EFFECT OF VARIATION OF THE SYSTEMIC PARAMETERS ON THE STRUCTURAL RESPONSE OF SINGLE DEGREE OF FREEDOM SYSTEMS SUBJECTED TO INCREMENTAL DYNAMIC ANALYSIS

by

Samrat De

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

CIVIL ENGINEERING

APPROVED:

__

Finley A. Charney, Chairman

__

Raymond H. Plaut

__

James R. Martin

February 11, 2004

Blacksburg, Virginia

Keywords: Incremental dynamic analysis, systemic parameters, rescaling, dispersion
EFFECT OF VARIATION OF THE SYSTEMIC PARAMETERS ON THE STRUCTURAL RESPONSE OF SINGLE DEGREE OF FREEDOM SYSTEMS SUBJECTED TO INCREMENTAL DYNAMIC ANALYSIS

by

Samrat De
Committee Chairman: Dr. Finley A. Charney

(ABSTRACT)
This thesis presents the results of a study of the effect of variations of systemic parameters on the structural response of single degree of freedom systems subjected to Incremental Dynamic Analysis. The systemic parameters are mass, stiffness, damping, yield strength and geometric stiffness. Each of these parameters was varied one at a time while the other values were kept constant. For each variation of parameters a set of single-record IDA curves was obtained. Five to six ground motions were used for this study to generate the single-record IDA curves. These ground motions were scaled prior to their application on the structure. The scaling factor was based on the spectral acceleration at the fundamental frequency of the structure at 5% of critical damping. The scale factor is affected if the system parameters are changed. An important issue for this study was whether to persist with scaling corresponding to the median value from the range of the values of the parameter or to update the scaling according to the system. Based on some tests using both methods, the median scaling approach was found to be more suitable. The IDA curves for variation of parameters were then investigated to identify any trends that may help in qualitatively predicting the response of a system relative to another system. The response was measured by the peak displacement and the maximum base shear of the system. A clear trend was identified when the damping or the yield strength was varied. However, no definite trend was observed when the material stiffness or the geometric stiffness of the system was varied.
Acknowledgements

This work is the product of the contributions of many persons with whom I have been associated during my stay in Virginia Tech. I would like to express my deepest appreciation to my advisor and committee chairman, Dr. Finley A. Charney. He has supported me in every possible way throughout the duration of this project. Under his guidance I was able to realize my potential and learned many new concepts in the field of nonlinear dynamic analysis and earthquake engineering. I would also like to thank my other committee members, Dr. Raymond Plaut and Dr. James Martin, for taking the time to review the thesis and providing useful insights.

Special thanks are due to Mr. Brian Barngrover, Arvada, CO for upgrading the software NONLIN and making it very user friendly when performing the Incremental Dynamic Analysis.

I would like to thank my family and friends who have constantly motivated and inspired me. My Mom and Dad have always encouraged me in all my endeavors and supported me when I needed them the most. I will always cherish the time I have spent with my fellow graduate students in Blacksburg who never made me feel that I was far away from my home.
TABLE OF CONTENTS

ABSTRACT..ii

ACKNOWLEDGEMENTS ...iii

LIST OF FIGURES ..vii

LIST OF TABLES ...xiv

CHAPTER

1. Introduction ...1
 1.1 Background ...1
 1.2 Objective and purpose ...1
 1.3 Application of structural dynamics in earthquake engineering ..2
 1.4 Organization of the thesis ...4

2. Literature Review ...5
 2.1 Overview of Performance Based Earthquake Engineering ...5
 2.1.1 Design and evaluation ...5
 2.1.2 Probabilistic versus deterministic approach to seismic evaluation7
 2.2 Incremental Dynamic Analysis ...9
 2.2.1 Procedure and observations ...9
 2.2.2 Scaling issues ..13
 2.2.3 Comparison with probabilistic seismic demand analysis ...17

