{Neff} = 2.97 - S/(17.3 \, \text{de}) + L^4/(1.35 \, \text{Es Itr}) \)
\(= 2.97 - 123.33/(17.3 \times 4.25) \)
\(+ (45.83 \times 12)^4/(1.35 \times 29 \times 10^6 \times 2669.49) \)
\(= 2.17 \)

Beam Amplitude, \(A_{\text{ob}} = A_{\text{ot}}/\text{Neff} = 0.0068 \, \text{in.} \)

LEFT GIRDER CALCULATIONS:

Tributary width \(= 22.92 \, \text{ft.} \)
Span: \(L_g = 30.83 \, \text{ft.} \)
Equivalent uniform load: \(\text{wg} = 22.92 \times (724.4 / 10.28) + 0.0 \)
\(= 1615.1 \, \text{plf} \)

Transformed moment of inertia:
\(\min(0.2 \, L_g, L_b/2) = 73.999 \, " \) (5.887" transformed)

Effective concrete width \(= 73.999 \, \text{in.} \) and 37.000 in.
Transformed concrete width \(= 5.887 \, \text{in.} \) and 2.943 in.
Transformed concrete area \(= 19.132 \, \text{in.}^2 \) and 5.887 in.2
Distance to neutral axis \(= 0.0 \, \text{in.} \) (Above girder c. g.)

-- Continued --
Appendix A.4.1
Murray Criterion Calculations
Hot-Rolled Shapes (Cont.)

Newport V
File # 596
Typical Bay

Date: 01/26/03 By: MDB
Job Id: Newport Office Center V
Id: Typ.

Page 4

Transformed moment of inertia = 0.0 in.4

Frequency = 1.57 x \left[\frac{386 \text{ Es Itr}}{\text{wg L}^4} \right]^{0.5}

= 1.57 x \left[\frac{386 \text{ Es x 0.0}}{(1615.1/12) \times (30.83x12)^4} \right]^{0.5} = 10000.00 Hz.

Girder Amplitude:
\alpha = 0.1 \pi \text{ fg} = 0.0
since to = \left[\frac{1}{\pi \text{ fg}} \right] \tan^{-1}(\alpha)
= \left[\frac{1}{\pi \times 10000.00} \right] \times 0.0
= 0.0 \text{ sec.} \times 0.05 \text{ sec.}

Aog = \frac{[246 \text{ L}^3]}{(\text{Es Ig})} (0.1 - to) = 0.0 \text{ in.}

RIGHT GIRDER CALCULATIONS:

Girder section: W27x84 d= 26.710 in. A= 24.80 in.2 Ix= 2850 in.4

Tributary width = 41.75 ft.
Span: Lg = 30.83 ft.
Equivalent uniform load: wg = 41.75 x (724.4/10.28) + 84.0
= 3027.0 plf

Transformed moment of inertia:
\min(0.2 \text{ Lg}, 45.83x12/2) + \min(0.2 \text{ Lg}, 37.67x12/2)
= 147.998" (11.774" transformed)

Effective concrete width = 147.998 in. and 73.999 in.
Transformed concrete width = 11.774 in. and 5.887 in.
Transformed concrete area = 38.264 in.2 and 11.774 in.2
Distance to neutral axis = 10.940 in. (Above girder c. g.)
Transformed moment of inertia = 7389.0 in.4

Frequency = 1.57 x \left[\frac{386 \text{ Es Itr}}{\text{wg L}^4} \right]^{0.5}

= 1.57 x \left[\frac{386 \text{ Es x 7389.0}}{7389.0} \right]^{0.5} = 6.57 Hz.

-- Continued --
Appendix A.4.1
Murray Criterion Calculations
Hot-Rolled Shapes (Cont.)

Newport V
File # 596
Typical Bay

Date: 01/26/03
By: MDB
Job Id: Newport Office Center V
Id: Typ.

L (3027.0/12) x (30.03x12)"4

Girder Amplitude:
\[\alpha = 0.1 \pi \frac{fg}{2.064} \]
since \[t_o = \frac{1}{(\pi \times fg)} \tan^{-1}(\alpha) \]
\[= \frac{1}{(\pi \times 6.57)} \times 1.12 \]
\[= 0.0542 \text{ sec.} > 0.05 \text{ sec.} \]

\[A_{og} = \frac{246 \times L^3}{E_b I_g} \times \frac{1}{2 \pi fg} \times \sqrt{\frac{1}{\left(1 - \alpha \sin(\alpha) - \cos(\alpha)\right) + \alpha^2}} = 0.0027 \text{ in.} \]

BAY CALCULATIONS:

Using girder with smaller frequency:

\[\frac{1}{f_{s^2}} = \frac{1}{f_{b^2}} + \frac{1}{f_{g^2}} = \frac{1}{3.67^2} + \frac{1}{6.57^2} \]

\[f_s = 3.20 \text{ Hz.} \]

Amplitude: \[A_{os} = A_{ob} + A_{og}/2 = 0.0068 + 0.0027/2 = 0.0081 \text{ in.} \]

Warning:
The floor system does not satisfy the Murray criterion.
Possible solutions are:
- Increase the concrete thickness, which will decrease the natural frequency but will not significantly change the initial amplitude, Ao.
- Change the beam spacing.
- Use normal weight concrete, which will decrease the natural frequency but will not significantly change the initial amplitude, Ao.

Generally, increasing the member stiffness (moment of inertia) will not improve the evaluation.

-- End --
Appendix A.4 Murray Criterion Calculations

A.4.2 HOT-ROLLED GIRDER WITH JOISTS

Melroe Corporation
File # 563
Typical Bay

Knowledge Base FLOORVIB2 Version 1.1B2
Licensed to: STRUCTURAL ENGINEERS, INC.
537 Wisteria Drive
Radford, VA 24141

Date: 01/27/03 By: MDB Page 1
Job Id: Melroe Corp. Building --- West Fargo, N.D.
Id: Typ.

Span= 30 ft	Left Girder: W24x76	Right Girder: W24x76
Left: 40.125 ft	Right: 40.125 ft	
Em Span= 38.175 ft	Em Span= 38.175 ft	

Concrete: dc: 2-3/4 in.(total depth)	Office/Residential Activity
w.: 165 pcf	Design Criterion: Murray
Deck Height: 5/8 in.	System Evaluation:
Collateral:	DOES NOT SATISFY CRITERION
(%) Live: 11	Est. damping = 1.04 < Req'd 4.4
Collateral:	Press [F1] for Advice

VIBRATION ANALYSIS:
Evaluation Criterion: Murray
Environment: Office/Residential

Required damping, D (%) = 35 Ao f + 2.5

<table>
<thead>
<tr>
<th>Section</th>
<th>w, plf</th>
<th>Itr, in4</th>
<th>f, Hz.</th>
<th>Ao, in.</th>
<th>Dreq'd, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joist</td>
<td>24K8</td>
<td>108.5</td>
<td>451.4</td>
<td>5.56</td>
<td>0.0099</td>
</tr>
<tr>
<td>Left Girder</td>
<td>W24x76</td>
<td>2204.4</td>
<td>5664.4</td>
<td>7.12</td>
<td>0.0034</td>
</tr>
<tr>
<td>Right Girder</td>
<td>W24x76</td>
<td>2204.4</td>
<td>5664.4</td>
<td>7.12</td>
<td>0.0034</td>
</tr>
</tbody>
</table>

Bay (Using smaller girder frequency)
4.38 0.0116 4.3

Evaluation:
The Joist controls
Required damping = 4.4 % > 1 % Actual damping
The system DOES NOT SATISFY THE CRITERION.

