Modeling and Design of a Monolithic High Frequency Synchronous Buck with Fast Transient Response

by

Haifei Deng

Dissertation submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

in the

SCHOOL OF ENGINEERING

at the

Virginia Polytechnic Institute and State University

Supervisor: Prof. Alex Q. Huang
Co-chair: Prof. James S. Thorp
Committee Members: Prof. Dan Y. Chen
 Prof. Louis Guido
 Prof. Dong S. Ha
 Prof. Jason Lai

Keywords: Monolithic integration, high frequency, switching regulator, fast transient response

Feb. 2005
Modeling and Design of a Monolithic High Frequency Synchronous Buck With Fast Transient Response

By
Haifei Deng
Prof. Alex Q. Huang, Chairman
Electrical Engineering

(ABSTRACT)

With the electronic equipments becoming more and more complicated, the requirements for the power management are more and more strict. Efficient performance, high functionality, small profile, fast transient and low cost are the most wanted features for modern power management ICs, especially for mobile power [1]. In order to reduce profile, the number of external components should be as small as possible, which means that compensator, ramp compensation, current sensor, driver and even power devices should be all implemented on a single chip, i.e. monolithic integration [2]. Comparing with discrete switching DC-DC converter, monolithic integration brings a number of benefits and new design challenges. Besides monolithic integration, high switching frequency is another trend for power management ICs due to its higher bandwidth and the ability to further reduce external passive component size [3]. Comparing with low frequency counterparts, high frequency switching converter design is more difficult in terms of the stability modeling, high switching loss and difficult current sensing etc. The objective of this dissertation is to study the design issues for monolithic integration of high frequency switching DC-DC converter. For this purpose, a high frequency, wide
input range monolithic buck converter ASIC with fast transient response is designed based on advanced trench BCD technology.

Stability is the fundamental requirement in designing switching converter ASIC. Achieving this requires an accurate loop gain design, especially for monolithically integrated high frequency switching converter since compensator is fixed on silicon and loop delay is comparable with switching cycle. Since DC-DC switching converters are time-varying system, traditional small signal analysis in SPICE cannot be directly used to simulate the loop gain of this kind of system [4]. A periodic small signal analysis based method is proposed to analyze and simulate DC-DC switching converter inside a SPICE like simulator without the need for averaging [5]. This general method is suitable for any switching regulators. The results are accurate comparing with average modeling and experiment results even at high frequency part. A general procedure to design loop gain is proposed.

Several novel design concepts are proposed for monolithic integration of high frequency switching DC-DC converter; a novel control scheme — Cotangent Control (Ctg control) is proposed for fast transient response; In order to realize on-chip implementation of the compensator, especially for low frequency zero, active feedback compensator is developed and a general design procedure is proposed. Adaptive compensation concept is proposed to stabilize the whole system for a wide application range. Multi-stage driver and multi-section device concepts are investigated for high efficiency and low noise power stage design. And finally, a new noise insensitive lossless RC sensor is proposed for high speed current sensing.
At the end of this dissertation, the test results of the fabricated chip are presented to verify the correctness of these design concepts.
To my parents
Siai Deng and Faxiang Zhu

And to my wife
Yan Ma
Acknowledgements

With sincere appreciation in my heart, I would like to thank my advisor, Prof. Alex Q. Huang for his guidance, encouragement and support throughout this work and my studies here at Virginia Tech. I feel lucky to have the opportunity to pursue my graduate study as his student here at the Center for Power Electronics Systems (CPES), one of the best research centers in power electronics. In the past years, from him, I have learned not only technology knowledge but also the methods for being a good and successful researcher. This knowledge is something that will benefit me for the rest of my life.

I would also like to thank the other members of my advisory committee, Prof. James S. Thorp, Prof. Dan Y. Chen, Prof. Louis Guido, Prof. Dong S. Ha and Prof. Jason Lai for their support, suggestions and encouragement.

I was very fortunate to be able to associate with the nice faculty, staff and students of CPES. I will cherish the friendships that I have made during my stay here. Special thanks are due to my fellow students and visiting scholars for their help and guidance: Mr. Nick Sun, Mr. Xin Zhang, Mr. Xiaoming Duan, Ms. Li Ma, Mr. Jinseok Park, Mr. Ding Li, Mr. Hongtao Mu, Mr. Ali Hajjiah, Mr. Yang Gao, Ms. Yan Gao, Ms. Ji Pan, Ms. Maggie Xiong, Mr. Zhengxue Xu, Mr. Bo Yang, Mr. Changrong Liu, Mr. Bin Zhang, Mr. Xudong Huang, Mr. Huijie Yu, Mr. Yang Qiu, Mr. Yu Meng, Mr. Liyu Yang, Mr. Xigeng Zhou, Mr. Yuanchen Ren, Mr. Roger Chen, Mr. Jinhai Zhou etc. I would also like to thank the wonderful members of the CPES staff who were always willing to help me out, Ms. Teresa Shaw, Ms. Linda Gallagher, Ms. Ann Craig, Ms. Marianne
Hawthorne, Ms. Elizabeth Tranter, Mr. Steve Chen, Mr. Robert Martin, Mr. Jamie Evans, Mr. Dan Huff, Mr. Gary Kerr, Mr. Mike King etc.

I would like to appreciate the help from the folks in National Semiconductor. Special thanks are due to Mr. Ken Saller, Mr. Jeff Nilles etc.

Finally, my deepest and heartfelt appreciation goes to my parents and my wife Yan for their unconditional love and support during my study.
Table of Contents

(ABSTRACT) .. ii

Chapter 1: Introduction .. 1
 1.1. Background .. 1
 1.2. Trends of the modern power management IC ... 3
 1.2.1. Advantages and challenges for monolithic integration ... 8
 1.2.2. Advantages and challenges for high frequency design ... 9
 1.3. Objective of this work .. 13
 1.4. Outline of the dissertation ... 15

Chapter 2: Accurate Control Loop Modeling and Simulation .. 18
 2.1. Introduction ... 18
 2.2. Proposed method for analysis and simulation of switching converters 22
 2.3. Algorithms for Periodic small signal analysis ... 27
 2.3.1. Periodic Steady State analysis .. 29
 2.3.2. Periodic AC simulation ... 30
 2.4. Verification ... 32
 2.5. Loop gain design flow based on periodic method ... 42
 2.6. Summary .. 44

Chapter 3: “Cotangent Control” Modeling and Implementation .. 45
 3.1. Introduction .. 45
 3.2. Cotangent control for fast transient response ... 46
 3.2.1. Introduction ... 46
3.2.2. Proposed topology ... 54
3.2.3. Modeling of cotangent compensator .. 58
3.2.4. Stability modeling of the time-varying system — cotangent control 65
3.2.5. Comparison between cotangent control and other control methods 71
3.2.6. Combination of cotangent control with new non-linear active clamp 75
3.2.7. Verification ... 77
3.2.8. Summary ... 80
3.3. Active feedback compensator and adaptive compensation 81
 3.3.1. Active feedback compensator ... 81
 3.3.2. Active compensation for buck .. 88
 3.3.3. Adaptive compensation for boost .. 91
3.4. Summary ... 98

Chapter 4: Efficient, Noiseless Power Stage and Current Sensor Design 99
4.1. High efficiency, low noise power stage design .. 100
 4.1.1. Introduction ... 100
 4.1.2. Power device optimisation ... 101
 4.1.3. Power stage design and separation with control part 107
 4.1.4. High-speed low-noise multi-stage gate drive (MSGD) 109
 4.1.5. High efficiency burst mode for light load .. 118
4.2. Noise insensitive and lossless RC sensor ... 121
 4.2.1. Introduction ... 121
 4.2.2. Proposed new RC sensor structure ... 124
 4.2.3. Modeling of the new RC sensor .. 127
Chapter 5: Experimental Chip Development and Test Results ... 131

5.1. Specifications and chip structure ... 131

5.1.1. Introduction ... 131

5.1.2. Pin configuration and pin Description .. 133

5.1.3. Specifications ... 134

5.1.4. System structure description .. 136

5.2. Experimental chip test .. 138

5.2.1. Power on start up ... 139

5.2.2. Steady state .. 140

5.2.3. Transient response .. 143

5.2.4. Efficiency and loss break down .. 145

5.2.5. Summary ... 147

Chapter 6: Conclusion ... 148

6.1. Summary ... 148

6.2. Future work ... 150

References... 153
List of Figures

Figure 1-1 Power management IC is widely used [1].. 1
Figure 1-2 Shipment forecast for power supply and power management ICs.. 2
Figure 1-3 Monolithic integration development process .. 4
Figure 1-4 Monolithic structure focused on in this work .. 7
Figure 1-5 Relationship between bandwidth and transient response [20] ... 11
Figure 1-6 Objective of this work ... 13
Figure 2-1 Linerization of switching converter using average model .. 18
Figure 2-2 System block diagram of voltage controlled buck using average model.......................... 19
Figure 2-3 Simplified system block diagram of peak current controlled buck 20
Figure 2-4 Comparison between switching system and linear system ... 22
Figure 2-5 Single loop DC-DC buck converter .. 23
Figure 2-6 Periodic steady state and new “DC” bias concept ... 24
Figure 2-7 Frequency spectrum of single loop buck .. 25
Figure 2-8 Comparison between duty cycle modulator and mixer .. 26
Figure 2-9 Periodic analysis and traditional AC analysis .. 29
Figure 2-10 Block diagram of experimental structure .. 32
Figure 2-11 Comparison of control to output transfer function for buck converter between
periodic analysis and average model ... 33
Figure 2-12 Small-signal transfer function has minimum points at integral multiples of switching frequency.. 35

Figure 2-13 Explanation for the minimum points at integral multiples of switching frequency.. 37

Figure 2-14 Comparison of control to output transfer function with current loop closed for buck converter between Dr. Ridley’s model and periodic analysis ... 39

Figure 2-15 Comparison between experiment results and simulation results 42

Figure 2-16 Loop gain design flow based on periodic method .. 43

Figure 3-1 Inductor current slew rate and output voltage drop ... 47

Figure 3-2 Linear-Non Linear control in [39].. 49

Figure 3-3 Block diagram of advanced V^2 control ... 51

Figure 3-4 Working wave for V^2 control.. 52

Figure 3-5 Simplified block diagram of peak current control ... 54

Figure 3-6 Modulation waveform at steady state for different loads...................................... 55

Figure 3-7 Block diagram for the cotangent control.. 56

Figure 3-8 I-V curve of the cotangent gain block... 57

Figure 3-9 Block diagram of cotangent compensator.. 59

Figure 3-10 Cotangent function with different magnitude A ... 60

Figure 3-11 Cotangent function with different frequency f.. 61

Figure 3-12 Transfer function of the cotangent compensator... 63
Figure 3-13 System loop gain for the cotangent control ... 65

Figure 3-14 Typical system diagram for a switching regulator .. 67

Figure 3-15 Approximation system block diagram for cotangent control .. 68

Figure 3-16 Relationship of output of segmented linear function with input signal amplitude A ... 69

Figure 3-17 Plot of the describing function plotted against A, the input amplitude to the nonlinearity ... 70

Figure 3-18 Nyquist plot of DF(A) and G(jw) .. 71

Figure 3-19 Comparison between linear control and cotangent control .. 72

Figure 3-20 Comparison between Cotangent control and LnLc control .. 72

Figure 3-21 Comparison between Cotangent control and V^2 control ... 73

Figure 3-22 Comparison between Cotangent control and traditional bang-bang control 74

Figure 3-23 Combination of cotangent control and fast non-linear active clamp control 75

Figure 3-24 Transient response (5V -> 1.5V, 0.2A load, 1A step) .. 78

Figure 3-25 Transient response from DCM to CCM .. 79

Figure 3-26 Op-amp based one-zero-two-pole compensator network for peak current control switching DC-DC converter .. 82

Figure 3-27 Miller effect capacitance booster .. 84

Figure 3-28 Negative feedback loop inverse a transfer function .. 85

Figure 3-29 A general compensator structure for peak current control .. 86
Figure 4-13 Comparison between CGD and MSGD ... 116
Figure 4-14 MSDG can obtain adaptive dead time control ... 117
Figure 4-15 Control signal change with load current ... 118
Figure 4-16 Simplified block diagram of burst mode .. 119
Figure 4-17 Comparison between DCM mode and burst mode ... 120
Figure 4-18 External resistor current sensing .. 121
Figure 4-19 Rds_on current sensing ... 122
Figure 4-20 Traditional RC current sensing ... 122
Figure 4-21 Signal noise ratio is too small for traditional RC current sensor 123
Figure 4-22 New lossless RC sensor structure (1) ... 125
Figure 4-23 Design equations for new RC sensor structure (1) ... 125
Figure 4-24 New lossless RC sensor structure (2) ... 126
Figure 4-25 Design equations for new RC sensor structure (2) ... 126
Figure 4-26 Comparison between the new RC sensor and traditional RC sensor 127
Figure 4-27 Modeling parameters for the new sensor ... 127
Figure 4-28 Modeling of the new RC sensor .. 128
Figure 4-29 Results of the modeled sensor ... 129
Figure 5-1 Simplified diagram of a peak current control buck ... 132
Figure 5-2 Pin configuration of the developed chip ... 133
Figure 5-3 Typical application of the developed chip ... 134
Figure 5-4 Detail structure of the whole chip ... 136
Figure 5-5 Test bench for the developed chip ... 138
Figure 5-6 Tested power on start up when $V_{in}=3V$, $V_{out}=1.5V$ $I_{load}=200mA$ 139
Figure 5-7 Tested waveform for high input voltage .. 140
Figure 5-8 Tested waveform for low input voltage ... 141
Figure 5-9 Tested waveform for DCM operation ... 142
Figure 5-10 Tested waveform for transient response with low input voltage 143
Figure 5-11 Tested waveform for transient response with high input voltage 144
Figure 5-12 Efficiency Vs load current at $V_{in}=5V$, $V_{out}=1.5V$ 145
Figure 5-13 Loss break down at $V_{in}=5$, $V_{out}=1.5$ and $I_{load}=0.4A$ 146
Table 2-1 Parameters for the experimental structure.. 32

Table 4-1 MAIN PARAMETERS FOR POWER DEVICES ... 102

Table 5-1 Pin configuration of the developed chip.. 134

Table 5-2 Specifications of the developed chip... 135
Chapter 1: Introduction

1.1. Background

The earth is mobile [1]. As shown in Figure 1-1, we are using different kinds of electronic devices in our everyday life. Any electronic device needs an energy source — electrical power. In order to provide a high quality power source for electronic devices, power management devices are needed. Power management is naturally a basic part for almost all of the electronic devices. Traditional power management devices are mostly built by discrete components on a PCB board. The profile of the power management part is normally big and the design is relatively complex. With the development of microelectronics, more and more power management solutions are replaced with power management ICs. A power management IC can be only a controller IC, one semiconductor power switch or a combination of these parts even with energy storage device like inductor and capacitor resonant tank. By integrating the parts together into a
tiny chip, the size of the whole power management park is much smaller and the design
can be much easier. As shown in the right part of Figure 1-1, if we take a close look into
a tiny PDA device, we will see bunch of power management ICs inside this equipment
serving different parts. With the electronic equipments becoming more and more
complicated, the requirements for power management are more and more strict. Even for
a small part of the tiny electronic device, a dedicated power management IC may be
needed to serve it, which induce a huge market for power management ICs [6][7] [8]. As
we know, there are a lot of big companies such as Analog Device, National
semiconductor, Texas Instruments, Maxim etc working in power management IC market.
As predicted in Figure 1-2, there is almost 7,000,000,000 dollars market for power
management ICs until 2006 [9]. This market is going to keep growing because more and
more new electronic devices are coming into our life.

Figure 1-2 Shipment forecast for power supply and power management ICs
1.2. **Trends of the modern power management IC**

Accompanying with this market growth, some new trends and challenges for power management ICs rise up. In order to save power, the power supply voltage of the electrical device should be reduced according to equation $P = I \times V$. So the output voltage of power management device drops lower and lower from 5V to 3.3V, and even to 1.8V or below 1V for VRD application in desktop computer [10][11]. At the same time, the output current is going higher and higher because the digital logic circuitry in electronic device are more and more complicated, which consumes a lot of current; As we know, most of the digital circuitry generates pulsating current spike, which causes a high requirements for transient response of power management device. However, the tolerance window of the output voltage is going smaller and smaller because of the strict requirements from the fancy devices used in modern electronic products.