3. Description of NONLIN ...19
 3.1 Introduction ...19
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2 Single Degree of Freedom (SDOF) model</td>
<td>19</td>
</tr>
<tr>
<td>3.3 Multiple Degree of Freedom (MDOF) model</td>
<td>23</td>
</tr>
<tr>
<td>3.3.1 Modeling features</td>
<td>27</td>
</tr>
<tr>
<td>4. Incremental dynamic analysis using \textit{NONLIN}</td>
<td>32</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>32</td>
</tr>
<tr>
<td>4.2 System properties input</td>
<td>32</td>
</tr>
<tr>
<td>4.2.1 Weight</td>
<td>33</td>
</tr>
<tr>
<td>4.2.2 Damping</td>
<td>33</td>
</tr>
<tr>
<td>4.2.3 Primary stiffness (K_1)</td>
<td>33</td>
</tr>
<tr>
<td>4.2.4 Secondary stiffness (K_2)</td>
<td>33</td>
</tr>
<tr>
<td>4.2.5 Yield strength (F_Y)</td>
<td>33</td>
</tr>
<tr>
<td>4.2.6 P-Delta option (K_G)</td>
<td>34</td>
</tr>
<tr>
<td>4.3 Scaling parameters</td>
<td>35</td>
</tr>
<tr>
<td>4.3.1 Use of target scaling parameters</td>
<td>40</td>
</tr>
<tr>
<td>5. Effect of rescaling in variation of parameter study</td>
<td>49</td>
</tr>
<tr>
<td>5.1 Concept of rescaling</td>
<td>49</td>
</tr>
<tr>
<td>5.2 Procedure</td>
<td>50</td>
</tr>
<tr>
<td>5.3 Results</td>
<td>55</td>
</tr>
<tr>
<td>5.3.1 Results for the Imperial Valley Ground Motion</td>
<td>55</td>
</tr>
<tr>
<td>5.3.2 Results for the Kern County Ground Motion</td>
<td>59</td>
</tr>
<tr>
<td>5.3.3 Results for the Loma Prieta Ground Motion</td>
<td>62</td>
</tr>
<tr>
<td>5.3.4 Results for the Northridge Ground Motion</td>
<td>65</td>
</tr>
<tr>
<td>5.3.5 Results for the Santa Monica Ground Motion</td>
<td>68</td>
</tr>
<tr>
<td>5.4 Effect on rescaling due to variation in damping</td>
<td>71</td>
</tr>
<tr>
<td>5.5 Conclusions</td>
<td>75</td>
</tr>
</tbody>
</table>
List of Figures