LOADING DATA:
-- Continued --
Appendix A.4.2
Murray Criterion Calculations
Hot-Rolled Girders with Joists (Cont.)

Melroe Corporation
File # 563
Typical Bay

Slab + 1.0 psf Deck = 30.5 psf
Dead loads = 7.0 psf
Collateral loads = 0.0 psf
Live loads = 11.0 psf
Actual beam and girder weights

Tributary width for girder = 40.13/2 + 38.38/2 = 39.25 ft.

ESTIMATED DAMPING:
Bare floor: 1.0 %
Ceiling: 0.0 %
Mechanical: 0.0 %
Partition: 0.0 %
Total: 1.0 %

CONCRETE/SLAB DATA:
Concrete: $d_c = 2.75$ in. $f_{c'} = 3$ KSI
$w_t = 145$ pcf $E_c = 3024$ KSI

Modular ratio, $n = 9.59$

Deck height: 0.625 in.
Effective concrete thickness in deck: 0.3125 in.

JOIST CALCULATIONS:

Joist: 24K8 (11.5 plf)
$d = 24.000$ in. $A = 2.157$ in.2 $I_x = 282$ in.4 $y_c = 10.72$ in.

Spacing: $S = 24$ in.
Span: $L_b = 38.38$ ft.
Uniform load: $w_b = (30.5 + 7.0 + 0.0 + 11.0) \times 24.00/12 + 11.5$
= 108.5 plf

Transformed moment of inertia:
Effective concrete width = min(0.4 L_b, S) = 24.000 in.
Effective concrete depth = 2.125 in.
Transformed concrete width = 2.503 in.
Transformed concrete area = 5.318 in.2
Distance to neutral axis = 9.228 in. (Above beam c. g.)
Transformed moment of inertia = 451.4 in.4

6 $\leq L_j/D = 19.19$ ≤ 24
$C_r = 0.9 [1 - e^{-(-0.28 L_j/D)}]^{2.8} = 0.89$
$r = (1/C_r) - 1 = 0.126$
Effective moment of inertia = $1/(r/I_{chords} + 1/I_{comp}) = 375.7$ in.4

-- Continued --
Appendix A.4.2
Murray Criterion Calculations
Hot-Rolled Girders with Joists (Cont.)

Melroe Corporation
File # 563
Typical Bay

Date: 01/27/03 By: MDB Page 3
Job Id: Melroe Corp. Building --- West Fargo, N.D.
Id: Typ.

Frequency = 1.57 x \[\left(\frac{386 \text{ Es Itr}}{\text{ wb L}^4} \right)^{0.5} \]

= 1.57 x \[\frac{386 \text{ Es} \times 451.4}{(108.5 /12) \times (38.38 x 12)^4} \]^{0.5} = 5.56 Hz.

Tee-Beam Amplitude:
\[\alpha = 0.1 \pi \text{ fb} = 1.747 \]
since to = \[\frac{1}{(\pi \text{ fb})} \tan^{-1}(\alpha) \]
= \[\frac{1}{(\pi \times 5.56)} \] x 1.05
= 0.0602 sec. > 0.05 sec.

\[A_{ot} = \frac{246 \text{ L}^3}{\text{ Es I}b} \frac{1}{2 \pi \text{ fb}} \sqrt{2 [1 - \alpha \sin(\alpha) - \cos(\alpha)] + \alpha^2} = 0.0736 \text{ in.} \]

Number of Effective Tee-Beams:
\[D_x = \frac{\text{ Ec} \times d^3}{12} = 3024 \times 2.44^3 / 12 = 3661 \text{ K-in.} \]
\[D_y = \frac{\text{ Es I}tr}{S} = 29000 \times 451.4 / 24.00 = 545442 \text{ K-in.} \]
\[\epsilon = (D_x/D_y)^{0.25} = 0.29 \]
\[X_0 = 1.06 \epsilon \text{ lb} = 1.06 \times 0.29 \times 460.5 = 139.71 \text{ in.} \]
\[X = 24", 48", 72", 96", 120" \]
\[\text{Neff} = 1.0 + 2 \sum \cos(\pi x/(2 X_0)) \]
= 7.41

Beam Amplitude, \(A_{ot}/\text{Neff} = 0.0099 \text{ in.} \)

LEFT GIRDERS CALCULATIONS:

Girder section: W24x76 \(d = 23.920 \text{ in.} \) A = 22.40 in.2 Ix = 2100 in.4

Tributary width = 39.25 ft.
Span: \(L_g = 30.00 \text{ ft.} \)
Equivalent uniform load: \(w_g = 39.25 \times (108.5/2.00) + 76.0 \)
= 2204.4 plf

Transformed moment of inertia:
\[\text{min(0.2 Lg, 40.13x12/2)} + \text{min(0.2 Lg, 38.38x12/2)} \]
= 144.000" (15.016" transformed)

--- Continued ---

150
Appendix A.4.2
Murray Criterion Calculations
Hot-Rolled Girders with Joists (Cont.)

Melroe Corporation
File # 563
Typical Bay

Date: 01/27/03 By: MDB Page 4
Job Id: Melroe Corp. Building --- West Fargo, N.D.
Id: Typ.

72.000" (7.508" transformed)

Effective concrete width = 144.000 in. and 72.000 in.
Transformed concrete width = 15.016 in. and 7.508 in.
Transformed concrete area = 31.908 in.² and 4.692 in.²
Joist seat depth = 2.5 in.
Distance to neutral axis = 9.908 in. (Above girder c. g.)
Transformed moment of inertia = 5664.4 in.⁴

Frequency = 1.57 x \left[\frac{386 \text{ Es Itr} \cdot 0.5}{\text{ wg L}^4} \right]

= 1.57 x \left[\frac{386 \text{ Es} \times 5664.4}{(2204.4/12) \times (30.00 \times 12)^4} \right]^{0.5} = 7.12 \text{ Hz.}

Girder Amplitude:
α = 0.1 π fg = 2.237
since to = \left[\frac{1}{(\pi \times 7.12)} \right] \times 1.15
= 0.0514 sec. > 0.05 sec.

Aog = \frac{246 \text{ L}^3}{\text{ Es Ig}} \frac{1}{2 \pi fg} \left[2 \left[1 - \alpha \sin(\alpha) - \cos(\alpha) \right] + \alpha^2 \right] = 0.0034 \text{ in.}

RIGHT GIRDER CALCULATIONS:
Girder section: W24x76 d= 23.920 in. A= 22.40 in.² Ix= 2100 in.⁴
Same as Left girder.