In a word, efficient performance, high functionality, smart protection, small profile, fast transient and low cost are the most wanted features for modern power management ICs, especially for mobile power since the energy source of potable device are batteries [12]. The capacity of battery is very limited at most of the case and some batteries are quite expensive. Nobody would like to waste a lot of money on power management device due to its poor performence.
In order to reduce profile, the number of external components should be as small as possible, which means that compensator, ramp compensation, current sensor, driver and even power devices should be all implemented on a single chip, i.e. monolithic integration. Since it is difficult to integrate large size and high Q value inductor and large value capacitor on silicon, most of the power management ICs will not integrate energy storage device on silicon [13]. Future development will even make it possible to integrate the energy storage elements, such as the inductor and capacitor. This development relies on further technology development in the area of high-density inductor and capacitor design that is compatible with semiconductor technology, as well as the techniques to operate the converter at extremely high frequencies, such as 100 MHz[3][2][18]. Figure 1-3 shows the comparison between the discrete and monolithic solution. As shown in Figure 1-3 (a), this device is mainly composed of discrete parts such as controller, driver, power switches and passive components [14]. The designer has to build controller, compensator and even logic components by himself. In 2000, Internal Rectifier™ release iPOWIR product series as shown in Figure 1-3(b) [15]. The driver is packaged with power switches together. The designer needs only to put this integrated power stage with
one controller to build a switching converter. It simplifies the design a lot. At the mean
time, by doing this, the efficiency is improved several percent and noise generated by
switching is reduced a lot due to the reduced parasitic components. This kind of
integration mode is becoming the dominant solution for VRD application now and in the
near future [16]. Figure 1-3 (c) is a monolithic two-channel VRM designed by Nick Sun
from CPES Virginia Tech [2]. In this chip, the controller, logic, driver and even power
switches are integrated on single silicon. The designer needs only to add a resonant tank
externally to build a switching converter. The whole converter is very small and quite
simple. At the same time, it removes all of the parasitic inductance between controller
and driver, driver and power switches, which reduces a lot of noise and voltage spike
generated by the parasitic inductance and improves the efficiency a lot. This is the
monolithic solution that this work will focus on mostly. Figure 1-3 (d) is a thin film
inductor based 5MHz switching DC-DC converter developed by Katayama, Y in [3].
Since the switching frequency is almost 5MHz, a relative small inductor is needed in this
switching converter. It is possible to integrate a small inductor like this on silicon using
the spiral inductor. However, the Q value of this thin film inductor is relative low, which
cause a lot of power loss in this inductor and lower down the efficiency a lot. Since the
switching frequency is very high, it will induce a lot of switching loss too. The energy
storage components inductor and capacitor occupy a lot of chip area as we can see from
Figure 1-3 (d). All of these disadvantages make this “true monolithic integration”
solution unacceptable in the reality using current technology.

Figure 1-4 shows the typical structure of a peak current controlled switching buck
regulator. The whole converter can be divided into the following several parts: feedback
generation and compensator, PWM modulator, control logic generation, dead-time control, current sensor, driver, power switches and energy storage resonant tank. For synchronous buck, a transistor replaces the rectifier diode in order to reduce conduction loss. The basic principle of this control scheme is that: when output voltage drops down, feedback signal will be lower than the reference voltage V_{ref}. Error amplifier will amplify this difference between feedback signal and reference voltage. The output of the error amplifier, i.e. control signal V_c will rise up. V_c will compare with a saw-tooth signal and generate a larger duty cycle clock. This clock signal will combine with some protection signals like over voltage protection, over current protection etc to generate a PWM signal. The driver block will pass this PWM signal to the gate of power switch and drive the power switch to control the transferred energy. Since duty cycle is larger, more energy will be transferred to the output capacitor C and output voltage will rise up until it is higher than reference voltage. The same phenomena will happen when output voltage is higher than reference voltage. As we can see from Figure 1-4, there is a control loop in this simplified buck regulator. In order to guarantee a stable and high quality output voltage, the control loop should be stable, which means that there should be some phase margin and gain margin for this control loop. The voltage controlled buck regulator has a similar structure except there is no current sensor in this diagram. In this work, we will focus on the monolithic structure shown inside the dot-line box. In this monolithic structure, all of the components are on a single chip except the energy storage elements such as inductor L and capacitor C.
Besides monolithic integration, high switching frequency is another trend for power management IC [17]. Ten years ago, KHz may be a high frequency for switching regulators. Now, people are talking about several hundred kHz and even MHz switching frequency. There are some products that have a very high switching frequency like 2MHz, 4MHz. With the electronic products becoming smaller and smaller, the power management devices are needed to be smaller and smaller. The bulky part of switching regulator is energy storage components like inductor and capacitor. By using high switching frequency, small size inductor and capacitor can be used, which will reduce the size of the whole power management device a lot. At the mean time, high switch frequency will improve the transient response due to its potential higher bandwidth. All
of these benefits make high switching frequency an obvious trend for modern power switching regulator.

In the following two sections, we will discuss the advantages and challenges for monolithic integration and high switching frequency.

1.2.1. Advantages and challenges for monolithic integration

Comparing with discrete switching DC-DC converter, monolithic integration brings a number of benefits: The number of external components can be reduced to only the main inductor and output capacitor so the power density can be increased drastically; which is very important for modern electronic devices. The parasitic components such as bond wire inductance, trace resistance are reduced, which is important for high frequency and noise sensitive applications [2]; With everything packaged together, the end user can plug this kind of module into the whole system easily, which simplifies the design and improve the reliability of the whole system

Besides the advantages, monolithic integration brings some new design challenges; one chip to multi-market is a common case in industry, which means that wide input, output voltage and load current range are possible for a single chip. Since compensator, ramp compensation and current sensor are integrated inside chip, how to design the compensator to stabilize the system for wide input and output ranges is a big challenge. Since power devices and drivers are integrated with control circuit, there is a nature path — substrate between the power stage and control part. Noise can be easily injected from power stage to analog control part and affect the correct functionality of the noise sensitive analog circuitry in the control part. How to provide noise separation between power stage and control part is a design challenge for monolithic integration; Since the
battery source for portable power can be a single 1.2V nickel metal hydride with a final discharge voltage of 0.8V to several 4.3V LiIon batteries in series [1], both low-voltage and high-voltage operation may be required for portable power ICs. At the low-voltage end, low-voltage analog IC design is a challenge. At the high-voltage end, higher-voltage CMOS or CMOS variants are needed for high-input-voltage applications. How to combine the high-voltage device and low-voltage device on the same silicon and provide a good protection for all devices is another design challenge. It is well known that large size passive components like resistors and capacitors will take a lot of silicon area. Compensator used in a switching DC-DC converter may need a passive impedance network to generate a low frequency pole or zero. On-chip compensator implementation may take a lot of silicon area, especially if a low frequency zero is needed like peak current control switching converter. How to implement a good compensation network on silicon using smallest silicon area is another challenge for monolithic power management IC design. All of these challenges make the monolithic integration a hard topic. In chapter 2, 3 and 4 of this work, some new ideas are proposed to solve some of these design issues.

1.2.2. Advantages and challenges for high frequency design

As discussed above, high switching frequency is another trend for modern power management ICs. Comparing with low frequency switching DC-DC converter, high frequency brings a number of benefits and new challenges. In the practice, the bandwidth of the control loop is designed to be around 1/10 or 1/5 of the switching frequency, which means that high switching frequency will generate a potential higher bandwidth. As
shown in Figure 1-5 [20], the relationship between the inductor current rising slew-rate and bandwidth is shown in equation (1-1).

\[
\frac{\Delta I_o}{t_r} = \frac{\Delta I_o \cdot \omega_c}{\pi/2}
\]

(1-1)

From equation (1-1), we can see that, with higher bandwidth, the inductor current will go to the steady state value faster and keep the output voltage from dropping further. Higher switching frequency will generate faster transient response during load current step-up or step-down transient. That is very important for modern power management ICs.

High switching frequency can also reduce the size of energy storage elements and increase the power density. With Mhz switching frequency, the inductor size can be dropped down to several hundred nH and output capacitor can be several uF, which will reduce the profile of the whole power management device a lot. With the switching frequency increasing further, the inductor and capacitor size will drop down further to tens nH and pF so that they can be monolithically integrated on the same silicon with controller and power switch [18].

Another benefit of high switching frequency is that it can reduce the compensation cost a lot. According to Dr. Ridley’s model [22], the dominant pole of the control-to-output transfer function with current loop closed is

\[
\omega_{pdom} \approx \frac{1}{R \cdot C} + \frac{T_s}{L \cdot C} \cdot (m_c \cdot D' - 0.5)
\]

(1-2)

With reduced energy storage elements L and C, \(\omega_{pdom}\) is going to be at higher frequency. Only a high frequency zero is needed for the compensation. Comparing with low
frequency zero, much smaller resistor and capacitor are needed to generate the high
drequency zero. Since it is very difficult to implement high value passive components on
silicon, high switching frequency will reduce a lot of the silicon area and save cost.

With high switching frequency, the output ripple and inductor current ripple can be
very small. It is good when the output voltage is already very low like 1V for some
special application such as VRD for desktop [19].

\[
\begin{align*}
\frac{di}{dt} &= \Delta I_o = \Delta I_o \cdot \omega_c \\
\tau_r &= \frac{\pi}{2}
\end{align*}
\]

Figure 1-5 Relationship between bandwidth and transient response [20]

Besides the benefits, high switching frequency brings a lot of new design issues too;
with the switching frequency going higher and higher, the switching period is going to
drop down like 250ns when switching frequency is 4MHz. However, the delay of a very
fast comparator is around 10ns, the delay of a fast driver is around 10ns. The sum of all
of the delay around the control loop can be around 40ns to 50ns. This delay is around 1/5
of the switching period and not negligible. From the frequency domain point view, this
delay will cause some phase drop in the control loop and make the control loop unstable.
All of these require the design of a very fast control loop and an accurate control loop
modeling. The modeling method based on the state space averaging cannot accurately model this kind of parasitic effects since it uses a lot of ideal components like ideal op amp, comparator, driver and even power switch. There is no delay or accurate delay for these blocks used in the model. How to get the accurate loop gain of the control loop for the high frequency switching converter is a fundamental issue for high frequency design; In order to reduce the phase drop, high-speed circuit is needed for the blocks in the control loop. It causes some design challenges for the circuit designer.

When switching frequency goes high, the switching loss will rise up. In order to reduce switching loss, the power switches should be turned on and off very fast; the parasitic inductance will generate some voltage spike on the power devices, which requires a better performance of the power switches and a good isolation between the power stage part and analog control part. At the mean time, dead-time control becomes a critical issue since the switching period is much smaller at high switching frequency. Normally, the dead time of the driver is around 20ns for turn-on and totally around 50ns for the whole switching period, which is around 1/5 of the switching period when the switching period is 4MHz. The benefit of the synchronous device to increase efficiency is almost gone. The body diode of the synchronous device will consume a lot of power and lower down the efficiency a lot.

Since the voltage spike at the switching node can be much larger at high switching frequency, current sensing becomes even more challenging comparing with the low frequency counterparts. The speed of the current sensor needs to be fast, the common mode rejection ratio (CMRR) of the input circuit for the current sensor needs to be much higher. All of these make it very difficult to get an accurate current sensing [21].
As mentioned before, one chip to multi-market is a common practice in industry. Normally, a power management IC could have a wide load range such as 0-1.5A. How to keep high efficiency for the whole working range is another issue for monolithic high frequency switching DC-DC converter.

1.3. Objective of this work

As mentioned above, monolithic integration and high frequency are two main trends of modern power management ICs. There are lots of benefits for monolithic integration and high switching frequency. At the same time, monolithic integration and high switching frequency brings a lot of design challenges to power management IC designers. In order to solve these issues, a lot of work has been done during my past several years of Ph. D study. The objective of this dissertation work is to study the design issues for monolithic
integration of high frequency switching DC-DC converter. The whole research work can be divided into the following three parts.

Stability is the fundamental requirement for a switching converter ASIC. Achieving this requires an accurate loop gain design, especially for high speed switching converter because of the parasitic delay. Traditional average model ignores those parasitic delay and cause the difference between modeling results and real circuitry. Parasitic delay is difficult to be estimated except by simulation. However, since DC-DC switching converters are time-varying system, traditional small signal analysis — AC analysis in SPICE cannot be directly used to simulate the loop gain of this kind of system. It caused a lot of trouble for power management IC designer. In this work, a new accurate method — Periodic analysis based method is proposed to analyze and simulate DC-DC switching converter inside a SPICE like simulator without the need for averaging [5]. This general method is suitable for any switching regulators. The modeling results for buck are presented. The results are accurate comparing with average modeling and experimental results even at high frequency part. A general procedure to design loop gain based on SPICE simulator is proposed.

Compensator is a key part in the control loop of switching regulator. It determines the stability, transient response and even loop delay. Since compensator needs some low frequency zeros or poles, some large value passive components such as resistors and capacitors are needed in the compensator implementation [22]. For monolithic integration, compensator is integrated on silicon. It will take a lot of silicon area to build large value resistor and capacitor on silicon. In order to address all these design issues, several novel design concepts are proposed for monolithic integration of high frequency
switching DC-DC converter; a novel control scheme — Cotangent Control (Ctg control) is proposed for fast transient response; In order to realize on-chip implementation of the compensator, especially for low frequency zero, active feedback compensator is developed and a general design procedure is proposed. Adaptive compensation is proposed to stabilize the whole system for a wide application range. The final purpose of all of these concepts is to get a good stability at all kinds of application cases and a fast transient response with smallest cost.

Power stage is another key part for switching converter. It determines the efficiency, reliability, noise and ripple etc. Another important issue related with power stage is current sensing. For high speed switching converter, current sensing is becoming more and more difficult. In this work, a multi-stage driver and multi-section device concepts are investigated for high efficiency and low noise power stage design. And finally, a new noise insensitive lossless RC sensor is proposed for high speed current sensing.

In order to verify all of these design concepts, a high frequency, wide input range monolithic buck converter ASIC with fast transient response is designed based on advanced trench BCD technology. Some experimental results are presented to verify the control concepts.

1.4. Outline of the dissertation

The whole dissertation is divided into the following six chapters. Chapter 1 is the literature review of the background for monolithic integration and high frequency design. The benefits and design challenges of monolithic integration and high
frequency design are introduced, which comes out the objective of this work; and finally the outline structure of the dissertation.

Chapter 2 discussed the modeling issue for high frequency switching converter. In order to solve this design issues, a novel periodic small signal analysis based method for frequency response modeling and simulation in SPICE is proposed. The basic concepts are introduced first. The development of the method is discussed. A brief review of the algorithms for Periodic Steady State (PSS) and Periodic AC (PAC) analysis is followed. Then, a comparison between the new method, averaging model and experimental results are discussed to verify the new method. Finally, a general design procedure for the loop gain design based on SPICE is summarized at the end of this chapter.

Chapter 3 discussed the cotangent control modeling and implementation. First, the review of basic concepts for control loop modeling, compensator design and transient response mechanism is done. After that, the development of Cotangent Control (Ctg control) is discussed. Then, active feedback compensator concept is proposed. The general implementation of active feedback compensator is derived and discussed. After this, Adaptive compensation concept is derived and discussed based on peak current control.

Chapter 4 discussed the design of efficient, low noise power stage and current sensing. First, multi-stage driver and multi-section device concepts are investigated for high efficiency and low noise power stage design. Then a noise insensitive lossless RC sensor is proposed for high speed current sensing.
Chapter 5 discussed the experimental results. First, the high level introduction of the system structure of the whole chip is done. The pin configuration and pin description are described. The specification of the experimental chip is introduced. The typical application circuit is discussed. And finally, the details of the whole system structure are discussed. Some experimental results are presented after that to verify the functionality of the silicon.

Chapter 6 is the summary of this work and some future work to do.
Chapter 2: Accurate Control Loop Modeling and Simulation

2.1. Introduction

Stability is the fundamental requirement in designing switching converter ASIC. Achieving this requires an accurate loop gain modeling or simulation. As we know, some of the parts such as power switch, PWM modulator in a switching regulator are working in large signal mode. The whole converter system is a time varying system. Traditional classic control theory applies only to linear system. In order to model switching regulator, the first step is to linearize the whole system. How to linearize a switching regulator
system was a tough topic in power electronics before 1960’s. Average model was proposed around 1970’s and applied to switching regulator system successfully[23][24][25].

Figure 2-1 is a typical peak current controlled switching regulator system. These two power switches are replaced by average model in order to linerize the system. Duty cycle is introduced in the modeling. By using the average model, the transfer function from duty cycle to output voltage and all other transfer functions can be derived. By including the other linear part, we can easily get the loop gain and phase margin of the control loop. Since the whole system is a linear network now, traditional classic control theory can be used on this kind of system to design control loop. Figure 2-2 is the system block diagram using average model for peak current controlled system [22]. In real design, the system block diagram shown in Figure 2-2 can be simplified to the system block diagram shown in Figure 2-3 as one-order system.