Fig 2.1: Connection model used in Bonowitz and Maison (1998) .. 8
Fig 2.2: Multi-record IDA plot .. 11
Fig 2.3: Sample IDA plots .. 12
Fig 3.1: Bilinear hysteretic model used in section 2.2.1 ... 20
Fig 3.2: SDOF model of the office building (section 2.2.1) as observed in NONLIN 21
Fig 3.3: Energy plot in NONLIN for the model in section 2.2.1 ... 23
Fig 3.4: Three degree of freedom model ... 24
Fig 3.5: Linearly elastic model ... 27
Fig 3.6: Multi-linear hysteretic model .. 28
Fig 3.7: Schematic representation of strength degradation (Sivaselvan and Reinhorn, 1999) 29
Fig 3.8: Modeling of stiffness degradation for positive excursion (Sivaselvan and Reinhorn, 1999) ... 30
Fig 4.1: System properties window in NONLIN ... 32
Fig 4.2: Force displacement relationship ... 34
Fig 4.3: P-Delta Effects occurring in a system having elastic-perfectly-plastic behavior 35
Fig 4.4: Scaling parameters window ... 36
Fig 4.5: Typical design spectrum .. 37
Fig 4.6: Determination of scale factor ... 38
Fig 4.7: Ground motion selection ... 39
Fig 4.8: Response spectra of the original ground motions ... 41
Fig 4.9: Response spectra of the ground motions based on the system’s period of vibration 42
Fig 4.10: Response spectra of the ground motions based on PGA scaling 42
Fig 4.11: Response spectra of the ground motions based on target period of 3.0 seconds 43
Fig 4.12: Multi-record IDA curves for five ground motions using system’s period of vibration .. 45
Fig 4.13: Multi-record IDA curves for five ground motions using PGA scaling....................47
Fig 4.14: Multi-record IDA curves for five ground motions using
target scaling of 3.0 seconds..47
Fig 5.1: Scaled acceleration time histories of ground motions ..51
Fig 5.2: IDA plots of peak displacement response for the Imperial Valley ground motion....57
Fig 5.3: IDA plots of ductility demand for the Imperial Valley ground motion......................58
Fig 5.4: IDA plots of peak displacement response for the Kern County ground motion.......60
Fig 5.5: IDA plots of ductility demand for the Kern County ground motion..........................61
Fig 5.6: IDA plots of peak displacement response for the Loma Prieta ground motion........63
Fig 5.7: IDA plots of ductility demand for the Loma Prieta ground motion..........................64
Fig 5.8: IDA plots of peak displacement response for the Northridge ground motion.........66
Fig 5.9: IDA plots of ductility demand for the Northridge ground motion............................67
Fig 5.10: IDA plots of peak displacement response for the Santa Monica ground motion....69
Fig 5.11: IDA plots of ductility demand for the Santa Monica ground motion......................70
Fig 5.12: IDA plots of peak displacement response with damping variation for
the Kern County ground motion ...72
Fig 5.13: IDA plots of peak displacement response with damping variation for
the Santa Monica ground motion ..74
Fig 6.1: IDA plots of peak displacement response for the Imperial Valley
ground motion for variable stiffness..80
Fig 6.2: IDA plots of peak displacement response for the Kern County
ground motion for variable stiffness..80
Fig 6.3: IDA plots of peak displacement response for the Loma Prieta
ground motion for variable stiffness..81
Fig 6.4: IDA plots of peak displacement response for the Northridge
ground motion for variable stiffness..81
Fig 6.5: IDA plots of peak displacement response for the Santa Monica
ground motion for variable stiffness..82
Fig. 6.6 Multi-record IDA plot of peak displacement response for different ground motions for the system having $K_1 = 2770$ k/in. and $K_2 = 277$ k/in...83
Fig. 6.7 Multi-record IDA plot of peak displacement response for different ground motions for the system having $K_1 = 3170$ k/in. and $K_2 = 317$ k/in...83
Fig. 6.8 Multi-record IDA plot of peak displacement response for different ground motions for the system having $K_1 = 3570$ k/in. and $K_2 = 357$ k/in...84
Fig. 6.9 IDA plots of base shear for the Imperial Valley ground motion for variable stiffness..85
Fig. 6.10 IDA plots of base shear for the Kern County ground motion for variable stiffness..85
Fig. 6.11 IDA plots of base shear for the Loma Prieta ground motion for variable stiffness..86
Fig. 6.12 IDA plots of base shear for the Northridge ground motion for variable stiffness..86
Fig. 6.13 IDA plots of base shear for the Santa Monica ground motion for variable stiffness..87
Fig. 6.14 Multi-record IDA plot of base shear for different ground motions for the system having $K_1 = 2770$ k/in. and $K_2 = 277$ k/in...88
Fig. 6.15 Multi-record IDA plot of base shear for different ground motions for the system having $K_1 = 3170$ k/in. and $K_2 = 317$ k/in...88
Fig. 6.16 Multi-IDA plot of base shear for different ground motions for the system having $K_1 = 3570$ k/in. and $K_2 = 357$ k/in...89
Fig. 6.17 IDA plots of peak displacement response for the Imperial Valley ground motion for variable damping..89
Fig. 6.18 IDA plots of peak displacement response for Kern County ground motion for variable damping..90
Fig. 6.19 IDA plots of peak displacement response for Loma Prieta ground motion for variable damping..91
Fig. 6.20 IDA plots of peak displacement response for Northridge ground motion for variable damping...92
Fig. 6.21 IDA plots of peak displacement response for Santa Monica ground motion for variable damping...92
Fig. 6.22 Multi-record IDA plots of peak displacement response for different ground motions on the system subjected to 1% of critical damping...93
Fig. 6.23 Multi-record IDA plots of peak displacement response for different ground motions on the system subjected to 5% of critical damping...94
Fig. 6.24 Multi-record IDA plots of peak displacement response for different ground motions on the system subjected to 9% of critical damping...94
Fig. 6.25 IDA plots of spring force for the Imperial Valley ground motion for variable damping ...96
Fig. 6.26 IDA plots of base shear for the Imperial Valley ground motion for variable damping ...96
Fig. 6.27 IDA plots of spring force for the Kern County ground motion for variable damping ...97
Fig. 6.28 IDA plots of base shear for the Kern County ground motion for variable damping ...97
Fig. 6.29 IDA plots of spring force for the Loma Prieta ground motion for variable damping ...98
Fig. 6.30 IDA plots of base shear for Loma Prieta ground motion for variable damping ..98
Fig. 6.31 IDA plots of spring force for Northridge ground motion for variable damping ..99
Fig. 6.32 IDA plots of base shear for the Northridge ground motion for variable damping ..99
Fig. 6.33 IDA plots of spring force for the Santa Monica ground motion for variable damping ..100
Fig. 6.34 IDA plots of base shear for the Santa Monica ground motion for variable damping ..100
Fig. 6.35 Multi-record IDA plots of base shear for different ground motions on the system subjected to 1% of critical damping .. 101

Fig. 6.36 Multi-record IDA plots of base shear for different ground motions on the system subjected to 5% of critical damping .. 102

Fig. 6.37 Multi-record IDA plots of base shear for different ground motions on the system subjected to 9% of critical damping .. 102

Fig. 6.38 IDA plots of peak displacement response for the Imperial Valley ground motion for variable yield strength .. 104

Fig. 6.39 IDA plots of peak displacement response for the Kern County ground motion for variable yield strength .. 105

Fig. 6.40 IDA plots of peak displacement response for the Loma Prieta ground motion for variable yield strength .. 105