BAY CALCULATIONS:
Using girder with smaller frequency:

Frequency: \frac{1}{f_s^2} = \frac{1}{f_b^2} + \frac{1}{f_g^2} = \frac{1}{5.56^2} + \frac{1}{7.12^2}

f_s = 4.38 \text{ Hz.}

Amplitude: Aos = Aob + Aog/2 = 0.0099 + 0.0034/2 = 0.0116 \text{ in.}

Warning:
The floor system does not satisfy the Murray criterion.
Possible solutions are:

-- Continued --
Appendix A.4.2
Murray Criterion Calculations
Hot-Rolled Girders with Joists (Cont.)

Melroe Corporation
File # 563
Typical Bay

- Increase the concrete thickness, which will decrease the natural frequency but will not significantly change the initial amplitude, Ao.

- Change the beam spacing.

Generally, increasing the member stiffness (moment of inertia) will not improve the evaluation.

-- End --
Appendix A.4 Murray Criterion Calculations

A.4.3 JOIST GIRDERS WITH JOISTS

Garmin International
File # 506
Typical Exterior Bay

Knowledge Base FLOORVIB2 Version 1.1B2

Licensed to: STRUCTURAL ENGINEERS, INC.
537 Wisteria Drive
Radford, VA 24141

Date: 01/27/03 By: MDB
Job Id: Garmin Int. Bldg. -- Olathe, KS
Id: Typ. Ext. #506

VIBRATION ANALYSIS:

Evaluation Criterion: Murray
Environment: Office/Residential
Reference: Murray, T.M., "Building Floor Vibrations",
AISC Engineering Journal, 3rd Quarter, 1991,
pages 102-109.

Required damping, D (%) = 35 Ao f + 2.5

<table>
<thead>
<tr>
<th>Section</th>
<th>w, plf</th>
<th>Itr, in4</th>
<th>f, Hz</th>
<th>Ao, in.</th>
<th>Dreq'd, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joist 18K4</td>
<td>115.4</td>
<td>183.9</td>
<td>6.46</td>
<td>0.0145</td>
<td>5.8</td>
</tr>
<tr>
<td>Left Girder Wall</td>
<td>708.5</td>
<td>0.0</td>
<td>10000</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Right Girder 36G14N4</td>
<td>1320.8</td>
<td>4161.1</td>
<td>5.79</td>
<td>0.0063</td>
<td>3.8</td>
</tr>
<tr>
<td>Bay (Using smaller girder frequency)</td>
<td>4.31</td>
<td>0.0176</td>
<td>5.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Required damping is 0.0 in the above table because the natural frequency is greater than 10 Hz.

Evaluation:

The Joist controls
Required damping = 5.8 % > 1 % Actual damping

-- Continued --
Appendix A.4.3
Murray Criterion Calculations
Joist Girders with Joists (Cont.)

Garmin International
File # 506
Typical Exterior Bay

Date: 01/27/03 By: MDB Page 2
Job Id: Garmin Int. Bldg. -- Olathe, KS
Id: Typ. Ext. #506

The system DOES NOT SATISFY THE CRITERION.

LOADING DATA:

Slab + 1.0 psf Deck = 28.3 psf
Dead loads = 4.0 psf
Collateral loads = 0.0 psf
Live loads = 11.0 psf
Actual beam and girder weights

Tributary width for left girder = 28.00/2 = 14.00 ft.
Tributary width for right girder = 2 x (28.00/2) = 28.00 ft.

ESTIMATED DAMPING:

Bare floor: 1.0 %
Ceiling: 0.0 %
Mechanical: 0.0 %
Partition: 0.0 %
Total: 1.0 %

CONCRETE/SLAB DATA:

Concrete dc= 2.50 in. fc' = 3.5 Ksi
wt= 150 pcf Ec = 3437 Ksi

Modular ratio, n= 8.44
Deck height: 0.625 in.
Effective concrete thickness in deck: 0.3125 in.

JOIST CALCULATIONS:

Joist: 18K4 (7.2 plf)
d = 18.000 in. A = 1.431 in.² Ix = 102 in.⁴ yc = 8.06 in.

Spacing: S = 30 in.
Span: Lb = 28.00 ft.
Uniform load: \(\text{wb} = (28.3 + 4.0 + 0.0 + 11.0) \times 30.00/12 + 7.2 \)
= 115.4 plf

Transformed moment of inertia:
Effective concrete width = \(\min(0.4 \text{ Lb, } S) = 30.000 \text{ in.} \)
Effective concrete depth = 1.875 in.
Transformed concrete width = 3.556 in.
Transformed concrete area = 6.667 in.²
Distance to neutral axis = 8.134 in. \(\text{ (Above beam c. g.)} \)
Transformed moment of inertia = 183.9 in.⁴
6 ≤ Lj/D = 18.67 ≤ 24

-- Continued --
Appendix A.4.3
Murray Criterion Calculations
Joist Girders with Joists (Cont.)

Garmin International
File # 506
Typical Exterior Bay

Date: 01/27/03 By: MDB Page 3
Job Id: Garmin Int. Bldg. -- Olathe, KS
Id: Typ. Ext. #506

Cr = 0.9 \left[1 - e^{\left(-0.28 \frac{L_j}{D}\right)}\right]^{2.8} = 0.89
\tau = \left(\frac{1}{Cr}\right) - 1 = 0.128
Effective moment of inertia = \frac{1}{\left[\tau / \text{ichords} + 1 / \text{Icomp}\right]} = 149.4 \text{ in.}^4

Frequency = 1.57 \times \left[\frac{386 \text{ Es Itr}}{\text{ wb L}^4}\right]^{0.5}
= 1.57 \times \left[\frac{386 \text{ Es} \times 183.9}{(115.4 /12) \times (28.00 \times 12)^4}\right]^{0.5} = 6.46 \text{ Hz.}

Tee-Beam Amplitude:
α = 0.1 \times π \times 2.029
\text{sec to} = \frac{1}{\left(\tau fb\right)} \times \frac{1}{\tan (\alpha)}
= \left(\frac{1}{(\pi \times 6.46)}\right) \times 1.11
= 0.0548 \text{ sec.} > 0.05 \text{ sec.}

Aot = \frac{246 \text{ L}^3}{\text{ Es Itr}} \times \frac{1}{2 \times π \times \text{ fb}} \sqrt{2 \left[1 - \alpha \sin(\alpha) - \cos(\alpha)\right] + \alpha^2} = 0.0791 \text{ in.}

Number of Effective Tee-Beams:
Dx = \text{ Es de}^3 / 12 = 3437 \times 2.19^3 / 12 = 3008 \text{ K-in.}
Dy = \text{ Es Itr} / S = 29000 \times 183.9 / 30.00 = 177770 \text{ K-in.}
ε = (Dx/Dy)^{0.25} = 0.36
Xc = 1.06 \times ε \times Lb = 1.06 \times 0.36 \times 336 = 128.46 \text{ in.}
X = 30", 60", 90", 120"

Neff = 1.0 + 2 \times E \times \cos(\pi x/(2 \times x_0))
= 5.47

Beam Amplitude, Aob = Aot / Neff = 0.0145 in.