Figure 2-2 System block diagram of voltage controlled buck using average model
During the modeling shown above, some ideal assumptions are made. The delay of the comparator, driver are ignored. These delays are not negligible in high switching frequency regulator since the switching period is too short and the delay is comparable with the switching cycle. The phase drop caused by those delay is not negligible and needed to be considered during modeling.

Though averaging model is a good tool to analyze the low frequency characteristics of switching regulator, it is not accurate enough at some cases, especially for high switching frequency regulator. Simulation may be the only method to get the accurate control loop gain at this case. However, since switching regulator is a non-linear system, there is no good method to simulate accurate loop gain of this kind of non-linear system. Most numerical methods in SPICE are developed for linear circuit. In traditional AC analysis, SPICE simulator linearizes circuit around a DC point and calculates the small signal response of the circuit around that DC bias point. Since DC-DC switching converters are
mixed-signal time-varying system, some circuit blocks in the converter like PWM modulator, driver, switches and diodes are non-linear and working in large signal mode, traditional small signal analysis in SPICE cannot be directly used to simulate the loop gain of this kind of system. This causes a lot of trouble in converter design, especially if one is doing power management IC design. In recent years, some methods were proposed to simulate DC-DC switching converters. James Groves proposed a periodic operating trajectory concept and developed a simulation tool for the frequency analysis of DC-DC switching converters[26]. In [4], Richard P.E. Tymerski developed “PWM switch” concept and proposed large signal and small signal model for “PWM switch”. In [27], “software network analysizer” method is proposed using MATLAB™ and PSPICE to simulate loop gain by frequency sweep. SIMPLIS™ may be the best software on the market that can be used to simulate loop-gain of DC-DC converter directly. However, the model in SIMPLIS™ is piece-wise linear model. It doesn’t work for SPICE model [28]. None of these methods can be directly used for SPICE like simulator, which causes a lot of trouble for power management ASIC designers. The normal approach to design a DC-DC switching converter ASIC in industry is to do modeling first by MATHCAD™ or MATLAB™, then design the transistor level circuit to match modeling results. Since a lot of ideal assumptions are made in modeling, modeling results may not be close to real circuit. For example, modeling can’t take into account the delay in real circuit, which may cause some additional phase drop. If a method can be directly used to simulate the loop gain of switching converters by SPICE like simulator, ASIC designers can use it to get accurate loop gain that takes care of all the delay and non-linear effect at transistor circuit level.
In this paper, a new method—periodic analysis is proposed to simulate DC-DC switching converter directly inside a SPICE like simulator without the need for averaging. This general method is suitable for any switching regulator. The results are accurate comparing with average modeling and experiment results even at high frequency. A general procedure to design loop gain is demonstrated by the design of a peak current controlled buck.

2.2. Proposed method for analysis and simulation of switching converters

By using average model, we can linearize switching regulator and calculate the loop gain. If we can find a linearization method to linearize the switching regulator using a SPICE simulator, we can get accurate loop gain using SPICE simulator. As shown in Figure 2-4, let’s do a comparison between the switching regulator and a simple two-stage op amp[29] [30]. For a two-stage op amp, since the magnitude of the input signal is very small, the characteristics of the non-linear components such as MOSFET, bipolar device
can be linearized at a specific point, i.e. DC bias point. The traditional AC analysis in SPICE simulator is a two-stage process: the first step is to get the DC bias point, the second step is to linearize the non-linear components around that DC bias point and calculate the transfer function of this linearized network [31]. In order to simulate the frequency response of switching regulator, we need to get the similar stuff like DC bias and linearization method.

Figure 2-5 Single loop DC-DC buck converter
Figure 2-5 is a typical single loop PWM DC-DC converter. Most of the blocks in this system are linear except switches, PWM modulator and drivers. As shown in Figure 2-6, if we take a closer look at the detail waveform at every node in this system, we will find that the whole system is working in a periodic steady state with some perturbation. V_{OUT}, V_C, V_G, I_L are the DC components. V_{out}, V_c, V_g, I_l are the real signals. If we choose the periodic steady state as a new “DC bias” point, then the system acts like a “linear” system. The whole system can be linearized around the periodic steady state point; the periodic small signal analysis can be used to get the frequency response of the switching converter system. That is the basic concept of “periodic method” proposed in this work.
Figure 2-7 is the corresponding frequency spectrum of the signals at different nodes around the control loop. We can see that: PWM modulator works like a “phase” modulator except the “phase” is duty cycle. Driver works like a power amplifier. Switches work like a “phase” demodulator or a square wave sampler. If we consider PWM modulator, driver and PWM switch as one non-linear block, it looks like a “phase” modem. The DC gain of this block is $\frac{V_g}{V_p}$ from V_c to V_{out} and $D(t)$ from V_g to V_{out} as shown in Figure 2-8 (a). We call it “duty cycle modulator”. If we compare “duty cycle
modulator” with a mixer as shown in Figure 2-8 (b), we will see that they are quite similar. Now come to the point, is it possible to use the similar analytic method as that used for mixer to analyze “duty cycle modulator”? The answer is “yes”. From Figure 2-7, we can also see that, although PWM modulator, driver and PWM switch will generate high frequency harmonics, only if these harmonics are higher than 0.5f_s, otherwise there will be no aliasing and output low pass filter will filter them out finally. We only need to consider the fundamental frequency signal, i.e. “0” sideband signal in periodic small signal analysis when only loop gain is considered. The loop gain will be the products of “0” sideband small signal gain of every block around control loop. The same conclusion can be applied for any switching converter.

As a conclusion, based on periodic steady state “DC bias” and “duty cycle modulator” concepts, if we consider only the fundamental frequency component of the small signal gain and discard all of the harmonic sidebands in the control loop, we can use periodic analysis method to get the system loop gain directly in SPICE.
2.3. *Algorithms for Periodic small signal analysis*

Figure 2-9 is the comparison between periodic analysis and traditional AC analysis. Both of them are a two-step process. For traditional AC analysis, a DC analysis is needed first to build the operating points for all components like the Q point in Figure 2-9(b). For an electrical node, it is a voltage. For a device, it is voltage drop across the device and the current going through that device. It is a steady state value of the parameters for that node or device. There is no time domain information for this DC bias point. After DC analysis, the circuit is linearized around that DC point. All of the non-linear components are linearized and replaced with some linear network consisting resistors, capacitors and inductors. The whole network is purely a linear network. Now, an AC source is applied at the input port to stimulate this linear network. By sweeping the frequency of the stimulus, we can get the response at different frequency. The result of AC analysis is a bode-plot with only one band as shown in Figure 2-9 (b).

For periodic analysis, a PSS analysis and a PAC analysis are needed [32]. Since some devices in the network are working in large signal mode, the DC bias point is not a fixed value. We can’t linearize the system around a fixed specific point like the traditional AC analysis. Switching regulator is a periodic system. For periodic analysis, PSS analysis is used to calculate the periodic trajectory of the periodic system. The periodic trajectory is the operating points of the devices and electrical nodes around one periodic cycle. It is not a fixed specific point value, but a collection of the operating points in time domain. This periodic trajectory is used as a new “DC bias” for PAC analysis. The switching regulator is linearized around this periodic trajectory. One periodic AC source is added at the input port to stimulate the linearized network. By sweeping the frequency of the
stimulus, we can get the response at different frequency. The result of PAC analysis is a plot with both fundamental frequency component and some sidebands. According to the analysis before, for loop gain analysis in switching converter, only fundamental frequency component is needed as shown in Figure 2-9 (a). Combining the transfer function of the whole loop, we can get the loop gain of the control loop for a switching regulator. Since SPICE simulator can calculate the accurate delay of every block, the simulated loop gain is very accurate comparing with the calculation result based on average model. This periodic method is a very good tool for high switching frequency converter design.

In the next section, the basic algorithm of PSS and PAC will be introduced briefly.

Periodic analysis:

Step 1: Periodic Steady State analysis (PSS)

Step 2: Periodic AC analysis (PAC)

(a) Periodic analysis
2.3.1. Periodic Steady State analysis

For nonautonomous system and autonomous system, the algorithms used for PSS analysis are different. Normally, nonautonomous system is easy to converge. In this paper, only nonautonomous system is discussed. Assume clock is generated by an independent source; a DC-DC switching system becomes a nonautonomous system. Three different methods can be used for PSS analysis: finite difference method, shooting method and harmonic balance method. The first two methods are time domain method.
The last one is in frequency domain. Harmonic balance is suitable for mildly nonlinear circuits. Shooting methods are suitable for drastically nonlinear circuits [33]. Shooting method is chosen for DC-DC converter analysis in this work. Consider a nonautonomous circuit whose equations are given by the standard form

\[
\frac{dq(x(t))}{dt} + f(x(t)) + b(t) = 0
\]

(2-1)

The independent sources are assumed to be periodic with period T. Since the circuit is nonautonomous, the circuit steady-state response \(x(t) \) will also be periodic with period T. Now the problem becomes to obtain an initial condition \(x(t_0) \) and optionally the trajectory \(x(t) \) so that \(x(t_0) = x(T) \). The solution trajectory can be viewed as a function of both time \(t \) and the initial condition \(x(t_0) \), that is

\[
x(t) = \phi(t, x(t_0))
\]

(2-2)

Then the shoot equation can be written as

\[
F_{sh} = \phi(T, x(t_0)) - x(t_0) = 0
\]

(2-3)

This equation can be viewed as a nonlinear equation with \(m \) (\(m \) is the size of the circuit) variables \(x(t_0) \) and therefore can be solved using Newton’s method. The detail algorithm based on Krylov subspace method is out of the scope of this work[34][35][36][37].

2.3.2. Periodic AC simulation

Now consider that a “small” input signal \(D(x)\xi(t) \) is added to equation (2-1), i.e.,
\[\frac{dq(x(t))}{dt} + f(x(t)) + b(t) + D(x)\xi(t) = 0 \quad (2.4) \]

Assume \(x_s(t) \) is the steady-state T-periodic solution of this system and the solution of above equation is \(x_s(t) + x_p(t) \) where \(x_p(t) \) is small. Substituting this form into (2-2), we have

\[0 = \frac{d}{dt} \left(\frac{\partial q}{\partial x} \right) \cdot x_p(t) + \frac{\partial f}{\partial x} \cdot x_p(t) + D(x_s(t))\xi(t) \quad (2.5) \]

All of the coefficients in above equation are T-periodic. This equation can be solved in time domain or frequency domain. The detail algorithm based on Krylov subspace method is not the focus of this work.
2.4. Verification

![Block diagram of experimental structure](image)

Figure 2-10. Block diagram of experimental structure

<table>
<thead>
<tr>
<th>V_{in} (V)</th>
<th>V_{out} (V)</th>
<th>I_{out} (A)</th>
<th>C_{out} (μF)</th>
<th>L (μH)</th>
<th>R_C (Ω)</th>
<th>V_P (V)</th>
<th>R_i (Ω)</th>
<th>S_e</th>
<th>f_z (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.5</td>
<td>0.2</td>
<td>10</td>
<td>4.7</td>
<td>5m</td>
<td>1</td>
<td>0.22</td>
<td>23k</td>
<td>11.16k</td>
</tr>
</tbody>
</table>

In this section, we will apply periodic analysis method to design a typical peak current controlled buck DC-DC switching converter. Both average model and periodic method are used in the control loop design to verify the correctness of the periodic analysis method. In periodic method, only “0” sideband is considered and all other sidebands are discarded since they have no effect on final system loop gain if only aliasing effect
doesn’t happen. We divide the whole design procedure into three parts: power stage design, current loop design and compensator design.

Figure 2-11 Comparison of control to output transfer function for buck converter between periodic analysis and average model
Figure 2-10 is the simplified block diagram of the experimental structure. It is a typical peak-current controlled buck including power stage, compensator, logic, PWM modulator and current sensor. The linearized system block diagram is shown in Figure 2-3. The control loop design includes the design of power stage, current loop, PWM modulator and compensator. In the real design, PWM modulator is included in the power stage design.

A lot of factors affect power stage design including the real application, performance requirement etc. Assume that all of the factors are considered and we got the power stage shown in Table 2-1. V_p is the peak-to-peak magnitude of the ramp signal. In order to design system loop gain, we need to know the control to output transfer function for the power stage since it is part of the control loop.

Since $D(t)$ is not an electrical variable that can be tested, in the simulation, $\partial V_{out}/\partial V_c$ is simulated instead of $\partial V_{out}/\partial d$. Figure 2-11 shows the simulation result, average model result for control to output transfer function $\partial V_{out}/\partial V_c$ of the power stage. It is a two-order transfer function with two resonant poles due to the output resonant tank composed of main inductor and output capacitor and one ESR zero due to the ESR of the output capacitor. From the results, we can see that simulation result is very close to average model result except that the DC gain and Q value are lower in simulation results. The reason is that some of parasitic components are not included in average model! The parasitic resistance of power MOSFET and inductor etc lower down the Q value of resonant tank. We can also see that the phase is different at the resonant frequency. The difference is caused by the delay of the real circuit, which is ignored in the control
loop modeling based on average model! This difference will directly affect the stability of final loop gain.

Figure 2-12 Small-signal transfer function has minimum points at integral multiples of switching frequency
If we take a close look at the high frequency part in Figure 2-11, we will notice that there are some deep valleys at integral multiples of switching frequency as shown in Figure 2-12. Dr. Pite-long Wong explained this phenomenon in his dissertation as shown in Figure 2-13. We are going to summarize it here [20].

As shown in Figure 2-10, the duty cycle is generated when the error signal \(v_e \) intersects the saw tooth signal. In steady-state operations, the error signal (or control signal) \(v_e \) can be approximated as a constant voltage, which intersects the saw tooth signal in a different cycle at the same point, so that the constant duty cycle is generated.

When a low-frequency sinusoidal perturbation signal \(\hat{v}_e \) is added to the error signal, the error signal intersects the saw tooth at different points in different cycles. The duty cycle varies at the frequency of the perturbation signal, as shown in the top figure in Figure 2-13. The perturbation of the duty cycle results in the same frequency perturbation at the converter output voltage \(\hat{v}_o \). The ratio between \(v_o \) and \(\hat{v}_e \) at different frequencies determines the control-to-output-voltage transfer function \(\frac{\partial V_o}{\partial V_e} \). The switching action can be considered as a sampling effect. The sampling frequency is the switching frequency. The sampling object is the error signal. The sampling point is the point at which the error signal intersects the saw tooth signal. A signal at the same frequency as the sampling frequency cannot be detected.

When the perturbation frequency of the error signal is the same as the saw tooth signal frequency, the error signal always intersects the saw tooth at the same point. This results in the constant duty cycle, as shown in Figure 2-13. This is the same as it is in steady-
state operation: A constant duty cycle results in constant output voltage, i.e. $v_o = 0$. A minimum point is expected on the transfer function $\partial V_{\text{out}} / \partial V_c$ at the switching frequency.

REFERENCE: Pit-Leong Wong, “Performance Improvements of Interleaving VRM with Coupling Inductors,” Ph.D Dissertation, Virginia Polytechnic Institute and State University, November, 1990

Figure 2-13 Explanation for the minimum points at integral multiples of switching frequency
It is easy to imagine that if the perturbation frequencies of the error signal are integral multiples of the switching frequency, the error signal will always intersect with the sawtooth signal at the same point and give a constant duty cycle. Similar to the previous discussion, minimum points are expected on the transfer function $\frac{\partial V_{\text{out}}}{\partial V_e}$ at the integral multiple switching frequencies. The case of error-signal perturbation at three times the switching frequency is shown in Figure 2-13; this simulation also results in a constant duty cycle. The preceding discussion shows that switching frequency information can be present in the control-to-output-voltage transfer function $\frac{\partial V_{\text{out}}}{\partial V_e}$. When the perturbation frequency of the error signal sweeps from low to high frequencies, the transfer function $\frac{\partial V_{\text{out}}}{\partial V_e}$ should have minimum points at the integral multiples of the switching frequency.