Fig. 6.41 IDA plots of peak displacement response for the Northridge ground motion for variable yield strength .. 106

Fig. 6.42 IDA plots of peak displacement response for the Santa Monica ground motion for variable yield strength .. 106

Fig. 6.43 Multi-record IDA plots of peak displacement response for different ground motions on the system having yield strength of 870 k ... 107

Fig. 6.44 Multi-record IDA plots of peak displacement response for different ground motions on the system having yield strength of 1170 k ... 108

Fig. 6.45 Multi-record IDA plots of peak displacement response for different ground motions on the system having yield strength of 1470 k ... 108

Fig. 6.46 IDA plots of base shear for the Imperial Valley ground motion for variable yield strength .. 109

Fig. 6.47 IDA plots of base shear for the Kern County ground motion for variable yield strength .. 110

Fig. 6.48 IDA plots of base shear for Loma Prieta ground motion for variable yield strength .. 110
Fig. 6.49 IDA plots of base shear for the Northridge ground motion for variable yield strength
..111
Fig. 6.50 IDA plots of base shear for the Santa Monica ground motion for variable yield strength
..111
Fig. 6.51 Multi-record IDA plot of base shear for different ground motions
on the system having yield strength of 870 k..112
Fig. 6.52 Multi-record IDA plot of base shear for different ground motions
on the system having yield strength of 1170 k..113
Fig. 6.53 Multi-record IDA plot of base shear for different ground motions
on the system having yield strength of 1470 k..113
Fig. 6.54 IDA plots of peak displacement response for the Imperial Valley ground motion
for variable geometric stiffness...115
Fig. 6.55 IDA plots of peak displacement response for the Kern County ground motion
for variable geometric stiffness...115
Fig. 6.56 IDA plots of peak displacement response for the Loma Prieta ground motion
for variable geometric stiffness...116
Fig. 6.57 IDA plots of peak displacement response for the Northridge ground motion
for variable geometric stiffness...116
Fig. 6.58 IDA plots of peak displacement response for the Santa Monica ground motion
for variable geometric stiffness...117
Fig. 6.59 Multi-record IDA plots of peak displacement response for different ground motions
on the system subjected to geometric stiffness of 250 k/in..118
Fig. 6.60 Multi-record IDA plots of peak displacement response for different ground motions
on the system subjected to geometric stiffness of 317 k/in..118
Fig. 6.61 Multi-record IDA plots of peak displacement response for different ground motions
on the system subjected to geometric stiffness of 350 k/in..119
Fig. 6.62 IDA plots of base shear for the Imperial Valley ground motion
for variable geometric stiffness...120
Fig. 6.63 IDA plots of base shear for the Kern County ground motion
for variable geometric stiffness...120

Fig. 6.64 IDA plots of base shear for the Loma Prieta ground motion
for variable geometric stiffness...121

Fig. 6.65 IDA plots of base shear for Northridge ground motion
for variable geometric stiffness...121

Fig. 6.66 IDA plots of base shear for the Santa Monica ground motion
for variable geometric stiffness...122

Fig. 6.67 Multi-record IDA plots of base shear for different ground motions on the system
having geometric stiffness of 250 k/in...123

Fig. 6.68 Multi-record IDA plots of base shear for different ground motions on the system
having geometric stiffness of 350 k/in...123
List of Tables

Table 2.1: Scaled ground motion records representing 10%/50 year event used in SAC Project..7
Table 3.1: Element properties..26
Table 4.1: Scaling of ground motions using system’s period of vibration...40
Table 4.2: Scaling of ground motions for PGA and for T = 3.0 seconds ..41
Table 5.1: Scaled accelerations histories obtained for target acceleration of 0.25g and used for the Median Scaling Method..51
Table 5.2: Period of vibration of the different systems used in the Updated Scaling Method of analysis ...54
Table 5.3: Scale factors used in the Updated Scaling Method of Analysis for the target acceleration of 0.25g ..55
Table 5.4: Coefficients of variation for the response analysis results for the Imperial Valley Ground Motion..59
Table 5.5: Coefficients of variation for the response analysis results for Kern County Ground Motion..62
Table 5.6: Coefficients of variation for the response analysis results for the Loma Prieta Ground Motion..65
Table 5.7: Coefficients of variation for the response analysis results for Northridge Ground Motion..68
Table 5.8: Coefficients of variation for the response analysis results for the Santa Monica Ground Motion ..71
Table 5.9: Coefficients of variation for the response analysis results for the Kern County Ground Motion due to damping..73
Table 5.10: Coefficients of variation for the response analysis results for the Santa Monica Ground Motion due to damping..75