LEFT GIRDER CALCULATIONS:

Tributary width = 14.00 \text{ ft.}
Lg = 35.00 \text{ ft.}
Equivalent uniform load: \begin{align*}
w_g &= 14.00 \times \left(\frac{115.4}{2.50}\right) + 62.0 \\
&= 708.5 \text{ plf}
\end{align*}

Transformed moment of inertia:
\begin{align*}
\text{min}(0.2 \times Lg, \frac{Lb}{2}) &= 84.000 " \ (9.955" \ transformed) \\
\text{-- Continued --}
\end{align*}
Appendix A.4.3
Murray Criterion Calculations
Joist Girders with Joists (Cont.)

Garmin International
File # 506
Typical Exterior Bay

Date: 01/27/03 By: MDB Page 4
Job Id: Garmin Int. Bldg. -- Olathe, KS
Id: Typ. Ext. #506

Effective concrete width = 84.000 in. and 42.000 in.
Transformed concrete width = 9.955 in. and 4.978 in.
Transformed concrete area = 18.666 in.2 and 3.111 in.2
Joist seat depth = 2.5 in.
Distance to neutral axis = 0.0 in. (Above girder c. g.)
Transformed moment of inertia = 0.0 in.4

Frequency = 1.57 x \[
\frac{386 \text{ Es Itr}}{\text{wg L}^4}\]^{0.5}

= 1.57 x \[
\frac{386 \text{ Es x 0.0}}{(708.5 /12) x (35.00x12)^4}\]^{0.5} = 10000.00 Hz.

Girder Amplitude:
\[\alpha = 0.1 \pi \text{ ftg} = 0.0\]
since to = \[\frac{1}{(\pi \text{ ftg})}\tan^{-1}(\alpha)

= \left[\frac{1}{(\pi \times 10000.00)}\right] \times 0.0

= 0.0 \text{ sec. } \times 0.05 \text{ sec.}

Aog = \left[\frac{246 \text{ L}^3}{(\text{Es Irg})}\right] \times (0.1 - to) = 0.0 \text{ in.}

RIGHT GIRDER CALCULATIONS:

Tributary width = 28.00 ft.
Span:
Lg = 35.00 ft.
Equivalent uniform load: wg = 28.00 \times (115.4/2.50) + 27.1
= 1320.8 plf

Transformed moment of inertia:
\[\text{min}(0.2 \text{ Lg, } 28.00x12/2) + \text{min}(0.2 \text{ Lg, } 28.00x12/2)\]
= 168.000" (19.911" transformed)

\[\frac{1.875"}{0.625"} \frac{2.5"}{0.625"} \frac{2.5"}{(9.955" \text{ transformed})}

Effective concrete width = 168.000 in. and 84.000 in.
Transformed concrete width = 19.911 in. and 9.955 in.

-- Continued --
Appendix A.4.3
Murray Criterion Calculations
Joist Girders with Joists (Cont.)

Garmin International
File # 506
Typical Exterior Bay

Date: 01/27/03 By: MDB Page 5
Job Id: Garmin Int. Bldg. -- Olathe, KS
Id: Typ. Ext. #506

Transformed concrete area = 37.333 in.² and 6.222 in.²
Joist seat depth = 2.5 in.
Distance to neutral axis = 17.392 in. (Above girder c. g.)
Transformed moment of inertia = 4161.1 in.⁴

Frequency = \[1.57 \times \left(\frac{386 \text{ Es Itr}}{\text{ wg L}^4} \right)^{0.5}\]

\[= 1.57 \times \left(\frac{386 \text{ E s } \times 4161.1}{(1320.8/12) \times (35.00 \times 12)^4} \right)^{0.5} = 5.79 \text{ Hz.}\]

Girder Amplitude:
\[\alpha = 0.1 \frac{\pi}{\text{ fg}} = 1.819\]

since to = \[\frac{1}{(\pi \times \text{ fg})} \tan^{-1}(\alpha)\]
\[= \frac{1}{(\pi \times 5.79)} \times 1.07\] = 0.0587 sec. > 0.05 sec.

\[A_{og} = \frac{246 \text{ L}^3}{\text{ Es I g}} \frac{1}{2 \pi \text{ fg}} \sqrt{2 \left[1 - \alpha \sin(\alpha) - \cos(\alpha)\right] + \alpha^2} = 0.0063 \text{ in.}\]

BAY CALCULATIONS:

Using girder with smaller frequency:

\[\frac{1}{f_s^2} = \frac{1}{f_b^2} + \frac{1}{f_g^2} = \frac{1}{6.46^2} + \frac{1}{5.79^2}\]

\[f_s = 4.31 \text{ Hz.}\]

Amplitude: \[A_{os} = A_{ob} + A_{og}/2 = 0.0145 + 0.0063/2 = 0.0176 \text{ in.}\]

Warning:
The floor system does not satisfy the Murray criterion.
Possible solutions are:
- Increase the concrete thickness, which will decrease the natural frequency but will not significantly change the initial amplitude, Ao.
- Change the beam spacing.

Generally, increasing the member stiffness (moment of inertia) will not improve the evaluation.

-- End --
APPENDIX A.5 MODIFIED REIHER-MEISTER CALCULATIONS
Appendix A.5 Modified Reiher-Meister Calculations

A.5.1 HOT-ROLLED SHAPES

Newport V
File # 596
Typical Bay

Knowledge Base FLOORVIB2 Version 1.1B2

Licensed to: STRUCTURAL ENGINEERS, INC.
537 Wisteria Drive
Radford, VA 24141

Date: 01/27/03 By: MDB Page 1
Job Id: Newport Office Center V
Id: Typ.

VIBRATION ANALYSIS:

Evaluation Criterion: Modified Reiher & Meister
Environment: Office/Residential

<table>
<thead>
<tr>
<th>Section</th>
<th>w, plf</th>
<th>Itr, in4</th>
<th>f, Hz</th>
<th>Ao in</th>
<th>Ao f, in/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam</td>
<td>W21x44</td>
<td>724.4</td>
<td>2669.5</td>
<td>3.67</td>
<td>0.0068</td>
</tr>
<tr>
<td>Left Girder</td>
<td>Wall</td>
<td>1615.1</td>
<td>0.0</td>
<td>10000</td>
<td>0.0</td>
</tr>
<tr>
<td>Right Girder</td>
<td>W27x84</td>
<td>3027.0</td>
<td>7389.0</td>
<td>6.57</td>
<td>0.0027</td>
</tr>
<tr>
<td>Bay (Using smaller girder frequency)</td>
<td>3.20</td>
<td>0.0081</td>
<td>0.0259</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evaluation:

The Bay controls.
(Elements having frequencies above 10 Hz. were ignored in the evaluation.) Vibrations are SLIGHTLY perceptible.
The system SATISFIES THE CRITERION.

-- Continued --
Appendix A.5.1
Modified Reiher-Meister Calculations
Hot-Rolled Shapes (Cont.)