After power stage design is done, we need to design current loop gain. With current loop closed, the system is degraded into one-order system. The design variables for current loop are current sensor gain R_i, external ramp slope S_e. R_i will affect the DC gain of control-to-output transfer function with current loop closed. External ramp slope will stabilize the system when duty cycle is larger than 50% and damp the peak at $1/2f_s$. By periodic small signal analysis, we can tune the value of R_i and external ramp slope and finally get the control-to-output transfer functions G_{oc} with current loop closed shown in Figure 2-14 for simulation and average modeling based on Dr. Ridley’s model[22].
Figure 2-14 Comparison of control to output transfer function with current loop closed for buck converter between Dr. Ridley’s model and periodic analysis
From the results shown in Figure 2-14, we can see that transfer function G_{dv} with current loop closed has a low frequency pole and a double-pole at half switching frequency. The system is degraded into a one-order system. It is much easier to compensate a one-order system, which is one of the biggest benefits of peak current mode control. A two-pole-one-zero compensator network is good enough for this system.

Since compensator is linear circuit, it is not difficult to get the transfer function by traditional AC analysis. By doing AC analysis, we can tune the position of zero and poles to get the desired loop gain. Combine the transfer function of compensator $A(s)$ with the control-to-output transfer functions $\partial V_{\text{out}} / \partial V_c$ with current loop closed discussed above, we will get the open loop gain for the whole system, which is

$$T = A(s) \cdot \frac{\partial V_{\text{out}}}{\partial V_c} \quad (2-6)$$

Figure 2-15 shows the transfer function by periodic small signal analysis and real test results. We can see that simulation results are very close to test results. Both of them are mainly a one-pole system. There is a sharp drop at half switching frequency due to the double-pole in the current loop. There are some minimum points at integral multiples of switching frequency. This phenomenon is explained in the discussion above. Since SPICE simulation includes all of the parasitic components and parasitic delay in the calculation, the simulation results are very accurate comparing with loop design based on average model. It is very important for high switching frequency monolithic converter.

Since this method is based on SPICE analysis, IC designer can use this method to verify their design for all of the application cases to make sure the design is stable for all of the application cases before the real fabrication. It is going to save a lot of cost. Besides this,
this method can be used for any kind of periodic switching system with a low pass filter in the control loop. Fortunately, all of the switching converters like buck, boost and buck-boost have a low pass filter in the control loop. This method can be used to any switching regulator.

(a) Simulated open loop gain of system loop
As discussed above, periodic method is a good method for loop gain design for switching system. In this section, a general loop gain design flow is proposed for general switching regulator. As shown in Figure 2-16, the whole design flow can be roughly divided into the following several parts:

- Specifications review and system structure design. During this step, the design specification is reviewed to meet the requirements of applications. Then the specifications are transferred into a system structure, which implements all of the chip functionalities.
Power stage design. During this stage, the power stage is designed by trading off different factors like efficiency, noise and cost etc. After the power stage is fixed, periodic method is used to calculate the transfer function of power stage, which is a two-order transfer function.

The next step is current loop design. Current sensor gain R_i and slope compensation S_e are designed to make sure that the current loop is stable. After the current loop is fixed, the control to output transfer function with current loop closed can be calculated using periodic method as shown in Figure 2-16.

Compensator design. Use traditional AC analysis to design a compensator network with corresponding transfer function to make the system stable.
Loop gain verification. After all of the transistor level circuit is finished, periodic analysis method can be used to verify the loop gain for the different application cases.

2.6. Summary

In this chapter, a new method--Periodic small signal analysis based method is proposed to simulate switching converter loop gain directly inside a SPICE like simulator without the need for averaging. The basic concept and algorithm are discussed. The results are accurate comparing with average modeling and experiment results.
Chapter 3: “Cotangent Control” Modeling and Implementation

3.1. Introduction

As mentioned in chapter 1, monolithic integration and high switching frequency bring a number of benefits and some new design challenges. In chapter 2, we discussed about the control loop gain modeling and simulation. In this chapter, we are going to focus mostly on compensator design.

Compensator is a critical part in the control loop and even the whole switching regulator system. Compensator is going to determine the system stability and transient response performance. For different switching converter and different control schemes, different compensator networks are needed. For example, a voltage-controlled buck needs a three-pole-two-zero network and a peak current control buck needs a two-pole-one-zero network. The design criteria’s of compensator design are large phase margin, high bandwidth, fast transient response and small cost.

In order to improve the transient response, a novel non-linear control — cotangent control is proposed and analyzed in this chapter. Since some low frequency zero or pole are needed for compensator, some large value resistors or capacitors are needed in the compensator network. As we know, it is difficult to implement large size passive components on silicon, on-chip low frequency pole or zero is going to take a lot of silicon area. In order to implement the compensator network using smallest chip area, a new
compensator structure called active feedback compensator is proposed in this chapter. As we know, there is a right half plan zero in the power stage of the boost converter, it is very difficult to compensate a boost or even a buck converter for a wide range application cases. An adaptive compensation concept is proposed in this chapter to stabilize the switching converter in a wide working range.

3.2. Cotangent control for fast transient response

3.2.1. Introduction

With the development of modern electronics, the requirements for power supply are higher and higher, especially the requirements for transient response [38]. The reason for the voltage drop or spike at output voltage during transient is the unbalanced charge for output capacitor. So if the average inductor current can reach to load current sooner, the output voltage change will be smaller. A lot of factors will affect the transient response of a switching DC-DC converter. According to [20], the unbalanced charge can be divided into two parts: the delay time \(t_d \) and inductor current rise time \(t_r \) as shown in Figure 3-1. The first part is the delays in the real circuit including the MOSFET gate driver delay, the MOSFET turn-on and turn-off delays, etc, but the majority is the switching action delay. The rise time \(t_r \) depends on the inductor current slew rate, and can be calculated as following:

\[
t_r = \frac{\Delta I_p}{SR(I_L)}
\]

(3-1)

This item is strongly dependent on the bandwidth of control loop. The roughly estimation for this item is
\[t_r = \frac{0.5 \cdot \pi}{\omega_c} \tag{3-2} \]

\(\omega_c \) is the bandwidth of control loop.

\(t_d \): the delays in the real circuit

\(t_r \): Strongly depends on control bandwidth

(a). Unbalanced charge for output cap during transient time

(b). Output voltage waveform for different inductor current slew rate

Figure 3-1 Inductor current slew rate and output voltage drop

From the equations, we can see that \(t_r \) is normally several or tens us [20]. During this period, the load current is mostly supplied by the output capacitor. So output voltage will keep dropping until the average inductor current reaches the new load current level. From the analysis above, we can see that, the longer the inductor current takes to rise up, the larger voltage error is going to happen at the output capacitor. The only way to speed up the transient response is to speed up the rising speed of inductor current. In order to do that, there are several options. The first one is to reduce the inductor size, which requires
a higher switching frequency to keep the same inductor current ripple. The second option is to improve the control loop bandwidth. Normally, the control bandwidth is only one tens of the switching frequency, which means that the bandwidth is limited to tens or hundreds of kHz. For some extreme case like voltage regulator down (VRD) application, this kind of bandwidth is not enough. Another option is to use non-linear control method like linear-non-linear control and V^2 control.

Synchronous rectification buck converter and blocks diagram of the Linear-Non Linear Control.

(a) Block diagram of LnLc control
In order to speed up the transient, some non-linear controls have been proposed in the last several years. Figure 3-2 shows the system diagram of Linear-Non Linear control (LnLc) analyzed by A. Barrado in [39]. The LnLc combines a linear and a Non-linear control. While output voltage remains inside the threshold band between the levels HT and LT (gray band in Figure 3-2 (b)), the Threshold Logic block set the multiplexer selection input (L/NL) to 0 and the linear control regulates the converter.

But, if output voltage exceeds the limits, the input L/NL is set to 1 and the converter results under a Non-linear control (Figure 3-2 (b)). The Duty Cycle Saturation Logic
block forces the duty cycle to 1 if LT is surpassed, and set the duty cycle to 0 if output voltage is above the higher threshold, HT (see Figure 3-2 (b)). The Non-linear control block operates on the output of the control circuit, Figure 3-2 (a); therefore, the Non-linear control circuitry does not modify the voltage of the regulator capacitors (Z1 and Z2 in the linear control). These voltages only evolve according to output voltage. So no instability is produced when output voltage returns under the level HT or LT and the linear control has to regulate the converter again [39].

A constant slope is used in this control for duty cycle compensation when the output voltage deviates from the reference value. Since there is a constant gain at the whole output voltage range, switching ripple may cause duty cycle oscillation even at steady state. Besides this, there is a duty cycle jump at U_{LT} and U_{HT}, which may cause stability problem. A fast Response Double Buck DC-DC Converter (FRDB) control is proposed in [40].
Figure 3-3 shows the simplified block diagram of two-phase interleaved V^2 control. In this control, another voltage loop is added into the control. The output voltage is sensed and fed back to the control loop. There, the output voltage is summed with the current sensor output to generate the final ramp signal. This final ramp signal is used to compare with the output of error amplifier V_c to generate gate signal. There are three loops in the control, that is the reason it is called V^2 control [41].
Figure 3-4 shows the working waveforms. The output voltage ripple is added to current sensor output to generate the final ramp signal. There, this final ramp is compared with the control signal V_c. Since the output ripple is overlapped on the ramp signal, when the output voltage changes due to the step of output load current, this change will directly feedback to the control signal V_c and change the duty cycle. The inductor current will rise or drop down quickly to support the new load current. This control can generate a very fast transient response due to fast feedback of output voltage ripple. However, this control has the same problem like LnLc control. A constant gain, which is proportional to the output voltage error, is used for duty cycle compensation when output voltage deviates from the reference value. This constant is always there even when the feedback voltage is equal to the reference voltage. The switching ripple at the output voltage can cause some duty cycle oscillation, which is going to generate a larger ripple at the output.
voltage. In order to make the system stable, the feedback gain cannot be too large, which means that the duty cycle will not saturate until the output voltage error is very large.

Besides linear-non-linear control and V2 control, there are a lot of other control methods proposed in recent years to improve transient response of switching regulator. According to [39], the ideal control should be like this: it must combine the best advantages from the slow linear controls like the voltage mode control and the current mode controls; and from the fast non-linear controls such as the hysteretic control and V^2 control. These advantages are the following:

From the slow linear controls: Good load and line regulation in steady-state operation; low output voltage ripple; and switching frequency independent of the filter parasitics.

From the fast non-linear controls: Optimized transient response under load current steps; transient response independent of the load current steps amplitude; good stability in transient-state operation; and easy to design and to implement.

A novel cotangent control is proposed in this work. This control combines the benefits of both linear control like voltage control and current control and non-linear control perfectly, which fits well these ideal control requirements from [39].
From the analysis above, we can see that the most direct reason for the voltage drop or spike at transient response is because the average inductor current is smaller or larger than the load current during transient period. The end of the transient period is when the average inductor current reaches the load current. Then the output voltage will stop dropping or rising. So the final goal to speed up transient response is to make the average inductor current reaches the new load current as fast as possible. In order to do that, let’s take a look at a peak current controlled buck as shown in Figure 3-5. The average inductor current is directly controlled by control signal V_c.

Figure 3-5 Simplified block diagram of peak current control
As shown in Figure 3-6 (Current Injection Control — CIC control), when the input and output voltage are the same, the average duty-cycles are the same before and after the load changes. If current sensor gain k_s is constant (which is normally the case for most of the controller), then the current sensor output will be proportional to load current. Let’s take a look at the steady state modulation before and after the transient response as shown in Figure 3-6. We will notice that the only difference is the level of control signal V_c (assume Continuous Current Mode — CCM mode). If load current steps up, the control signal V_c needs to go up to support more current. If the load current steps down, the error signal needs to go down to reduce the average inductor current. The difference of the control signal V_c before and after the load change is current sensor gain k_s times the load step ΔI_L. In linear control, this process happens relatively slowly due to the limited bandwidth and slew rate of error amplifier. So there is an unbalance between the average
inductor current and new load current, the output voltage will rise up or drop down. If we can make this change happen quickly and force the control signal V_c to go into new steady state in a short time, then the transient can be almost cancelled and output voltage will not change too much. We call this a quasi-steady state now. This is some kind of non-linear control. According to the ideal control requirements, we need the linear control for the steady state to get a good line and load regulation. So we hope that the non-linear control will not affect the steady state response of the main control loop. In order to do this, a novel cotangent control is proposed.

Figure 3-7 Block diagram for the cotangent control
Figure 3-7 is the simplified block diagram of the dead-banded non-linear control — cotangent control. A very fast (several ns) cotangent gain block is in parallel with the original error amplifier. The output of the cotangent gain block is summed up with the output of original error amplifier (or call compensator), then feed into the PWM modulator. There, this compensated error signal V_c will compare with ramp signal and generate a clock with certain duty cycle to turn on and turn off the power switches.

The I-V curve of cotangent gain block is shown in Figure 3-8. Since it looks like a cotangent function, we call this control “cotangent control”. There is a dead band around reference voltage. In the steady state, the output of the cotangent gain block is zero and will not affect the linear control loop. The control loop is exactly classical current control loop at steady state, which guarantees a good line, load regulation and steady state ripple. During the step-up transient, when load rises up, the average inductor current is smaller than load current. The output capacitor will supply most of the current and output voltage
will drop down. If the output voltage drops so much that Fb runs out of the dead band, the output of the cotangent gain block ΔV_c will not be zero and compensate control signal V_c to a higher level. The higher voltage error happens at the output voltage, the higher gain will generate at the cotangent block. Since the control voltage V_c rises up much faster than original linear control, inductor current will rise up much faster to support the new load current and keep the output voltage from dropping down even more. By correctly choosing the gain of cotangent gain block and dead band Δdb, we can make the compensated error signal to a level so that it is enough but not over compensated to support the changed load current. With the compensated error signal, the inductor current will rise up quickly to the new load current level and output voltage will stop dropping down. Since the output voltage is still below reference voltage at this time even if the inductor current is equal to the load current, output of the linear error amplifier will rise up due to the infinite DC gain of the error amplifier. Finally, the output of the linear error amplifier will take over the control and support the load current. Cotangent gain block will stop working when the output voltage is equal to reference voltage. The same conditions will happen at the step-down transient. Since the cotangent gain block is much faster than original error amplifier, this system is always stable if only the original control loop is stable. Somehow, the non-linear gain block can even help the stability of the whole system in the transient period to prevent the output voltage from running away.

3.2.3. Modeling of cotangent compensator

In order to model cotangent control, we redraw the block diagram of the cotangent compensator in Figure 3-9. As we can see, there are two parts in this new compensator: the first part is the original two-pole-one-zero compensator network used in the linear
control loop to compensate the linear peak current control. The delay of the block is in “us” range. The output of this linear compensator will be used mostly at steady state to get good linear regulation and output ripple. Another part is cotangent gain block. Since this block is purely a gain block, the delay of this block is at “ns” range. The output of this block will change immediately with the change in Fb signal. When load current steps up or steps down, FB signal will change due to the change at output voltage. This change will generate a compensation signal ΔV_c at the output of cotangent gain block. This compensation signal ΔV_c will rise up or pull down the inductor current quickly in the slew rate determined by inductor size and voltage difference across the main inductor. When the inductor current reaches the new load current level, output voltage will stop rising or falling. The “ns” cotangent gain block can speed up the transient response a lot.

Figure 3-9 Block diagram of cotangent compensator
If we consider the transfer function of the cotangent gain block, we will see that it is a varying gain block. Assume the transfer characteristics of this cotangent gain block is the following equations

\[\text{Com}_{-\text{ctg}}(x) = \begin{cases}
A \cdot \text{ctg}(\pi f_0 - \frac{0.5}{f} - \text{ref}) & \text{when } \text{ref} - 0.5 \cdot \Delta db \leq x \leq \text{ref} + 0.5 \cdot \Delta db \\
0 & \text{when others}
\end{cases} \]

, we can see that there are three parameters in this transfer function: magnitude A, frequency f and dead band \(\Delta db\).

Figure 3-10 Cotangent function with different magnitude A
Figure 3-10 shows the characteristics of cotangent function with different magnitude A. From the figure, we can see that, the larger A, the larger gain with same voltage error. When A is close to zero, the cotangent function is more like a segmented Y-axis and the system is like a bang-bang control. When A is increasing, the curve is approaching Y-axis. A larger compensation signal ΔVc can be injected into the control signal with the same voltage error at the feedback signal Fb. When A is very large, the system is going to be unstable. So the selection of magnitude A is a trade off between fast transient response and stability.

Figure 3-11 Cotangent function with different frequency f
Figure 3-11 shows the cotangent function with different frequencies. With different frequency, the saturation level at which the gain of cotangent function is infinite is different. The higher frequency, the smaller saturation level and the duty cycle can be saturated earlier. With a higher frequency for this cotangent function, the transient response is going to be faster. However, when the frequency is too high, the system is going to oscillate and cause the stability problem.