Newport V
File # 596
Typical Bay

Date: 01/26/03
Job Id: Newport Office Center V

0.15
Strongly Perceivable
/\ Not Acceptable

Ao f
0.10
in./sec

/\ Distinctly Perceivable

0.05
Acceptable

0.02
Slightly Perceivable
\/

Not Perceivable

Frequency, Hz

LOADING DATA:
Slab + 1.0 psf Deck = 41.7 psf
Dead loads = 4.0 psf
Collateral loads = 12.5 psf
Live loads = 8.0 psf
Actual beam and girder weights

Tributary width for left girder = 45.83/2 = 22.92 ft.
Tributary width for right girder = 45.83/2 + 37.67/2 = 41.75 ft.

CONCRETE/SLAB DATA:
Concrete dc= 5.25 in. fc' = 3.5 Ksi
wt= 115 pcf Ec= 2307 KSI

Modular ratio, n= 12.57

Deck height: 2 in.
Effective concrete thickness in deck: 1 in.

BEAM CALCULATIONS:
Beam section: W21x44 d= 20.660 in. A= 13.00 in.2 Ix= 843 in.4

Spacing:
S = 123.33 in.
Span:
Lb = 45.83 ft.
Uniform load: wb = (41.7 + 4.0 + 12.5 + 8.0) x 123.33/12 + 44.0
= 724.4 plf

Transformed moment of inertia:
Effective concrete width = min(0.4 Lb, S) = 123.330 in.
Effective concrete depth = 3.250 in.
Transformed concrete width = 9.811 in.
Transformed concrete area = 31.886 in.2
Distance to neutral axis = 9.913 in. (Above beam c. g.)

Transformed moment of inertia = 2669.5 in.4

-- Continued --
Appendix A.5.1
Modified Reier-Meister Calculations
Hot-Rolled Shapes (Cont.)

Newport V
File # 596
Typical Bay

Date: 01/26/03 By: MDB
Job Id: Newport Office Center V
Id: Typ.

Frequency = 1.57 x \left[\frac{386 \text{ Es Itr}}{\text{ wb L}^4} \right]^{0.5}
= 1.57 x \left[\frac{386 \text{ Es x 2669.5}}{(724.4/12) \times (45.83 \times 12)^4} \right]^{0.5} = 3.67 \text{ Hz.}

Tee-Beam Amplitude:
\alpha = 0.1 \pi \text{ ft} = 1.153
since \theta = \left[\frac{1}{(\pi \times 3.67)} \right] \tan^{-1}(\alpha)
= \left[\frac{1}{(\pi \times 3.67)} \right] \times 0.86
= 0.0743 \text{ sec.} > 0.05 \text{ sec.}

A_o_b = \frac{246 \text{ L}^3}{\text{ Es Ib}} \frac{1}{2 \pi \text{ fb}} \sqrt{\frac{2[1 - \alpha \sin(\alpha) - \cos(\alpha)] + \alpha^2}{\text{ ft}^2}} = 0.0147 \text{ in.}

Number of Effective Tee-Beams:
N_{eff} = 2.97 - \frac{S}{(17.3 \text{ de}) + L^4/(1.35 \text{ Es Itr})}
= 2.97 - \frac{123.33}{(17.3 \times 4.25)}
+ (45.83 \times 12)^4/(1.35 \times 29 \times 10^{-6} \times 2669.49)
= 2.17

Beam Amplitude, A_{o_b} = A_{o_b}/N_{eff} = 0.0068 \text{ in.}

LEFT GIRDER CALCULATIONS:

Tributary width = 22.92 \text{ ft.}
Span: \text{ Lg} = 30.83 \text{ ft.}
Equivalent uniform load: \text{ wg} = 22.92 \times (724.4/10.28) + 0.0
= 1615.1 \text{ plf}

Transormed moment of inertia:
\text{ min}(0.2 \text{ Lg, Lb/2}) = 73.999 \text{ " (5.887" transformed)}

\begin{align*}
\text{Effective concrete width} &= 73.999 \text{ in. and 37.000 in.} \\
\text{Transformed concrete width} &= 5.887 \text{ in. and 2.943 in.} \\
\text{Transformed concrete area} &= 19.132 \text{ in.}^2 \text{ and 5.887 in.}^2 \\
\text{Distance to neutral axis} &= 0.0 \text{ in. (Above girder c. g.)} \\
\text{Transformed moment of inertia} &= 0.0 \text{ in.}^4
\end{align*}

-- Continued --
Appendix A.5.1
Modified Reiher-Meister Calculations
Hot-Rolled Shapes (Cont.)

Newport V
File # 596
Typical Bay

Date: 01/26/03 By: MDB
Job Id: Newport Office Center V
Id: Typ.

Frequency = 1.57 × \[
\left(\frac{386 \text{ Es Itr}}{\text{wg L}^4} \right)^{0.5}
\]
 = 1.57 × \[
\left(\frac{386 \text{ Es} \times 0.0}{(1615.1/12) \times (30.83 \times 12)^4} \right)^{0.5}
\] = 10000.00 Hz.

Girder Amplitude:
\[\alpha = 0.1 \pi fg = 0.0\]
since \[\tau = \left(1/(\pi fg)\right) \tan^{-1}(\alpha)\]
\[= \left[1/(\pi \times 10000.00)\right] \times 0.0\]
\[= 0.0 \text{ sec.} \leq 0.05 \text{ sec.}\]

\[A_{og} = \left(\frac{246 \text{ L}^3}{\text{Es Ig}}\right) (0.1 - \tau) = 0.0 \text{ in.}\]

RIGHT GIRDER CALCULATIONS:

Girder section: W27x84 \(d = 26.710\text{ in.} \quad A = 24.80\text{ in.}^2 \quad I_x = 2850\text{ in.}^4\)

Tributary width \(L_g = 41.75\text{ ft.}\)
Equivalent uniform load: \(\text{wg} = 41.75 \times (724.4/10.28) + 84.0\)
 = 3027.0 plf

Transformed moment of inertia:
\[\text{min}(0.2 L_g, 45.83x12/2) + \text{min}(0.2 L_g, 37.67x12/2)\]
 = 147.998" (11.774" transformed)

Effective concrete width = 147.998 in. and 73.999 in.
Transformed concrete width = 11.774 in. and 5.887 in.
Transformed concrete area = 38.264 in.2 and 11.774 in.2
Distance to neutral axis = 10.940 in. (Above girder c. g.)
Transformed moment of inertia = 7389.0 in.4

Frequency = 1.57 × \[
\left(\frac{386 \text{ Es Itr}}{\text{wg L}^4} \right)^{0.5}
\]
 = 1.57 × \[
\left(\frac{386 \text{ Es} \times 7389.0}{(3027.0/12) \times (30.83 \times 12)^4} \right)^{0.5}
\] = 6.57 Hz.

-- Continued --
Appendix A.5.1
Modified Reiher-Meister Calculations
Hot-Rolled Shapes (Cont.)

Newport V
File # 596
Typical Bay

Girder Amplitude:
\[\alpha = 0.1 \pi \frac{f_g}{c} = 2.064 \]
\[\text{since to = } \left[\frac{1}{(\pi \frac{f_g}{c})} \right] \tan^{-1}(\alpha) \]
\[= \left[\frac{1}{(\pi \times 6.57)} \right] \times 1.12 \]
\[= 0.0542 \text{ sec. > 0.05 sec.} \]
\[A_{og} = \frac{246 \times L^3}{E_s I_g} \frac{1}{2 \pi \frac{f_g}{c}} \left(\frac{1}{2} \left[1 - \alpha \sin(\alpha) - \cos(\alpha) \right] + \alpha^2 \right) = 0.0027 \text{ in.} \]

BAY CALCULATIONS:

Using girder with smaller frequency:
\[\text{Frequency: } \frac{1}{f_s^2} = \frac{1}{f_b^2} + \frac{1}{f_g^2} = \frac{1}{3.67^2} + \frac{1}{6.57^2} \]
\[f_s = 3.20 \text{ Hz.} \]

Amplitude: \[A_{os} = A_{ob} + \frac{A_{og}}{2} = 0.0068 + \frac{0.0027}{2} = 0.0081 \text{ in.} \]

-- End --
Appendix A.5 Modified Reiher-Meister Calculations

A.5.2 HOT-ROLLED GIRDERS WITH JOISTS

Melroe Corporation
File # 563
Typical Bay

Knowledge Base FLOORVIB2 Version 1.1B2

Licensed to: STRUCTURAL ENGINEERS, INC.
537 Wisteria Drive
Radford, VA 24141

Date: 01/27/03 By: MDB Page 1
Job Id: Melroe Corp. Building --- West Fargo, N.D.
Id: Typ.

--- Continued --

Evaluation Criterion: Modified Reiher & Meister
Environment: Office/Residential

<table>
<thead>
<tr>
<th>Section</th>
<th>w, plf</th>
<th>Itr, in4</th>
<th>f, Hz</th>
<th>Ao in.</th>
<th>Ao f, in/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joist 24X8</td>
<td>108.5</td>
<td>451.4</td>
<td>5.56</td>
<td>0.0099</td>
<td>0.0552</td>
</tr>
<tr>
<td>Left Girder W24X76</td>
<td>2204.4</td>
<td>5664.4</td>
<td>7.12</td>
<td>0.0034</td>
<td>0.0242</td>
</tr>
<tr>
<td>Right Girder W24X76</td>
<td>2204.4</td>
<td>5664.4</td>
<td>7.12</td>
<td>0.0034</td>
<td>0.0242</td>
</tr>
<tr>
<td>Bay (Using smaller girder frequency)</td>
<td>4.38</td>
<td>0.0116</td>
<td>0.0509</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evaluation:
The Joist controls.
Vibrations are DISTinctly perceptible.
However, the system SATISFIES THE CRITERION.
Appendix A.5.2
Modified Reiher-Meister Calculations
Hot-Rolled Girders with Joists (Cont.)

Melroe Corporation
File # 563
Typical Bay

Date: 01/27/03 By: MDB Page 2
Job Id: Melroe Corp. Building --- West Fargo, N.D.
Id: Typ.

<table>
<thead>
<tr>
<th>Ao f in./sec</th>
<th>Strongly Perceptible</th>
<th>Distinctly Perceptible</th>
<th>Slightly Perceptible</th>
<th>Not Perceptible</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frequency, Hz

LOADING DATA:
Slab + 1.0 psf Deck = 30.5 psf
Dead loads = 7.0 psf
Collateral loads = 0.0 psf
Live loads = 11.0 psf
Actual beam and girder weights

Tributary width for girder = 40.13/2 + 38.38/2 = 39.25 ft.

CONCRETE/SLAB DATA:
Concrete dc= 2.75 in. fc'= 3 Ksi
wt= 145 pcf Bc= 3024 Ksi

Modular ratio, n= 9.59

deck height: 0.625 in.
Effective concrete thickness in deck: 0.3125 in.

JOIST CALCULATIONS:
Joist: 24K8 (11.5 plf)
d= 24.000 in. A= 2.157 in.2 Ix= 282 in.4 yc= 10.72 in.

Spacing: S = 24 in.
Span: Lb = 38.38 ft.
Uniform load: wb = (30.5 + 7.0 + 0.0 + 11.0) x 24.00/12 + 11.5 = 108.5 plf

Transformed moment of inertia:
Effective concrete width = min(0.4 Lb, S) = 24.000 in.
Effective concrete depth = 2.125 in.
Transformed concrete width = 2.503 in.
Transformed concrete area = 5.318 in.2
Distance to neutral axis = 9.228 in. (Above beam c. g.)
Transformed moment of inertia = 451.4 in.4
6 x Lj/D=19.19 ≅ 24

-- Continued --
Appendix A.5.2
Modified Reher-Meister Calculations
Hot-Rolled Girders with Joists (Cont.)

Melroe Corporation
File # 563
Typical Bay

Date: 01/27/03 By: MDB Page 3
Job Id: Melroe Corp. Building --- West Fargo, N.D.
Id: Typ.

\[
Cr = 0.9 \left[1 - e^{-0.28 \frac{L}{D}} \right]^{2.8} = 0.89
\]
\[
\tau = \frac{1}{(1/Cr) - 1} = 0.126
\]

Effective moment of inertia = \(\frac{1}{\tau/\text{Chords} + 1/\text{Icomp}} \) = 375.7 in.²

Frequency = 1.57 \times \frac{386 \text{ Es Itr}}{w b L^4}^{0.5}

= 1.57 \times \frac{386 \text{ Es} \times 451.4}{(108.5/12) \times (38.38 \times 12)^4}^{0.5} = 5.56 \text{ Hz.}

Tee-Beam Amplitude:
\[\alpha = 0.1 \pi \text{ fb} = 1.747\]

since to = \(\frac{1}{(\pi \times 5.56)} \times 1.05 \times 0.0602 \text{ sec.} > 0.05 \text{ sec.}\)

\[
A_0 = \frac{246 \text{ L}^3}{\text{Es Itr}} \left[\frac{1}{2 \pi \text{ fb}} \right]^{1/2} \left[1 - \alpha \sin(\alpha) - \cos(\alpha) \right] + \alpha^2 = 0.0736 \text{ in.}
\]

Number of Effective Tee-Beams:
\[
D_x = \frac{E \text{ de}^3}{12} = 3024 \times 2.44^3/12 = 3661 \text{ K-in.}
\]
\[
D_y = \frac{E \text{ Itr}}{S} = 29000 \times 451.4/24.00 = 545442 \text{ K-in.}
\]
\[
\epsilon = \left(\frac{D_x}{D_y} \right) \epsilon = 0.25 = 0.29\]

\[
X_0 = 1.06 \epsilon L_b = 1.06 \times 0.29 \times 460.5 = 139.71 \text{ in.}
\]
\[
X = 24", 48", 72", 96", 120"
\]

\[
\text{Neff} = 1.0 + 2 \sum \cos(\pi x/(2 X_0)) = 7.41
\]

Beam Amplitude, \(A_{0b} = A_0 / \text{Neff} = 0.0099 \text{ in.} \)

LEFT GIRDER CALCULATIONS:

Girder section: W24x76 \(d = 23.920 \text{ in.} \quad A = 22.40 \text{ in.²} \quad I_x = 2100 \text{ in.⁴} \)

Tributary width = 39.25 ft.
Span: \(L_g = 30.00 \text{ ft.} \)
Equivalent uniform load: \(w_g = 39.25 \times (108.5/2.00) + 76.0 \)
\[
= 2204.4 \text{ plf}
\]

Transformed moment of inertia:
\[
\min(0.2 L_g, 40.13 x 12/2) + \min(0.2 L_g, 38.38 x 12/2) = 144.000^\circ (15.016^\circ \text{ transformed}) \]

\[
\overbrace{2.125^\circ} \quad \overbrace{2.125^\circ} \quad \overbrace{2.125^\circ}
\]

-- Continued --
Appendix A.5.2
Modified Reiher-Meister Calculations
Hot-Rolled Girders with Joists (Cont.)