The selection of dead band Δdb will depend on the steady state ripple at the output voltage. If the dead band is too small, there is some gain from the cotangent block even at steady state. This gain is going to cause some noise at the duty cycle and generate larger output voltage ripple. However, if the dead band is too large, the cotangent control is not going to kick in until the output voltage error is really large, which is not normally what we want.

Now, let’s go back to the diagram shown in Figure 3-9, we will see that the output of the whole compensator is actually the sum of the output of original two-pole-one-zero compensation network and the output of cotangent gain block. Comparing with the linear control, cotangent control essentially adds a varying DC gain in parallel with the original linear error amplifier. If we add a DC gain to the transfer function of the original error amplifier, we will see that, the cotangent gain block adds a zero to the whole transfer function from Fb to Vo. Figure 3-12 shows the transfer function of the whole cotangent compensator. A is the gain of cotangent gain block. With the gain increase, the zero will move to low frequency and increase the bandwidth of the whole compensator. At steady state, the whole compensator will damp the high frequency noise from the output voltage. It seems like a door, only during the transient, the door is going to open and pass through
the high frequency signal from the output to speed up transient response. At steady state, the door is closed for high frequency part and only passes through the low frequency signal. At both the beginning and the end of the transient, the transfer function of the whole compensator is the original compensator. That is the major difference between this control and the other nonlinear controls.

Figure 3-12 Transfer function of the cotangent compensator
Put this transfer function into Dr. Ridley’s model, we can get the whole system loop gain shown in Figure 3-13. From the system loop gain T₂, we can see that, with cotangent control, when transient begins, the output voltage will drop down or rise up, the more output voltage error happens, the higher loop gain will be generated from this control loop. The cotangent control will speed up the recover process significantly. When the output voltage recovers to the reference value, the gain of the cotangent gain block will disappear and the whole system loop gain of the cotangent control is exactly the original linear peak current control loop gain. It means that cotangent control will only work during the transient period to speed up the transient recover process and reduce the output voltage error. It will not affect any steady state performance of the original linear control. That is the big benefit of this control comparing with LnLe control and V² control.

From the analysis above, we can see that, the control loop gain is changing during transient period, which means that the system is a timing varying system. The classical control theory such as phase margin, gain margin and bandwidth concept cannot be used in this system to determine the stability. How to model and design the stability of this system is a challenge. However, as we discussed above, when the magnitude of cotangent control A is too large or the frequency f is too high, the system is going to be unstable. So there is an optimized value for these design variables. How to model the stability of this time-varying system and design these design variables are a big challenge. Next section will focus on the stability modeling of this system.
3.2.4. Stability modeling of the time-varying system — cotangent control

Control system analysis is based on the concept that the system is linear. However, that's not always true, but the reason that designers do that is that there are very few analytical techniques that can be used to predict the behavior of nonlinear systems [42]. Prediction is the key here. When control systems are designed it is imperative that users and customers know how the system will behave in all situations. Linear analysis techniques are good in that way because you can guarantee stability, for example. You
would know that the system is stable and that the stability of the system was in no way
dependent upon the conditions in the system, either the input(s) or the initial state of the
system [43].

Nonlinear systems present a problem in that regard. Here are some facts about
nonlinear systems.

- Nonlinear systems can exhibit instability when certain inputs are applied but may
 be well behaved (stable) for all other inputs.
- Nonlinear systems often have limit cycles, in which sustained oscillations occur
 but only at a particular amplitude and frequency. Linear systems might oscillate at
 a particular frequency, but oscillation at particular amplitude is a phenomenon
 peculiar to nonlinear systems.
- There are very few analytical techniques that can be used to predict behavior of
 nonlinear systems. General techniques for analysis of nonlinear systems are hard
 or impossible to find and we are often left to use very specific techniques for
 special situations and we are not able to make general statements. To make
 predictions of nonlinear system behavior, designers often use simulations. However,
 doing a simulation of a nonlinear system only tells the designer about that situation. There could be other situations in which the system
 misbehaves, and the designer will only find that out if s/he does a simulation for
 that specific situation.

As we discussed above, switching regulator is a non-linear system. However, it is a
very special system. Most of the switching regulator can be roughly simplified into the
system diagram shown in Figure 3-14. For cotangent control, the non-linear function is
the transfer function of the contingent compensator. G(s) is the transfer function of the other part including the power stage, current loop, PWM modulator etc. This system has the following characteristics:

- The system is autonomous, i.e. it has no input.
- The system oscillates. At any point in the system there will be a periodic signal.
- G(s) is a system that is a low-pass filter.

Since a low pass filter G(s) is present in this system, the high order harmonics generated by the non-linear block are filtered out. Only the fundamental frequency components left in the final output. For this kind of system, an approximation method called “describing function” method can be used to model the stability problem.

A describing function is roughly the ratio of the magnitude of the output of non-linear block and the magnitude of the input signal. It is going to be a function of variable of magnitude A, frequency f, and dead band for cotangent control [43][44][45].

![Typical system diagram for a switching regulator](image)

Figure 3-14 Typical system diagram for a switching regulator
Assume the nonlinearity is denoted by $f(x,t)$. The input $x(t)$ is assumed to be

$$x(t) = E \sin(\omega t),$$

which results in the output

$$y(t) = f(E \sin(\omega t), t).$$

The describing function gain $K(E, \omega)$, is the fundamental of the Fourier series representation of this periodic output, $y(t)$, divided by the input amplitude E. Thus, the describing function gain is given by

$$K(E, \omega) = \frac{2}{TE} \int_0^T f(E \sin(\omega t), t) \{\sin(\omega t) + j \cos(\omega t)\} dt.$$

The final expression of the describing function for cotangent control is really complicated. If we use a segmented linear function as shown in Figure 3-15 to approximate the cotangent function and assume that only the cotangent gain block is working during the transient period, we can get the describing function of this cotangent compensator.

![Figure 3-15 Approximation system block diagram for cotangent control](image)
Figure 3-16 Relationship of output of segmented linear function with input signal amplitude A

Figure 3-16 is a plot of the output of the saturating amplifier against the input amplitude, A[46][47]. Under this assumption, the describing function of the non-linear compensator is equation (3-5)

$$DF(A) = \frac{2}{\pi} \left[\sin^{-1} \left(\frac{A_{sat}}{A} \right) + \left(\frac{A_{sat}}{A} \right) \sqrt{1 - \left(\frac{A_{sat}}{A} \right)^2} \right]$$

(3-3)

Figure 3-17 shows the plot of the describing function plotted against A, the input amplitude to the nonlinearity.
According to the system block diagram shown in Figure 3-15, the system will be unstable when

\[DF(A)G(j\omega) = -1 \quad (3-4) \]

Plot both DF(A) and G(j\omega) on Nyquist plot, we can get Figure 3-18. If there is an intersection, then there will be oscillations in the system. The frequency at which the frequency responses intersect determines the frequency of the oscillations. The amplitude at which the negative inverse describing function intersects determines the amplitude of the oscillations [48][49]. By using this method, we can get the optimized value for the parameters for the non-linear blocks.
3.2.5. Comparison between cotangent control and other control methods

In this section, we will do a comparison between cotangent control and other control methods. Figure 3-8 shows the I-V curve of cotangent gain block. In this plane, X-axis is the feedback voltage and Y-axis is the additional compensated control signal ΔV_c generated by non-linear block in parallel with the original error amplifier. Our comparison will be done in this plane.

In original linear peak current control, there is no other gain block in parallel with original error amplifier, so the equivalent I-V curve for linear peak current control in this plane is X-axis of the plane as shown in Figure 3-19.
Figure 3-19 Comparison between linear control and cotangent control

Figure 3-20 Comparison between Cotangent control and LnLc control
Figure 3-20 shows the difference between LnLc control and cotangent control. Equivalently, LnLc control is the green curve shown in Figure 3-20. There is a constant gain in a certain band for LnLc control, and then there is a big jump when output voltage hit the bottom or upper limit. As mentioned before, the non-zero gain when Fb is equal to reference voltage Ref will generate some oscillation on duty cycle and cause some additional ripple at the output voltage. There is a big jump at the threshold points, it may cause some stability problem.

Figure 3-21 Comparison between Cotangent control and V^2 control

Figure 3-21 shows the difference between V^2 control and cotangent control. V^2 control is almost the same like LnLc control except that there is not a big jump. The duty cycle will not be saturated until the output voltage error is high enough.
Figure 3-22 Comparison between Cotangent control and traditional bang-bang control

Figure 3-22 shows the difference between the traditional non-linear control — bang-bang control and cotangent control. Equivalently, bang-bang control is a segmented Y-axis in this plane. As mentioned before, linear peak current control looks like an X-axis. We can see that cotangent control makes a very smooth transition from linear control to an infinite gain bang-bang control. Cotangent control keeps the high steady-state performance of linear peak current control, meanwhile generates a fast transient response of bang-bang control without causing the stability problem. Cotangent control exactly fits the ideal control concept proposed in [39]!
3.2.6. Combination of cotangent control with new non-linear active clamp

As mentioned before, the inductor current cannot change dramatically when the load current steps up or steps down. This delay of the inductor current rising or falling will cause some voltage error at the output capacitor. For a high input voltage, low output voltage case, this problem is going to cause a large voltage spike at the output. During step-down transient, there is a big current that is equal to the load current at the beginning of the transient period. When the load current drops down to zero suddenly, inductor current is going to keep for a while. All of the inductor current will be dumped into the output capacitor and cause a big voltage spike at output voltage. If the bandwidth of

Figure 3-23 Combination of cotangent control and fast non-linear active clamp control
control loop is infinite, the control loop will shut down both high side device and low side device, the inductor current will keep dropping to zero. All of the additional energy $0.5 \cdot L \cdot I^2$ in inductor will still be dumped into the output cap and cause voltage spike at output voltage. Traditional switching regulator can do nothing for this additional energy but use a bigger output cap. But this is going to increase cost and area. Comparing with traditional linear controlled switching regulator, active clamp is a good option for fast transient response application. With proper design, active clamp can generate a very high bandwidth because there is no compensator in the control loop. Figure 3-23 is the combination of a general structure active clamp and cotangent control [50]. The left part in Figure 3-23 is a single-phase cotangent control buck regulator. A resonant tank consisting with an inductor and capacitor is included in the output stage. The right part is an active clamp structure. There are two paths (pull-up path and pull-down path) connected directly to the output node. When the feedback voltage V_{FB} is lower than the low-band reference, a pull up current will be generated and fed into the output node V_{out} to rise up output voltage V_{out}. If the feedback voltage V_{FB} is larger than the high-band reference, a pull down current will be generated and pull down the output voltage V_{out}. Since active clamp bypasses inductor and is connected directly to the output cap, it can quickly source and sink current during the step-down transient and prevent the overshooting of the output voltage. This is the biggest advantage for active clamp comparing with traditional linear control. However, active clamp has a poor efficiency when the voltage difference between input and output voltage is large. If it is used most of the time, it is going to affect the efficiency a lot. Active clamp can’t replace the traditional switching regulator totally to supply the power to the system. Combining the
efficient fast transient cotangent control switching regulator and fast transient active clamp, we can get a combinational system with a good efficiency at steady state by traditional switching regulator and fast transient response by cotangent control and active clamp at transient period.

3.2.7. Verification

In order to verify the cotangent control, a high frequency synchronous buck DC-DC converter IC with cotangent control is designed. Figure 3-24 is the comparison of output voltage during transient of linear control and cotangent control. The first picture is the comparison of the output voltage. From the picture, we can see that the improvement is obvious. With cotangent control, the output voltage stops dropping immediately since the inductor current rises up to the load level immediately as shown in the second picture. However, from the third picture, which is the output of original error amplifier and the output of cotangent gain block ΔV_c, we can see that the output of the original error amplifier will rise up slowly. The output of cotangent gain block is high at the beginning of the transient, then reduce to zero when the transient period ends. The same phenomena happen at the step-down transient. Cotangent control reduces the voltage error a lot at both step-up and step-down transient. However, cotangent control does increase the settling down time a little bit.
Figure 3-24 Transient response (5V->1.5V, 0.2A load, 1A step)

Figure 3-25 shows another extreme case. In this case, the load current is zero and output voltage is higher than the reference at the beginning. When the load current steps up from zero current to full load current, the output voltage will have a very large voltage drop. However, there is no large voltage drop for cotangent control. The improvement for the transient response is significant. The reason for the big voltage drop at step-up transient for linear control is that, the error amplifier is deeply saturated at the beginning.
of the transient period. It will take a long time for the output of error amplifier to go back to the steady state value. The slew rate of the error signal is strongly limited due to the large time-constant passive network in the compensation network. For cotangent control, this problem is bypassed due to the fast response of cotangent gain block. The error signal can rise up quickly to the new level and support the new load current.

![Figure 3-25 Transient response from DCM to CCM](image-url)
3.2.8. Summary

Fast transient response is an important requirement for most of the switching DC-DC converters, especially for portable application since the output voltage is going lower and lower and the tolerance is smaller and smaller. For a traditional linear peak current control, the rising speed of inductor current during the step up transient period is strongly limited by the bandwidth of the control loop and slew rate of the error amplifier. At another extreme case, if a bang-bang control is used to saturate the duty cycle during transient period, a stability problem can happen for some case and the inductor current may oscillate. A novel control scheme — Cotangent control is proposed to speed up the transient response. Comparing with linear control and existing non-linear control, this control has better performance at both steady state and transient period.
3.3. Active feedback compensator and adaptive compensation

Compensator is a critical part in the whole converter system. It will affect the stability and the transient response of the whole system. How to design a good compensator to stabilize the whole system in a whole working range is always a challenge for power management IC design. For monolithic switching DC-DC converter, this issue is more serious due to the limited silicon area. As we know, most of the switching regulator need some low frequency zeros and poles in the compensator. To generate a low frequency zero and pole, some large value passive components are needed. It will take a lot of silicon area to build large size passive components on silicon. For monolithic integration of switching regulator, this is a big challenge. In order to solve this issue, a novel active feedback compensator is proposed to reduce the silicon area for on-chip compensator in this section. A commonly used two-pole-one-zero compensator network used for peak current control is used as example through the discussion. The design concepts proposed in this section can be used for any general switching regulator. After the active feedback compensator, an adaptive compensation concept is proposed for both buck and boost converter to stabilize the whole system for a wide working range.

3.3.1. Active feedback compensator

Compensator can be implemented using different kinds of real circuitry. Figure 3-26 is a widely used op-amp based one-zero-two-pole compensator network for peak current controlled switching DC-DC converter. The op amp used in this network is an ideal op amp. The transfer function of this compensator network is shown as following equations:
The DC gain of this network is

$$H_{v0} = \frac{1 + s}{\omega_z} \cdot \frac{\omega_z}{s \cdot (1 + \frac{s}{\omega_p})}$$

(3-5)

The zero of this network is

$$\omega_z = \frac{1}{(R_1 + R_2) \cdot C_1}$$

(3-7)

and the pole of this network is

$$\omega_p = \frac{1}{R_1 \cdot C_1}$$

(3-8)

Figure 3-26 Op-amp based one-zero-two-pole compensator network for peak current control switching DC-DC converter
According to equation (3-5), if we assume \(H_{v0} = 40000 \), \(R_2 = 500k \), \(\omega_z = 2 \cdot \pi \cdot 1 \cdot k \), \(\omega_p = 2 \cdot \pi \cdot 3.083 \cdot 10^4 \), we have \(R_x = 17.5k, \ R_y = 10k, \ R_1 = 16.7K, \ R_2 = 500k, \ C_1 = 308pF, \ C_2 = 18.2pF \).

\(C_1 \) is too big for on-chip implementation. This big capacitor is caused by the low frequency zero needed to compensate the low frequency pole at the control to output transfer function with current loop closed. It is a critical component in this compensator network. However, it is almost impossible to build this kind of big cap on silicon, which means that we cannot directly implement this compensator network on silicon. How to generate a low frequency zero and pole for on-chip implementation of the compensator?

In order to get a low frequency zero or pole, a large capacitor or resistor is needed. As we know, it is difficult to implement a large value capacitor or a resistor on silicon. A capacitance or resistance booster is needed to generate a large equivalent resistor or capacitor. Figure 3-27 shows a miller effect capacitance booster. From the transfer function of this block, we can see that the equivalent capacitance is boosted up by \(\beta \) times. By using a small resistor and capacitor, a large time constant RC can be generated by miller effect. Using this miller effect capacitance booster, we can generate a low frequency pole using a small silicon area! Besides the low frequency pole, a low frequency zero may be needed in the compensator like peak current control switching DC-DC converter. How to get this kind of low frequency zero?
In order to answer this question, let's take a look at another basic block shown in Figure 3-28. From the transfer function of a negative feedback loop, we can see that, if only the loop gain $\alpha \cdot \beta >> 1$, the whole transfer function gain is the inverse of the feedback gain. If the feedback gain α is a Miller effect capacitance booster shown in Figure 3-27, we can implement a low frequency zero using a small silicon area! By combining the low frequency zero, low frequency pole and simple voltage gain, we can get any kind of the compensation transfer function using a small silicon area, which makes it possible to monolithically integration of any switching frequency DC-DC converter.
Since peak current control is widely used in reality, now we will focus on the implementation of a general structure for the compensator used for peak current control. As shown in equation (3-11), a general two-pole-one-zero transfer function can be transformed into a pure DC gain times an integrator and a close loop gain with an active feedback. Since the active feedback block plays an important role in the whole compensator, we call the whole compensator “active feedback compensator”.

$$H_v(s) = H_{v0} \cdot \frac{1 + \frac{s}{\omega_z}}{s \cdot (1 + \frac{s}{\omega_p})} = \frac{H_{v0} \cdot \omega_p}{\omega_z} \cdot \frac{1}{s} \cdot \frac{\omega_z + s}{\omega_p + s} = \frac{H_{v0}}{\omega_p \cdot \omega_z} \cdot \frac{1}{s} \cdot \frac{1}{1 + \frac{\omega_p - \omega_z}{\omega_z + s}} \quad (3-9)$$

According to equation (3-11), a general compensator structure is proposed as shown in Figure 3-29. The first stage of this structure is two source followers for level shift and is used to generate high input impedance. The second stage of this structure is an integrator used to generate a pole at zero frequency as shown in equation (3-11). The third stage is an active feedback for a zero and a pole in equation (3-11).
The transfer function of this structure is derived as following.

The transfer function of the second stage is

\[\frac{\partial V_i}{\partial V_{fb}} = -\frac{1}{s \cdot R_1 \cdot C_1} \] \hspace{1cm} (3-10)

The feedback gain of the third stage is

\[\frac{\partial V_{zf}}{\partial V_c} = \frac{\gamma \cdot \beta}{1 + (1 + \beta)s \cdot R_2 \cdot C_2} \] \hspace{1cm} (3-11)

The feed forward gain of the third stage is

\[\frac{\partial V_{z}}{\partial V_c} = -\frac{\beta}{1 + (1 + \beta)s \cdot R_2 \cdot C_2} \] \hspace{1cm} (3-12)
The transfer function of the whole structure is

\[
\frac{\partial V_c}{\partial V_{fb}} = -\frac{\alpha \cdot \phi}{R_1 \cdot C_1 \cdot (1 + \gamma \cdot \beta)} \cdot \frac{1}{s} \cdot \frac{1}{1 + \frac{s}{1 + \frac{1 + \gamma \cdot \beta}{R_2 \cdot C_2} (1 + \beta) \cdot R_2}} \tag{3-13}
\]

From equation (3-11), we can see that, the DC gain of this general block is

\[
H_{v0} = -\frac{\alpha \cdot \phi}{R_1 \cdot C_1 \cdot (1 + \gamma \cdot \beta)} \tag{3-14}
\]

the low frequency zero is

\[
\omega_z = \frac{1}{(1 + \beta) \cdot R_2 \cdot C_2} \tag{3-15}
\]

and high frequency pole is

\[
\omega_p = \frac{1 + \gamma \cdot \beta}{(1 + \beta) \cdot R_2 \cdot C_2} \tag{3-16}
\]

By using a large \(\beta\), we can use a small resistor \(R_2\) and capacitor \(C_2\) to generate a low frequency zero. After the selection of \(R_2\) and \(C_2\), we can select \(\gamma\) for the required high frequency pole. Then we can choose \(R_1, C_1, \alpha\) and \(\phi\) for the correct DC gain. The following is a general design procedure for this compensator:

- **Choose** \(R_2, C_2\) and \(\beta\) **for the required zero**

- **Choose** \(\gamma\) **for the second pole**

- **Choose** \(R_1, C_1, \alpha\) **and** \(\phi\) **for the correct DC gain**
3.3.2. Active compensation for buck

One chip for multi markets is a normal case in industry now. The input voltage, output voltage, load current and even switching frequency for the same chip in different applications may be quite different. Since compensator, ramp compensation and current sensor are integrated inside the chip for monolithically integrated chip, the end user cannot change the compensation to fit a specific application. Besides this, the poles and zeros in the control loop may change with the application conditions and even temperature; it is almost impossible to stabilize the system with a fixed compensator on chip for all of the application cases using traditional compensator structure. How to design a fixed compensator to stabilize the system for wide input and output ranges is a big challenge.
Figure 3-31 Control to output transfer function with current loop closed

Figure 3-30 shows the simplified system block diagram for a typical peak current control. The system can be simplified to a simple two-loop control system with current loop as the inner loop. As shown in Figure 3-31, according to [22], when the current loop is closed, the power stage is degraded to a one-order system. The compensation is designed based on the transfer function G_{oc} from V_c to V_{out}. For different applications, the dominant pole ω_{dom} of G_{oc} are moving with duty cycle D and load current as shown in equation (3-19).

$$\omega_{dom} \approx \frac{1}{R \cdot C} + \frac{T_s}{L \cdot C} \cdot (m_c \cdot D' - 0.5) \quad (3-17)$$
\(R \) is the load resistance, \(C \) is the output capacitor, \(L \) is the main inductor, \(T_s \) is switching period, \(m_c \) is the ratio of inductor current slope and ramp compensation slope, \(D' \) is \(1-D \) (\(D \) is duty cycle)

In order to make the system loop stable for different applications, adaptive compensation concept is proposed, which means that the zero in the compensator will move to low frequency when load current increases. Design is made based on the worst-case operation situation. All of the working conditions are then evaluated to guarantee the stability for all operation ranges. A non-linear saw tooth signal shown in Figure 3-5 is used for slope compensation when duty cycle is larger than 50%. Although it is quite difficult to make the single pole of control-to-output transfer function with current loop closed to be equal to the compensation zero when input, output voltage, load current and even switching frequency change, the test results show that the designed chip works well over a wide operation ranges.
3.3.3. Adaptive compensation for boost

In this section, we will expand the adaptive compensation concept to boost converter. It is more difficult to compensate a boost converter due to the right half plane zero. Figure 3-32 shows the simplified diagram for peak-current PWM control for boost converter. Since the right half-plane zero and resonant poles of the power stage for boost move according to duty cycle D ($D' = 1-D$) and load current, it is quite difficult to design a fixed on-chip compensator to stabilize the converter system for a wide operation range. For monolithic integration, since the compensator, ramp compensation and current sensor

Figure 3-32 Simplified block diagram for peak current control boost converter
are fixed inside the silicon; the loop-gain design for the monolithic boost converter becomes very challenging.

According to Ridley [22], when the current loop is closed, the power stage is degraded to a one-order system. The compensation is designed based on the transfer function G_{oc} from V_c to V_{out}. Figure 3-33 shows the bode plot of G_{oc}. There are a dominant pole ω_{pdom}, a right half-plane zero ω_{RHZ} and a double-pole at the half switching frequency in G_{oc}. For different applications, the dominant pole ω_{pdom} and right half-plane zero ω_{RHZ} move with duty cycle D and the load current, as shown in Figure 3-33. In order to make the system stable for all cases, it is good to keep ω_{pdom} and ω_{RHZ} constant for different applications (different V_{in}, V_{out} and load current) so that a fixed compensator can be used to compensate the whole system.

For this purpose, we proposed the following two constant-ripple design approaches.

Constant inductor current ripple assumption:

$$\Delta I_L = T_s \cdot \frac{V_{in}}{L} \cdot (1 - \frac{V_{in}}{V_{out}}) = T_s \cdot \frac{V_{in}}{V_{out}} - T_s \cdot \frac{V_{in}}{L} = T_s \cdot \frac{V_{in}^2}{L} - T_s \cdot \alpha$$

Constant output voltage ripple assumption:

$$\Delta V_{out} = \frac{I_{load} \cdot T_s \cdot V_{in}}{V_{out} \cdot C} = I_{load} \cdot \beta \cdot T_s$$

In this design approach, α and β should be selected as constants. Based on (3-20) and (3-21), the ω_{pdom} and ω_{RHZ} can be simplified as
\[\omega_{pdom} = \frac{2}{R \cdot C} = \frac{2 \cdot I_{load}}{V_{out} \cdot C} = \frac{2 \cdot I_{load} \cdot \beta}{V_{in}} \quad (3-20) \]

\[\omega_{RHZ} = \frac{D^2 \cdot R}{L} = \frac{V_{in}^2}{V_{out} \cdot I_{load} \cdot L} = \frac{\alpha}{I_{load}} \quad (3-21) \]

Figure 3-33 Transfer function \(G_{oc} \) changes for different application cases
Now, ω_{dom} is close to a constant and ω_{RHZ} will only change with load current. Figure 3-34 shows G_{oc} under the assumptions. Compared with the G_{oc} in Figure 3-34, the G_{oc} in Figure 3-34 allows for much easier compensation by a two-pole-one-zero network.

Figure 3-34 Transfer function G_{oc} with constant ripple assumption
Figure 3-34 shows that when the load current increases, the DC gain of G_{oc} will drop down and ω_{RHZ} will move to a lower frequency. If the second pole of the compensator is much higher than ω_{RHZ} due to the rise of load current, the final system loop gain may rise above unity gain and cause the system to be unstable. In order to achieve high bandwidth and stability for different series of duty cycle D and different load current; Adaptive compensation concept is used. In the adaptive compensation, when the load current increases, the DC gain of the compensator will increase; meanwhile, the second pole will move to lower frequency to damp the ω_{RHZ} of G_{oc} so that the gain of G_{oc} will not rise above 0 dB and cause stability problems. Figure 3-35 shows the adaptive compensation concept, and Figure 3-36 shows the system loop gain at different conditions. The bandwidth of the system loop gain is close to a constant 10 kHz for different application conditions. The stability is obviously improved by constant ripple assumptions and adaptive compensation.
Figure 3-35 Adaptive compensation concept
Figure 3-36 System loop gain with adaptive compensation
3.4. Summary

In order to improve the transient response, a novel non-linear control — coregent control is proposed and analyzed in this chapter. Since some low frequency zero or pole are needed for compensator, some large value resistors or capacitors are needed in the compensator network. As we know, it is difficult to implement large size passive components on silicon, on-chip low frequency pole or zero is going to take a lot of silicon area. In order to implement the compensator network using smallest chip area, a new compensator structure called active feedback compensator is proposed in this chapter. As we know, there is a right half plane zero in the power stage of the boost converter, it is very difficult to compensate a boost or even a buck converter for a wide range application cases. An adaptive compensation concept is proposed in this chapter to stabilize switching converter in a wide working range.
Chapter 4: Efficient, Noiseless Power Stage and Current Sensor Design

In last chapter, we discussed the design of compensator and proposed some new design concepts to improve transient response performance, stability etc. In this chapter, we are going to focus on the design of power stage and current sensing. Power stage is another key part for switching converter. It determines the efficiency, reliability, noise and ripple etc. Normally, when we say power stage, we are saying a combinational block including power switches, energy storage device such as resonant tank, dead-time control circuit, driver and even some protection circuitries. In this work, a multi-stage driver and multi-section device concepts are investigated for high efficiency and low noise power stage design.

Another important issue related with power stage is current sensing. A lot of methods can be used for current sensing. Accurate current sensing is always a hot topic in power electronics especially for current mode control since current information is used in the control loop. Inaccurate current sensing can cause the shift of control loop gain and cause the stability problem. For high speed switching converter, current sensing is becoming more and more difficult. In order to address this issue, a new noise insensitive lossless RC sensor is proposed in this chapter for high speed current sensing.
4.1. High efficiency, low noise power stage design

4.1.1. Introduction

High efficiency is an important specification for power management ASIC, especially for portable power, since most of portable equipments are powered by mobile energy source such as batteries. A lot of factors can affect efficiency of a switching regulator. The main factors include the conduction loss and switching loss of power switches, the conduction loss of body diode, driver loss, inductor conduction loss and core loss. For high switching regulator, the switching loss and driver loss are much larger than low frequency counterpart especially at light load condition.

In order to keep high efficiency at the whole load current range, a multi-section LDMOS device structure is used in this ASIC. During light load, only 1/3 of the device is used. The gate charge loss and switching loss are reduced due to the reduced gate capacitance. Comparing with single-section device, efficiency can be improved by one to two percents at light load. Some other considerations like SOA are discussed in this chapter.

When the load is very small like 1mA, traditional peak current control converter will work in discontinuous current mode (DCM) and keeps turning the switches on and off. The power loss of the control core and driver are unbearable comparing with the tiny load current. The efficiency of the switching regulator using traditional PWM control is going to be very low at light load. Some special control schemes are needed for light load condition for high frequency switching regulator. Three different work modes are used to improve light load efficiency: Frequency Adjustable Burst Mode (FABM), DCM mode and Forced Continuous Current Mode (FCCM). FABM is a high efficiency mode. The
frequency can be adjusted to a certain frequency so the switching noise can be filtered out by system filter. FCCM is for noise sensitive application such as RF application. The inductor current in this mode is continuous so less noise will be generated. In the following part of this section, power device optimization, noise separation, multi-stage driver and burst mode will be discussed.

4.1.2. Power device optimisation

![Figure 4-1 Cross-section of NLDMOS used in the chip](image)

Two 30V power NLDMOS are integrated in this chip as top and bottom power switches. Figure 4-1 is the cross-section of the LDMOS [51]. It is a drain extended lateral MOSFET. A light doping drift region is used to sustain the high voltage across the drain and source of this device. It is a self-aligned LDMOSFET. The channel length is
determined by two diffusions. The optimization of the device size is based on the switching loss and conduction loss.

Table 4-1 MAIN PARAMETERS FOR POWER DEVICES

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Bottom NMOS</th>
<th>Top NMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>W (cm)</td>
<td>2.325</td>
<td>1.55</td>
</tr>
<tr>
<td>L (um)</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Rdson (m(\Omega))</td>
<td>150</td>
<td>240</td>
</tr>
<tr>
<td>Qg ((</td>
<td>V_{gs}</td>
<td>=5V) nC)</td>
</tr>
<tr>
<td>Qgs ((</td>
<td>V_{gs}</td>
<td>=1.22V) nC</td>
</tr>
<tr>
<td>Qgth ((</td>
<td>V_{gs}</td>
<td>=1V) nC</td>
</tr>
<tr>
<td>Qgd ((</td>
<td>V_{ds}</td>
<td>=5\text{ to }0V) nC</td>
</tr>
<tr>
<td>Figure of Merit[53]= Rdson*</td>
<td>343.8</td>
<td>367.8</td>
</tr>
<tr>
<td>((Qg+Qgd+Qgs-Qgth))</td>
<td>nC(\cdot)M(\Omega)</td>
<td>nC(\cdot)M(\Omega)</td>
</tr>
</tbody>
</table>

Table 4-1 lists the main electrical parameters for these two devices. The Rdson of the bottom switch is much smaller than the top switch. However, the gate capacitance of the bottom switch is much larger than the top switch. For a small duty cycle application, since bottom switch is conducting current most of the time, it is good to use a larger bottom switch. Since this chip is used mostly at low duty cycle applications, conduction loss is dominant for bottom switch and switching loss is dominant for top switch. It is good to use a larger device as the bottom switch to reduce conduction loss. From the
form, we can see that C_{gd} of both devices are much larger than C_{gs}, which means that a long holding period will be generated during switching. The overlap power loss is going to be bigger and the total switching loss will increase. If the driver capability is increased, the slew rate of the current going through the device is going to increase and cause a large voltage spike on the device and a large reverse recovery current. How to make a trade-off between the power loss and voltage and current stress is a challenge for driver design for a high switching converter. Comparing with vertical device, this is a big drawback of this kind of device in switching application. The advantage of this kind of lateral LDMOS is that it can be monolithically integrated with other control circuitry on a single chip, which is going to simplify the design and improve the power density a lot.

![Figure 4-2 Parasitic components simulation by ISETM for NLDMOS with $w=100\mu$](image)

Figure 4-2 Parasitic components simulation by ISETM for NLDMOS with $w=100\mu$
Figure 4-2 shows the parasitic capacitance and $R_{ds(on)}$ simulation by ISETM software [52]. Figure 4-3 is the breakdown voltage simulation by ISE software. The breakdown point happens at the bird’s beak of the field oxide.