Melroe Corporation
File # 563
Typical Bay

Date: 01/27/03 By: MDB Page 4
Job Id: Melroe Corp. Building --- West Fargo, N.D.
Id: Typ.

Effective concrete width = 144.000 in. and 72.000 in.
Transformed concrete width = 15.016 in. and 7.508 in.
Transformed concrete area = 31.908 in.2 and 4.692 in.2
Joist seat depth = 2.5 in.
Distance to neutral axis = 9.908 in. (Above girder c. g.)
Transformed moment of inertia = 5664.4 in.4

Frequency = $1.57 \times \left[\frac{386 \text{ Bs Itr}}{\text{wg L}^4} \right]^{0.5}$

$= 1.57 \times \left[\frac{386 \text{ Bs} \times 5664.4}{(2204.4/12) \times (30.00\times12)^4} \right]^{0.5}$

$= 7.12 \text{ Hz.}$

Girder Amplitude:
$\alpha = 0.1 \pi \text{ fg} = 2.237$

since to = $[1/(\pi \text{ fg})] \tan^{-1}(\alpha)$

$= [1/(\pi \times 7.12)] \times 1.15$

$= 0.0514 \text{ sec.} > 0.05 \text{ sec.}$

$A_{og} = \frac{246 \text{ L}^3}{\text{Bs Iq} \times 2 \pi \text{ fg}} \left[2 \left[1 - \alpha \sin(\alpha) - \cos(\alpha)\right] + \alpha^2\right] = 0.0034 \text{ in.}$

RIGHT GIRDER CALCULATIONS:
Girder section: W24x76 d= 23.920 in. A= 22.40 in.2 Ix= 2100 in.4
Same as Left girder.

BAY CALCULATIONS:
Using girder with smaller frequency:

Frequency:
$\frac{1}{fs^2} = \frac{1}{fb^2} + \frac{1}{fg^2} = \frac{1}{5.56^2} + \frac{1}{7.12^2}$

$fs = 4.38 \text{ Hz.}$

Amplitude: $A_{os} = A_{ob} + A_{og}/2 = 0.0099 + 0.0034/2 = 0.0116 \text{ in.}$

-- End --
Appendix A.5 Modified Reiher-Meister Calculations

A.5.3 JOIST GIRDERS WITH JOISTS

Garmin International
File # 506
Typical Exterior Bay

Knowledge Base FLOORVIB2 Version 1.1B2

Licensed to: STRUCTURAL ENGINEERS, INC.
537 Wisteria Drive
Radford, VA 24141

Date: 01/27/03 Page 1
By: MDB
Job Id: Garmin Int. Bldg. -- Olathe, KS
Id: Typ. Ext. #506

VIBRATION ANALYSIS:

Evaluation Criterion: Modified Reiher & Meister
Environment: Office/Residential

<table>
<thead>
<tr>
<th>Section</th>
<th>w, plf</th>
<th>Itr, in²</th>
<th>f, Hz</th>
<th>Ao in</th>
<th>Ao f, in/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joist</td>
<td>18K4</td>
<td>115.4</td>
<td>183.9</td>
<td>6.46</td>
<td>0.0145</td>
</tr>
<tr>
<td>Left Girder</td>
<td>36G14N4</td>
<td>1320.8</td>
<td>4161.1</td>
<td>5.79</td>
<td>0.0063</td>
</tr>
<tr>
<td>Right Girder</td>
<td>36G14N4</td>
<td>1320.8</td>
<td>4161.1</td>
<td>5.79</td>
<td>0.0063</td>
</tr>
<tr>
<td>Bay (Using smaller girder frequency)</td>
<td>36G14N4</td>
<td>1320.8</td>
<td>4161.1</td>
<td>5.79</td>
<td>0.0063</td>
</tr>
</tbody>
</table>

Evaluation:

The Joist controls.
Elements having frequencies above 10 Hz. were ignored in the evaluation.
Vibrations are DISTINCTLY perceptible.
However, the system SATISFIES THE CRITERION.

-- Continued --
Appendix A.5.3
Modified Reiher-Meister Calculations
Joist Girders with Joists (Cont.)

Garmin International
File # 506
Typical Exterior Bay

Date: 01/27/03 By: MDB Page 2
Job Id: Garmin Int. Bldg. -- Olathe, KS
Id: Typ. Ext. #506

<table>
<thead>
<tr>
<th>Ao f in./sec</th>
<th>Strongly Perceptible</th>
<th>Distinctly Perceptible</th>
<th>Slightly Perceptible</th>
<th>Not Perceptible</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOADING DATA:
Slab + 1.0 psf Deck = 28.3 psf
Dead loads = 4.0 psf
Collateral loads = 0.0 psf
Live loads = 11.0 psf
Actual beam and girder weights
Tributary width for left girder = 28.00/2 = 14.00 ft.
Tributary width for right girder = 2 x (28.00/2) = 28.00 ft.

CONCRETE/SLAB DATA:
Concrete \(d_c = 2.50 \text{ in.} \) \(f_{c'} = 3.5 \text{ Ksi} \)
wt = 150 pcf \(E_c = 3437 \text{ Ksi} \)

Modular ratio, \(n = 8.44 \)
Deck height: 0.625 in.
Effective concrete thickness in deck: 0.3125 in.

JOIST CALCULATIONS:
Joist: 18K4 (7.2 plf)
\(d = 18.000 \text{ in.} \) \(A = 1.431 \text{ in.}^2 \) \(I_x = 102 \text{ in.}^4 \) \(y_c = 8.06 \text{ in.} \)
Spacing: \(S = 30 \text{ in.} \)
Span: \(L_b = 28.00 \text{ ft.} \)
Uniform load: \(w_b = (28.3 + 4.0 + 0.0 + 11.0) \times 30.00/12 + 7.2 \)
\(= 115.4 \text{ plf} \)

Transformed moment of inertia:
Effective concrete width = \(\min(0.4 L_b, S) = 30.000 \text{ in.} \)
Effective concrete depth = 1.875 in.
Transformed concrete width = 3.556 in.
Transformed concrete area = 6.667 in.2
Distance to neutral axis = 8.134 in. (Above beam c. g.)

-- Continued --
Appendix A.5.3
Modified Reiher-Meister Calculations
Joist Girders with Joists (Cont.)