![Figure 4-3 Breakdown voltage simulation by ISETM for NLDMOS with w=100u, L=0.5u](image)

In [51], the effect of different layout structure on the hot carrier and SOA is discussed. In this chip, a chessboard drain ring array structure is used for both top and bottom switches. Since the working voltage range for this chip is really wide and there is not too much headroom for these power devices, it is very important to check the SOA of these devices. Figure 4-4(a) shows the needed SOA for top switch generated by system level simulation including packaging parasitic components. Figure 4-4(b) is the needed SOA for bottom switch. It is clear that the required SOA for top switch is much larger than the bottom switch. Select a large SOA device is therefore important to ensure reliable
operation. Figure 4-5 shows the measured SOA for the LDMOS using different layout structure[51]. We can see that, the needed SOA is within the measured SOA. As a matter of fact, the LDMOS SOA is too large for this application hence further improvement is possible by reducing the SOA. This will result in improved FOM value [53].

![Graphs showing Ids-Vds SOA and Vgs-Vds SOA](image)

(a) Needed SOA for top switch
(b) Needed SOA for bottom switch

Figure 4-4 Needed SOA for power switches
Since switching node SW is always switching, when the NLDMOS is used as bottom switch, the junction cap of D_{sub} diode will cause some additional loss due to the charge and discharge at switching node SW. Since the cross section area of this diode is very large, the parasitic capacitance is relatively large. This switching loss is not negligible when the switching frequency is high. This is another draw back of this kind of device. Some companies proposed a new structure for this kind of LDMOSFET. The diffusion area at the drain side is separated from bury layer. The junction area for that structure is much smaller than the structure used in this chip. The switching loss caused by this parasitic junction capacitor is therefore much smaller.
Figure 4-6 Efficiency breakdown for 1.5MHz and 2MHz

Figure 4-6 shows the loss breakdown for switching frequency at 1.5MHz and 2MHz. From this diagram, we can see that the switching loss and drive loss is relative big comparing with the low frequency counterpart.

4.1.3. Power stage design and separation with control part

As mentioned before, the noise separation is a big issue for monolithic integration of switching regulator. Comparing with general analog IC design, power management IC has more current and noise. For switching regulator, since the power switches are always turning on and turning off, the large load current is cut off or conducted during several ns, which will generate a lot of voltage rings inside of the silicon. Since the power devices are on silicon, these voltage spike generated from the power stage can be easily transferred to the low voltage analog part and affect the performance or even the functionality of the analog control part. A good power supply rejection ratio (PSRR) is normally required for power management control part.
In order to separate power stage and analog control part, several techniques are developed. The power bus is placed carefully. The high voltage, high current part is separated from the low voltage, low noise part. Separated power ground and signal ground are used and connected only externally by bond wires to a single point on the PCB board. The parasitic inductance of bond wire helps to damp the noise injected from power stage. The noise sensitive signal is placed far away from the switching nodes and some good shielding is provided. In the layout floor plan, noise sensitive blocks such as band-gap reference and compensator are placed far away from power stage and oscillating blocks. Since parasitic inductance from the bond wire will generate some noise, double bondwires are used for the power pins such as sw, Vin and PGND pins. For some blocks connected to the input power supply in buck switching regulator, the noise from the input port is another big issue since the input current is discontinuous. Due to parasitic inductance at the input power source, some noise will be generated at the input side. It may cause fault in the blocks that are connected with the input power source.
4.1.4. High-speed low-noise multi-stage gate drive (MSGD)

As mentioned before, since C_{gd} of the power switch is much larger than C_{gs}, a long holding period will increase the switching loss. At the same time, voltage spikes may be generated at switching node SW and power ground due to the parasitic inductance of bond wires. The driver speed should be designed carefully so that the voltage spike will
not breakdown the power switches during turn on and turn off. Figure 4-7 is the conventional gate driver (CGD). The gate charge current I_g is high at the beginning of the turn-on period, then drop down when V_g rise up. It is difficult to control the rising speed of I_{ds} in this gate drive. Figure 4-8 is a resonant gate drive[54][55][56]. The gate charge energy can be partly restored. However, it can only work for a certain frequency and not suitable for integration.

(a) Typical turn on waveform
Figure 4-9 is the typical waveform for the turn-on and turn-off of top switch in a buck converter. The whole turn on process can be divided into several stages: During 0-t_1, driver charges C_{gs} to V_{th}. I_{ds} will stay at 0 and V_{ds} will keep at Vin (input power source voltage). During t_1-t_2, driver charges C_{gs} to V_{GP} (Holding voltage). I_{ds} will rise from 0 to I_L and V_{ds} will keep at V_{in}. From t_2-t_3, driver discharges C_{gd} and V_{g} will keep constant. V_{ds} will drop from V_{in} to 0. After t_3, the switch will work in linear region. From the waveform we can see that I_{ds} rising speed is mainly determined by the time period t_1-t_2.
\[
I_{rr} = \sqrt{2 \cdot \tau \cdot I_{Load} \cdot \left(\frac{di}{dt}\right)_{on}} \\
\tau \text{ is the mean lifetime carrier for the diode}
\]

\[
V_{DS,Overvoltage} = L_s \cdot \left(\frac{di}{dt}\right)_{off}
\]

\[
P_{gate} = Q_G \cdot V_{drv} \cdot f_{sw} = C_G \cdot V_{drv}^2 \cdot f_{sw}
\]

\[
P_{conduction} = I_{Load}^2 \cdot R_{ds,on}
\]

\[
P_{switching} = \frac{1}{2} \cdot V_{in} \cdot i_L \cdot (t_{on} + t_{off})
\]

* Determined by the overlap of \(i_{ds}\) and \(V_{ds}\) in turn on and turn off

\[
P_{loss, total} = P_{conduction} + P_{gate} + P_{switching}
\]

Figure 4-10 Simple modeling of switching behavior

Figure 4-10 is some simple modeling equations for the switching behavior [57][58][59]. From Figure 4-10, one can see that, \(I_{rr}\) (Reverse recovery current) at turn on and \(V_{ds,overvoltage}\) (Overshoot voltage) at turn off are determined by \(di_{ds}/dt\). In order to reduce \(I_{rr}\) and \(V_{ds,overvoltage}\), the periods \(t_1-t_2\) and \(t_3-t_6\) are better to be longer. However, from Figure 4-10, one can see that the switching loss is proportional to the turn on and turn off time [60].
(a) Proposed multi-stage gate drive (MSGD)
Considering this tradeoff, a multi-stage gate driver (MSGD) is designed in this chip. Figure 4-11 is the basic concept of MSGD. For the different stages in Figure 4-9, different gate charge currents I_g are applied. In the real implementation, the stages 0-t_1 and t_1-t_2 use the same weak driver. After the current I_{ds} rises up to the inductor current, a
strong driver is applied to pull up LX node quickly so that the overlap switching loss will be reduced.

Figure 4-12 Simplified block diagram of MSGD

Figure 4-12 is the simplified block diagram of the multi-stage gate drive (MSGD). Two fast V_{ds} sensors are used to control the turn on and turn off of the strong driver path.
Figure 4-13 is the comparison between the MSGD and CGD. From the result, we can see that, if keep the same Ids rising speed, MSGD can save a lot of power loss.
Figure 4-14 MSDG can obtain adaptive dead time control

Figure 4-14 shows the results for different load current. When the load current is high, the dead time is larger. It means that MSGD can automatically get adaptive dead time control.
4.1.5. High efficiency burst mode for light load

Light load efficiency is an important issue for a lot of applications for power management IC, especially for mobile power management IC since the power source for mobile electronic device is portable power source — batteries. In this chip, a high efficiency burst mode is designed for light load. Figure 4-15 shows the relationship between the control signal V_c and load current. From the waveform, we can see that at light load, the control signal will drop down to a very low level. By sensing the level of control signal V_c, we can detect whether the chip is working in light load mode. Figure 4-16 is the simplified block diagram of the burst mode. A comparator is used to sense the level of control signal V_c. When V_c is lower than a certain level, sleep signal will be triggered and put the whole chip into a sleep mode. Most of the blocks will be disabled during sleep mode to save static power loss. By using burst mode, the chip will only switch the power devices when the output voltage needs it to do so.
Figure 4-16 Simplified block diagram of burst mode

Figure 4-17 shows the difference between the burst mode and normal DCM mode. During normal DCM mode, the switches will be turned on and off at every cycle. In burst mode, the switches will only be turned on or off when needed. The efficiency can be improved a lot especially at very light load.
DCM mode:

\[I_L \quad V_{out} \]

Switching every cycle, low efficiency

Burst mode:

\[I_L \quad V_{out} \]

Sleep mode, low static power

Switching only when needed, high efficiency

Figure 4-17 Comparison between DCM mode and burst mode
4.2. Noise insensitive and lossless RC sensor

4.2.1. Introduction

Current sensing is a natural part for peak current control. Accurate current sensing is needed both for control and protection. There are several current sense methods for power management IC\[61\][62][63]. Figure 4-18 is the external resistor method. Since the external resistor can be a high accuracy resistor, the accuracy of this current sensor is good. However, the additional resistor will cause some additional power loss. There are three locations for the current sensor resistors. When the resistor is in series with top or bottom switch, it may have some noise issue since the switching node is quite noisy. If the resistor is in series with inductor, the noise is small, however, the power loss will increase.
Another sensor method widely used is Rds_on sensor [64][65]. As shown in Figure 4-19, two locations are normally used. Rds_on current sensor uses Rds_on resistor of the top or bottom switch as the sensor resistor, so it is a lossless current sensor method. However, since the resistance of Rds_on will change with process, temperature. The accuracy is not very good. It is also noise sensitive like the external resistor sensor method.

Figure 4-20 Traditional RC current sensing
The third widely used method is a lossless RC sensor method shown in Figure 4-20.

We will focus on this method in this section.

\[
V_{\text{isen}} = I_L \cdot ESR_L \cdot G_m \cdot R_1
\]

\[
V_{\text{Cs}} = I_L \cdot ESR_L
\]

Figure 4-21 Signal noise ratio is too small for traditional RC current sensor

In traditional RC sensor, time constant of inductor “\(L / ESR_L\)” should be equal to time constant of RC sensor network “\(R_{cs} \cdot C_{cs}\)”, the sensor output signal is \(ESR_L \cdot i_L\). When \(ESR_L\) is very small, the sensor output signal will be too weak to be detected by other circuitry. Figure 4-21 is a typical waveform for original RC sensor. The differential signal across the sensing capacitor Ccs is normally around 1mV. This signal is too small to be detected by other circuitry due to the large common mode noise everywhere. As shown in Figure 4-20, there is a lot of noise at \(V_{\text{in}}\) node, output node, power ground PGND and signal ground. Besides these, the offset voltage of the differential Gm block
can be several mV. The common mode rejection ratio (CMRR) of the differential Gm block is not infinite. It is almost impossible to accurate sense the 1mV small signal on the sensing capacitor C_{cs} in such a noisy environment. In order to solve this problem, a new RC sensor is proposed in this section.

4.2.2. Proposed new RC sensor structure

In order to amplify the signal magnitude on the sensing capacitor, two structures are invented shown in Figure 4-22 and Figure 4-24. In these two new structure, the time constant of inductor \(\frac{L}{ESR_L}\) is not equal to time constant of RC sensor network \(R_{cs} \cdot C_{cs}\). Figure 4-23 and Figure 4-25 are the design equations for structure (1) and (2). From the equations, we can see that, sensor network time constant \(R_{cs} \cdot C_{cs}\) is times smaller than the time constant of the inductor time constant \(\frac{L}{ESR_L}\). If

\[
R_{cs} \cdot C_{cs} \ll \frac{L}{ESR_L} \quad V_{cs} = ESR_L \cdot \frac{1 + s \cdot \frac{L}{ESR_L}}{1 + s \cdot R_{cs} \cdot C_{cs}}
\]

The signal on the sensor capacitor C_{cs} will be times larger than original RC sensor. The differential Gm block can easily catch this signal even in a noisy environment. Another impedance network is added after the Gm block to make the whole transfer function from inductor current I_L to sensor output V_{isen} a constant resistor. Figure 4-26 shows the difference between the new RC sensor and the traditional RC sensor. Since the sensor RC network is a good low pass filter, which makes this sensor method very suitable for high frequency switching DC-DC converter. The drawback of this sensor method is that, the
tolerance of the ESR of inductor is normally 20% to 30%. The accuracy of this sensor
network is not very good.

Design equations:

\[
\frac{L}{ESR_L} = (R_2 + R_1) \cdot C_1
\]

\[
R_{CS} \cdot C_{CS} = R_2 \cdot C_1
\]

\[
V_{_isen} = I_L \cdot ESR_L \cdot G_m \cdot R_1
\]
Figure 4-24 New lossless RC sensor structure (2)

Design equations:

\[\frac{L}{ESR_L} \cdot \frac{R_2}{R_2 + R_1} = R_{CS} \cdot C_{CS} \]

\[\frac{L}{ESR_L} = R_1 \cdot C_1 \]

\[V_{\text{isen}} = I_L \cdot ESR_L \cdot G_m \cdot (R_1 + R_2) \]

Figure 4-25 Design equations for new RC sensor structure (2)
4.2.3. Modeling of the new RC sensor

Sensor parameters:

\[
\begin{align*}
V_{in} &= 12V \\
V_{out} &= 1W \\
I_{load} &= 15A \\
f_s &= 1MHz \\
L &= 300\, nH \\
ESR_L &= 0.1m\Omega \\
R_{CS_{ord}} &= 3K\Omega \\
C_{CS_{ord}} &= 1uF \\
R_{CS} &= 3K\Omega \\
C_{CS} &= 0.01uF \\
R_2 &= 300\, K\Omega \\
R_1 &= 29.7M\Omega \\
C_1 &= 100\, pF \\
G_m &= 10uA/V
\end{align*}
\]

Figure 4-27 Modeling parameters for the new sensor

A specific application case is selected to model this new RC sensor method. Figure 4-27 shows the parameters used in the modeling.
Figure 4-28 shows the modeling of the transfer function of this new RC sensor (bottom figure) and traditional RC sensor (top figure). From Figure 4-28, we can see that, in traditional RC sensor, the pole and zero in the sensor network are equal so that they can cancel each other. The total transfer function from inductor current I_L to V_{cs} is like a resistor. In the new RC sensor, the position of the zero and pole are not equal. The total transfer function from inductor current I_L to V_{cs} is more like a one zero system except the high frequency part is damped. By doing this, more signals are injected to V_{cs} as a carrier.
signal to help transferring the small signal from V_{cs} to the output of the Gm block. The final sensor gains of the new RC sensor and traditional RC sensor are the same except that pole-zero cancellation is done by two steps in the new RC sensor.

Figure 4-29 shows the results of the modeling case. From this figure, we can see that, although the signal at switching node is very noisy, the output of the new current sensor is very clean.

Figure 4-29 Results of the modeled sensor

129
4.3. Summary

Several novel design concepts are proposed in this chapter for monolithic integration and high frequency design for switching DC-DC converter. Though these concepts are derived from a specific monolithic high frequency synchronous buck converter, most of them are applicable for general switching DC-DC converter.
Chapter 5: Experimental Chip Development and Test Results

5.1. Specifications and chip structure

5.1.1. Introduction

In order to study the design issues for monolithic integration of high frequency switching DC-DC converter, a peak current control monolithic high frequency switching buck is chosen in this work since peak current control is the most popular control scheme and buck is a widely used topology in reality.

Figure 5-1 is the simplified block diagram of a peak current control buck. There is a control loop in this system. The control loop can be roughly divided into five parts: Compensator, PWM modulator, driver, PWM switch and output low pass filter. For synchronous buck, the rectifier diode is replaced by a transistor to reduce conduction loss. The basic principle of this control scheme is that: when output is lower than the reference voltage, control signal V_c will rise up. This signal will compare with the sum of slope compensation ramp and current sensing ramp and generate a larger duty cycle clock. This clock signal will be transfer to the gate of the PWM switch by the driver and turn on and turn off the PWM switch. Since duty cycle is larger, more energy will be transferred to the output capacitor C and output voltage will rise up to reference voltage. The same phenomena will happen when output voltage is higher than reference voltage.

In this design, the whole system will be integrated onto a single chip except the output resonant tank due to the large area needed for large value passive components. All of the
issues discussed before will be the design issues for this high frequency buck too. Most of the new design concepts proposed in the last several chapters are applied in this chip to verify the correctness of these design concepts.