Garmin International
File #506
Typical Exterior Bay

Date: 01/27/03 By: MDB
Job Id: Garmin Int. Bldg. -- Olathe, KS
Id: Typ. Ext. #506

Page 3

Transformed moment of inertia = 183.9 in.4
6 < Lj/D = 18.67 < 24
Cr = 0.9 [1 - e^(-0.28 Lj/D)]^2.8 = 0.89
τ = (1/Cr) - 1 = 0.128
Effective moment of inertia = 1/[τ/Ichords+1/Icomp] = 149.4 in.4

Frequency = 1.57 x \[\frac{386 \text{ Es Itr}}{\text{wb L}^4}\]^{0.5}
= 1.57 x \[\frac{386 \text{ Es x 183.9}}{(115.4 /12) \times (28.00x12)^4}\]^{0.5} = 6.46 Hz.

Tee-Beam Amplitude:
α = 0.1 π fb = 2.029
since to = [1/(π fb)] tan-1(α)
= [1/(π x 6.46)] x 1.11
= 0.0548 sec. > 0.05 sec.

\[Aot = \frac{246 \text{ L}^3}{\text{Es Ib}} \times \frac{1}{2 \pi \text{ fb}} \sqrt{2 \left[1 - \alpha \sin(\alpha) - \cos(\alpha)\right] + \alpha^2} = 0.0791 \text{ in.}\]

Number of Effective Tee-Beams:
Dx = Ec de^3 / 12 = 3437 x 2.19^3 / 12 = 3008 K-in.
Dy = Es Itr / 12 = 29000 x 183.9 / 30.00 = 177770 K-in.
ε = (Dx/Dy)^0.25 = 0.36
Xo = 1.06 ε Lb = 1.06 x 0.36 x 336 = 128.46 in.
X = 30", 60", 90", 120"*

\[Neff = 1.0 + 2 \sum \cos(\pi x/(2 x o))\]
= 5.47

Beam Amplitude, Aob = Aot/Neff = 0.0145 in.

LEFT GIRDERS CALCULATIONS:

Tributary width = 14.00 ft.
Span: Lg = 35.00 ft.
Equivalent uniform load: \(w_g = 14.00 \times (115.4/2.50) + 62.0\)
= 708.5 plf

Transformed moment of inertia:
\(\min(0.2 \text{ Lg}, Lb/2) = 84.000 \ " (9.955" \text{ transformed})\)

\[\frac{1}{1.875"} \text{ -- Continued --}\]
Appendix A.5.3
Modified Reiher-Meister Calculations
Joist Girders with Joists (Cont.)

Garmin International
File # 506
Typical Exterior Bay

Date: 01/27/03 By: MDB Page 4
Job Id: Garmin Int. Bldg. -- Olathe, KS
Id: Typ. Ext. #506

Effective concrete width = 84.000 in. and 42.000 in.
Transformed concrete width = 9.955 in. and 4.978 in.
Transformed concrete area = 18.666 in.2 and 3.111 in.2
Joist seat depth = 2.5 in.
Distance to neutral axis = 0.0 in. (Above girder c. g.)
Transformed moment of inertia = 0.0 in.4

Frequency = 1.57 x \[
\frac{386 \text{ Es Itr}}{\text{ wg L}^4}\]^{0.5}

= 1.57 \times \frac{386 \text{ Es} \times 0.0}{(708.5/12) \times (35.00 \times 12)^4}^{0.5} = 10000.00 \text{ Hz.}

Girder Amplitude:
\[\alpha = 0.1 \times \pi \times 0.0\]
since \[\frac{[1/(\pi \text{ fg})] \tan^{-1}(\alpha)}{[1/(\pi \times 10000.00)]} \times 0.0\]
= 0.00 sec. x 0.05 sec.
\[\text{Aog} = [246 \text{ L}^3 / (\text{Es Ig})] \times (0.1 - \text{to}) = 0.0 \text{ in.}\]

RIGHT GIRDER CALCULATIONS:

Tributary width = 28.00 ft.
Span: Lg = 35.00 ft.
Equivalent uniform load: \[\text{wg} = 28.00 \times (115.4/2.50) + 27.1\]
= 1320.8 plf

Transformed moment of inertia:
\[\min(0.2 \text{ Lg, 28.00x12/2}) + \min(0.2 \text{ Lg, 28.00x12/2})\]
= 168.000" (19.911" transformed)

Effective concrete width = 168.000 in. and 84.000 in.
Transformed concrete width = 19.911 in. and 9.955 in.

-- Continued --
Appendix A.5.3
Modified Reiher-Meister Calculations
Joist Girders with Joists (Cont.)

Garmin International
File # 506
Typical Exterior Bay

Date: 01/27/03 By: MDB
Job Id: Garmin Int. Bldg. -- Olathe, KS
Id: Typ. Ext. #506

Transformed concrete area = 37.333 in.\(^2\) and 6.222 in.\(^2\)
Joist seat depth = 2.5 in.
Distance to neutral axis = 17.392 in. (Above girder c. g.)
Transformed moment of inertia = 4161.1 in.\(^4\)

Frequency = \(1.57 \times \left[\frac{306 \text{ Bs Itr}}{w g \text{ L}^4} \right]^{0.5} \)

= \(1.57 \times \left[\frac{306 \text{ Bs} \times 4161.1}{(1320.8/12) \times (35.00x12)^4} \right]^{0.5} = 5.79 \text{ Hz.} \)

Girder Amplitude:
\(\alpha = 0.1 \pi \text{ fg} = 1.819 \)

since to = \(\left[1/(\pi \text{ fg})\right] \tan^{-1}(\alpha)\)
\(= \left[1/(\pi \times 5.79)\right] \times 1.07 = 0.0587 \text{ sec.} > 0.05 \text{ sec.} \)

\(\text{Aog} = \frac{246 \text{ L}^3}{\text{Es Ig}} \times \frac{1}{2 \pi \text{ fg}} \times \sqrt{2 \left[1 - \alpha \sin(\alpha) - \cos(\alpha)\right] + \alpha^2} = 0.0063 \text{ in.} \)

BAY CALCULATIONS:

Using girder with smaller frequency:

\(\frac{1}{f_s^2} = \frac{1}{f_b^2} + \frac{1}{f_g^2} = \frac{1}{6.46^2} + \frac{1}{5.79^2} \)

\(f_s = 4.31 \text{ Hz.} \)

Amplitude:
\(\text{Aos} = \text{Aob} + \text{Aog}/2 = 0.0145 + 0.0063/2 = 0.0176 \text{ in.} \)

-- End --
VITA

Michael D. Boice was born in West Palm Beach, Florida on Sunday, March 5, 1978 to Sharan and Gary Boice. He was raised in West Palm Beach and graduated from John. I. Leonard High School in June of 1996. In December 2000, he received his Bachelor of Science degree in Civil Engineering from the University of Florida. In August of 2001, Michael began his graduate career at the Virginia Polytechnic Institute and State University to obtain his Master of Science degree in Civil Engineering. He received his degree with an emphasis in structural design and analysis in February of 2003. From Virginia, Michael went on to bigger and better possibilities in Chicago.

Michael DeLancey Boice

P.S.
There are those that look at things the way they are, and ask, “Why?” I dream of things that never were, and ask “Why not?”

--- Robert F. Kennedy

Even a stopped clock gives the right time twice a day.

--- Unknown