Figure 5-1 Simplified diagram of a peak current control buck
5.1.2. Pin configuration and pin Description

Figure 5-2 Pin configuration of the developed chip

Figure 5-2 is the pin configuration of the developed chip. The package for the current version of this chip is TSSOP10. There are ten pins for this chip. The description is shown in Table 5-1. The right side pins are most power pins and left side pins are most analog pins. Most of the energy will go through the right side of the PCB board. The pin arrangements are designed to minimize the area of the power loops and provide a good separation between the high power, high noise area and low power low noise analog part. Most of the power pins have two bondwires to reduce the parasitic inductance and resistance.
Table 5-1 Pin configuration of the developed chip

<table>
<thead>
<tr>
<th>Pin name</th>
<th>Pin description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOST</td>
<td>Power source for high side driver</td>
</tr>
<tr>
<td>VIN</td>
<td>Input power supply</td>
</tr>
<tr>
<td>SW</td>
<td>Switching point connected with inductor</td>
</tr>
<tr>
<td>PGND</td>
<td>Power ground</td>
</tr>
<tr>
<td>VCC</td>
<td>Power supply for bottom driver</td>
</tr>
<tr>
<td>PGOOD</td>
<td>Power good signal</td>
</tr>
<tr>
<td>FB</td>
<td>Feedback voltage from output</td>
</tr>
<tr>
<td>SGND</td>
<td>Signal ground, single point to PGND</td>
</tr>
<tr>
<td>_SHDN</td>
<td>Shutdown the whole chip when at “0”</td>
</tr>
<tr>
<td>MODESYN</td>
<td>Model select & synchronize to ext-clk</td>
</tr>
</tbody>
</table>

5.1.3. Specifications

Figure 5-3 Typical application of the developed chip

Figure 5-3 is the typical application diagram of this chip. Since the top switch is a NLDMOS device, a voltage higher than the input voltage is needed to turn on this device. In order to do this, a bootstrap diode and capacitor is connected to boost pin of this chip.
When the SW pin goes to ground, input source V_{in} will charge the bootstrap capacitor to the input voltage. When the top switch is turned on, SW will rise up to V_{in} and BOOST node will be a V_{in} voltage higher than the input node. In order to prevent the noise in high power part to feed through to the low power analog part, a single-point connection method is used in the PCB board layout.

Table 5-2 Specifications of the developed chip

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{in}</td>
<td>3-24V</td>
</tr>
<tr>
<td>V_{out}</td>
<td>0.8V-0.85xVin</td>
</tr>
<tr>
<td>I_{Load}</td>
<td>0-1.5A</td>
</tr>
<tr>
<td>f_{sw}</td>
<td>500k-2MHz</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>200k-300kHz at 1.5MHz</td>
</tr>
<tr>
<td>Control scheme</td>
<td>Selectable peak current control or cotangent control</td>
</tr>
<tr>
<td>Power stage</td>
<td>Synchronous, two NLDIMOS</td>
</tr>
<tr>
<td>Package</td>
<td>TSSOP10</td>
</tr>
</tbody>
</table>

Table 5-2 is the specifications of the developed chip. A wide range of the input voltage and load current are needed for this chip, which makes the compensator design very challenging. The maximum frequency of this chip can go up to 2MHz. For this kind of high switching frequency switching regulator, the loop delay is another concern.
5.1.4. System structure description

Figure 5-4 Detail structure of the whole chip

Figure 5-4 is the detail structure of the whole chip. The basic structure is a simple peak current control loop shown in Figure 5-1. The rectifier diode is replaced by an NLDMOS to reduce the conduction loss. In the real design, both top and bottom switch are divided into two sections: 1/3 and 2/3 sections. For different sections, individual driver is used to turn on and turn off that section of the switch. Since the gate capacitance is reduced a lot at light load, the driver loss is much less than a single device version. In order to prevent the chip from shooting through, a complicated dead time control circuit is designed. A “break-before-make” logic is used in the adaptive dead-time control. The high side and low side gate signals are sensed and fed back to the control logic. Only when the low side gate signal is low, the high side turn-on signal can be passed through.
On the contrary, only if the high side gate signal is low the low side gate signal can be passed through to turn on the low side switch. By using this kind of “break-before-make” logic, we can prevent the shoot rough problem. Since the ground of the top switch driver is a floating node SW, we cannot use the global ground as the back gate for those devices in the high side driver. A NISO tub is used to separate this part from the other part. The breakdown voltage of this NISO tub to the surrounding area should be high enough to support the high voltage. The level-shift circuit is a design challenge for this chip. Since the switching frequency is high up to 2MHz, the speed of level-shift circuit cannot be too long. A long delay in the level shift will not only cause a phase drop in the control loop, but also cause a longer dead time. Since the body diode is conducting during dead time, the large voltage drop on the body diode will cause some additional power loss. With a longer conduction of body diode, the charge in the diode is going to be larger, which is going to cause a lager reverse recovery current during switching and so more noise from power stage. If this noise is not suppressed, it is going to breakdown the power device or affects the functionality of the analog control circuitry. In order to speed up transient response, a novel cotangent control scheme discussed in chapter 3 is added to this chip. Since the input can vary from 3V to 24V, it can’t be directly used as the power supply for the control circuit. An internal linear regulator is used to generate a 2.7V on-chip power supply for the control core. As we know, the input port of a buck converter is very noisy due to the pulsing current going into this port. Any parasitic inductance at the input node is going to cause some voltage spike at the input port. This input port is used as the input to the on-chip LDO, which requires that the LDO has a very good line regulation transient performance. This is sometimes very challenging since the voltage spike at the
input side can be several volts and has a frequency up to GHz. It is very difficult to damp this kind of noise. If this noise is fed through to the output of the LDO, the power supply for the analog part will be noisy, which is going to impose a high requirement for the power supply rejection ratio (PSRR) for the analog control circuit. Some other design features are added to this chip like soft-start, under voltage lockout (UVLO), Output short circuit protection, high frequency burst mode for light load, over current protection for both top and bottom switch etc. All of these features are used to protect this chip from fault operations. The number of the total components of this chip is close to 2000.

5.2. Experimental chip test

The developed buck is fabricated using a 0.5um trenched bipolar-CMOS-DMOS (BCD) process. The final silicon is packaged and tested in lab. Figure 5-5 shows the photo of the PCB board. The whole DC-DC converter is only around 2.2cmX2.2cm.
5.2.1. Power on start up

![Waveform Image]

Figure 5-6 Tested power on start up when $V_{in}=3V$, $V_{out}=1.5V$ $I_{load}=200mA$

Power up is very critical for most of electrical products. Most of the switching regulators use a soft start structure. In this chip, the reference voltage rises up very slowly at power up to slow down the inductor current rising speed. Another critical point for power on start up is the overshoot voltage when the chip begins to go into the steady state. Figure 5-6 is the test results for the power on start up for this chip. LX is the switching node. From the waveform, we can see that the output voltage rises steadily up to the steady state value 1.5V. There is almost no overshoot at the whole process. The soft-start function and power on reset circuit work well. Another conclusion from this waveform is that the whole chip is stable in this application case.
5.2.2. Steady state

Yellow Trace = VSW - Blue Trace = Vboost
Green Trace = Iout - Purple Trace = Vout

20Vin to 3.30Vout @ 200mA

Figure 5-7 Tested waveform for high input voltage

High voltage is a challenge for this chip. When the input voltage is 24V, the maximum voltage inside the silicon can be almost 30V. If any voltage spike happened inside the chip, the maximum voltage spike can be even higher. If the voltage spike is higher than the break down voltage of the power device, which is around 35V, the power device may be breakdown. Figure 5-7 shows the steady state waveform for high input voltage CCM application case. From the waveform, we can see that the chip is working well in this application case. The output is stable at 3.3V.
High load current is another challenge for this chip. The maxim current for this chip can be around 1.5A. For such a small package, a large current like 1.5A is a challenge. Figure 5-8 shows the medium input voltage with 1A load current application case. From the waveform, we can see that the chip is working fine in this case. The output voltage is stable at 1.6V.
Light load is another extreme condition for switching regulator. During light load, the transfer function of control loop may be different from the heavy load case since the inductor is in CCM mode in heavy load case and in DCM mode in light load case. For a switching buck regulator, the transfer function of the power stage is a two-order system for CCM. However, it is only a one-order system in CCM when load current is small. A system may be stable in heavy load CCM case, but may be unstable in light load DCM case. Another challenge is the wide range of duty cycle. Since the loop gain is related with duty cycle, the chip can be stable for some duty cycle, but unstable at some other
duty cycle case. Figure 5-9 shows the working waveform for a DCM case and small duty cycle case. From Figure 5-6 Figure 5-7, Figure 5-8 and Figure 5-9 we can see that the chip can work in a wide working range.

5.2.3. Transient response

![Image of transient response waveform]

3.30VDC to 1.20VDC Transient

lout = 0.50A to 1.00A

Figure 5-10 Tested waveform for transient response with low input voltage

The main purpose of a switching regulator is to generate a high quality output voltage under all kinds of application situation. A critical performance specification for most of the switching regulator is the transient response. Transient response includes line transient response and load transient response. Both of them include a step-up transient
and a step-down transient response. Figure 5-10 shows the load transient waveform with low input voltage and low output voltage. With a load step from 0.5A to 1A, the output voltage will only change around 50mV. Figure 5-11 is the transient response test with high input voltage and low output voltage. The output voltage will change only around 70mV when load changes from 200mA to 1A. The transient response performance of this chip is good.

![Transient Response Waveform](image)

24V to 1.60V 200mA to 1.00A

Figure 5-11 Tested waveform for transient response with high input voltage
5.2.4. Efficiency and loss break down

![Efficiency Vs load](image)

Figure 5-12 Efficiency Vs load current at $V_{in}=5V$, $V_{out}=1.5V$

Figure 5-12 is the efficiency verse load curve. From the curve, we can see that the chip can keep a high efficiency at a wide load range. Part of the reason is that we use two-section device for the chip.
Figure 5-13 is the loss break down of the chip. Since the size of the top switch is not too much because of the limited silicon area, the conduction loss of the top device is relatively large. Another phenomenon are the high driver loss. The driver loss is comparable with device loss, which is specific for high frequency switching regulator. In order to improve the efficiency, the turn-on and turn-off time for the power switch should be relatively fast, which will cause a bigger voltage spike on the power switch and a larger reverse recovery current in the power stage. With this kind of big drive loss, the efficiency at light load is going to be low at light load. In order to get a high efficiency, some special control schemes such as PFM, skipping mode, burst mode can be used. However, those control mode can has a wide frequency spectrum and not suitable for noise sensitive application.
5.2.5. Summary

In order to study the design issues for monolithic integration of high frequency switching DC-DC converter, a peak current control monolithic high frequency switching buck is chosen in this work. The chip is fabricated using a trench isolated BCD process. The power on start up, steady state and transient response are tested. The transient response of this chip is good. The chip can keep at a high efficiency for a wide load range.
Chapter 6: Conclusion

6.1. Summary

In this work, the modeling and design of a monolithic high frequency synchronous buck is discussed in details. By doing this chip design, the issues of monolithic integration of high frequency switching DC-DC converter is investigated. A general analysis method for frequency response simulation of switching DC-DC converter is developed. Some novel design concepts are proposed for monolithic integration and high frequency design. The chip is fabricated and tested finally.

Basically, this work focused on the following topics:

- Proposed a new method — Periodic small signal analysis based method for accurate modeling of the frequency response of a switching DC-DC converter based on SPICE simulator. The basic concept and algorithm are discussed. The results are accurate comparing with average modeling and experiment results. A general loop gain design flow based on periodic analysis is proposed for a general switching regulator.

- Developed a new control scheme — Cotangent Control (Ctg control) for fast transient response. Comparing with traditional linear control and existing non-linear control like LnLc and \(V^2 \) control, this control has better transient performance with no effect to steady state performance and better stability performance. The small signal modeling of this control scheme is discussed. The stability modeling method — describing function method is discussed. Finally, a
combination of cotangent control with active clamp is studied to get a very fast transient response for switching regulator.

- In order to implement on-chip compensator, a general small area on-chip compensator structure — *Active feedback compensator* is proposed. By using miller capacitor and feedback concept, low frequency zero and pole can be implemented on silicon using a small resistor and capacitor. This structure makes it possible to implement any kind of compensator on silicon.

- A new concept — *Adaptive compensation* is proposed for wide application range power management IC. The adaptive compensation concept applied for boost case is discussed in details. By using active feedback compensator, active compensation can be implemented on silicon easily.

- In order to reduce the reverse recovery current and voltage spike for the power stage, a new driver structure — *multi-stage gate drive (MSGD)* is proposed. Comparing with conventional gate drive (CGD), MSGD has better noise performance and efficiency.

- For a certain load, an optimal power device size based on efficiency optimization is preferred. If the load range is too wide, multi-section device is an option to improve efficiency at the wide load range. A *cycle-by-cycle multi-section device selection* concept is proposed and implemented on this chip.

- Traditional RC sensor has a poor signal-to-noise problem. A new RC sensor is proposed in this work. This sensor resolved the signal-to-noise problem and make the RC sensor usable for some noisy environment
6.2. Future work

Monolithic integration and high frequency are two trends for modern power electronics. It is an endless topic in power electronics area like the speed of Pentium processor. Ten years ago, people were talking about 386, 486, now people are talking about Pentium IV, G5. The clock frequency is changing from MHz to several GHz. As we can see, hundreds kHz is a high frequency for current power electronic technology. Several MHz is almost the highest switching frequency for current technology. New challenges continue to emerge. At the next several years, the following work may be worthy of study:

- New control topology.
 - Voltage mode control, peak current control are two most common control topologies for switching regulator. With the frequency going higher and higher, more and more issues come out. New control topology is needed for high frequency monolithic switching regulator

- High speed circuit design
 - When the switching frequency goes higher, the switching period is going to be smaller and smaller. The control loop is very sensitive to the delay of the circuitry. The fastest delay we can get by using current technology is around 40ns. This is almost 1/5 of the whole switch period if the switching frequency is 4MHz. If the switching frequency is even higher, the delay may not be acceptable. Some high-speed circuit design may be needed for this kind of application.

- New circuit block design
As we know, some blocks are frequently used in switching regulator such as driver, current sensor, level shift and compensator. Though a lot of topologies for these blocks were proposed by now, we still need some more advanced design for those blocks. For example, we have a lot of current sensor circuits, it is still difficult to sense the current in VRD application. When the switching frequency goes higher, the switching period is going to be smaller, which requires that the current sensor should response in a very short time. How to sense the current information quickly, accurately regardless the input voltage, output voltage, load current, noise and even temperature is really a tough task. But we still need to face this problem in the future.

New passive components and power devices

As we know, passive components and power semiconductor devices are very important for switching regulator. Passive components are used as energy storage components for switching regulator. The parasitics like ESR and ESL impose some bad effect for the performance of switching regulator. Good passive components with less ESR and ESL are sometimes the only solution for some critical performance specifications. Power semiconductor devices are used as power switches in switching regulator. The parasitic resistance Rdson, parasitic body diode and parasitic capacitance cause some bad effect to the performance of switching regulator. With the switching frequency going higher and higher, the power switches are required to be turned on and off much
faster. By using current device technology, the switching loss and noise caused by turning on or off of the power device may burn the whole chip or break down the device itself. New technology for power switches is definitely required for high switching monolithic integration.
References

Abstract

Chapter 1. Introduction

[9] http://www.vdc-corp.com/power/annual/03/br03-14exhibits.html#vol1

Chapter 2. Accurate Control Loop Modeling and Simulation

Chapter 3. “Cotangent Control” Modeling and Implementation

[42] http://www.facstaff.bucknell.edu/mastascu/eControlHTML/Nonlinear/NonLinear2DescFcn.htm

Chapter 4. Efficient, Noiseless Power Stage and Current Sensor Design

[53] N. X. Sun*, A. Q. Huang, and F. C. Lee , “0.35 um, 43 uΩcm² , 6 mΩ Power MOSFET to power future microprocessor,” Proceedings of the 11th International Symposium on Power Semiconductor Devices and ICs, pp. 77-80, Toronto, Canada, May, 1999

Chapter 5. Experimental Chip Development and Test Results
Vita

The author, Haifei Deng was born in Jiangxi, China on June 1975. He received the B.S. degree from University of Electronic Science and Technology of China (UESTC), Chengdu, China in 1997 and M.S. degrees in electrical engineering from Tsinghua University, Beijing, China, in 2000. He is currently pursuing the Ph.D. degree in power electronics at the Virginia Polytechnic Institute and State University, Blacksburg. His research interests include design of power management integrated circuit, control and modeling of DC-DC switching converter and analog Integrated circuit design.