Cultural characteristics, vegetative compatibility, and spatial pattern of white hypovirulent strains of *Cryphonectria parasitica* on grafted American chestnut trees

by

Eric P. Hogan

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

PLANT PATHOLOGY

Dr. Gary J. Griffin, chairperson

Committee members: Dr. John R. Elkins and Dr. R. Jay Stipes

February, 2001
Blacksburg, Virginia
Cultural characteristics, vegetative compatibility, and spatial pattern of white hypovirulent strains of *Cryphonectria parasitica* on grafted American chestnut trees

Eric P. Hogan

ABSTRACT

In 1982-1983, naturally formed blight cankers, within a zone ranging from the ground to 183 cm on three grafted American chestnut trees, were inoculated with a mixture of four European (white), and six, pigmented hypovirulent strains of *Cryphonectria parasitica*. A total of 202 *C. parasitica* isolates were recovered from 49 cankers located outside of the inoculated zone. Ninety-five isolates (47%) were white and 107 (53%) were pigmented. Forty-eight vegetative compatibility groups were identified among 110 white isolates collected from this and previous studies. The ratio of VC groups to isolates tested (S/N), and Shannon diversity index were calculated to be 0.43 and 3.64 respectively. Of the 48 VC groups identified, 25 consisted of two or more isolates. These 25 groups were found to be vegetatively incompatible with all four of the original hypovirulent white inoculated strains, consisting of three VC groups, but were compatible with five of the 11 most common pigmented VC groups recovered from previous studies. These data provide evidence for spread of the original European hypoviruses (*Cryphonectria hypovirus 1*, CHV1) but not for spread of the original inoculated strains. Forty-five VC groups therefore represent the minimum number of “new” VC groups into which one or more of the original hypoviruses (CHV1) have spread. Single-spore colonies of the white isolates recovered from the 49 cankers were placed into four cultural morphology (CM) groups based on degree and pattern of pigmentation, and type of colony margin in culture. The two largest CM groups contained 37 (CM group 3) and 33 (CM group 1) isolates. Single-spore colonies from the original, white inoculated strain, EP-49, were classified to CM groups 3 and 1, while colonies of EP-51W were classified into CM group 1. The spatial pattern of white isolates within cankers was evaluated using a 7 x 7 lattice plot. Spatial pattern determination using the join-count statistics, described by Pielou, indicated that three of the four cankers containing white isolates had random patterns of white isolates. Vegetative compatibility tests of *C. parasitica* isolates in the two cankers sampled for spatial pattern indicated that the majority of both white and pigmented isolates in the cankers were within the same VC group for each canker. This was frequently the case even when pigmented and white isolates occurred in adjacent lattice cells. Isolates in each of the cankers identified to VC group had random patterns of the major VC groups (includes pigmented and white isolates). Using a double matrix statistical test, the spatial pattern of white VC groups among the 49 cankers was found to be aggregated (P=0.019), whereas the spatial pattern of white isolates was found to be random (P=0.325). The Lloyd’s index of patchiness value for the pattern of white isolates in all cankers was 0.91. This value is just less than 1.0, which would indicate a random pattern.
DEDICATION

This thesis is dedicated to my parents, Donald and Susan Hogan.
ACKNOWLEDGEMENTS

I would like to first thank the Lord and His Church for the continual graces provided, without which none of this would be possible. I would also like to express extreme gratitude to my advisor Gary Griffin for the continual help and guidance on this project; all the assistance is much appreciated. Thanks also to my committee members, Dr. John Elkins and Dr. Jay Stipes for all the very thoughtful and valuable suggestions throughout the project. The statistical methods in this thesis were possible only because of the help of Dr. Oliver Schabenberger. I really appreciate all the extra work he did. Special thanks also to Dr Griffin, Lucille Griffin and the American Chestnut Cooperators Foundation for all the financial aid and encouragement.

Thanks to all of my roommates and the graduate students in PPWS. Late nights on the fifth floor and six hour labs were somehow tolerable because of the pleasant company and inventive study methods. All the help, inspiration and friendship you all provided was an invaluable part of my experience at Virginia Tech.

I am very thankful for my parents, Donald and Susan Hogan, and my brother Kurt Hogan. All of their love and moral support has provided me with the motivation to do my best in school and all other things in life.
TABLE OF CONTENTS

Title Page..i
Abstract..ii
Dedication ...iii
Acknowledgements...iv
Table of Contents..v
List of Figures...vii

CHAPTER 1 INTRODUCTION ..1

CHAPTER 2 LITERATURE REVIEW ..4

CHAPTER 3 MATERIALS AND METHODS
 3.1 Isolation of *C. parasitica* from superficial cankers on grafted American chestnut trees ...14
 3.2 Identification of cultural characteristics of *C. parasitica* ..15
 3.3 Vegetative compatibility tests on white and pigmented *C. parasitica* isolates16
 3.4 Spatial pattern determinations of white isolates in superficial cankers on grafted American chestnut trees ..17
 3.5 dsRNA extraction assays on *C. parasitica* isolates ...18

CHAPTER 4 RESULTS
 4.1 *C. parasitica* isolates recovered from superficial cankers on grafted American chestnut trees ...21
 4.2 Vegetative compatibility of white *C. parasitica* isolates ..23
 4.3 Cultural characteristics of *C. parasitica* ..26
 4.4 Spatial pattern of white and pigmented *C. parasitica* isolates ..35
 4.5 DsRNA assays of pigmented isolates recovered from cankers used in spatial pattern studies ...50

CHAPTER 5 DISCUSSION ...51

LITERATURE CITED ...61

VITA ...65
LIST OF FIGURES

Figure 4.1 Representative white single-spore isolates from the four cultural morphology (CM) groups..29

Figure 4.3 Pattern of white and pigmented isolates of *C. parasitica* in a lattice plot (17.8 x 17.8 cm) of canker RML-470...38

Figure 4.4 Pattern of white and pigmented isolates of *C. parasitica* in a lattice plot (17.8 x 17.8 cm) of branch canker TG-303..39

Figure 4.5 Pattern of white and pigmented isolates of *C. parasitica* in a lattice plot (17.8 x 17.8 cm) of branch canker RMR-470...40

Figure 4.6 Pattern of white and pigmented isolates of *C. parasitica* in a lattice plot (17.8 x 17.8 cm) of canker TG-485...41

Figure 4.7 Pattern of white and pigmented isolates of *C. parasitica* in a lattice plot (17.8 x 17.8 cm) of canker THL-450...42

Figure 4.8 Pattern of white and pigmented isolates of *C. parasitica* in a lattice plot (17.8 x 17.8 cm) of branch canker THR-660...43

Figure 4.9 Pattern of white and pigmented vegetative compatibility (VC) groups of *C. parasitica* in a 7 x 7 lattice plot (17.8 x 17.8 cm) of canker RML-470..44

Figure 4.10 Pattern of white and pigmented isolates of *C. parasitica* in a lattice plot (17.8 x 17.8 cm) and distribution of white and pigmented isolates in the same major VC group of canker RML-470..45

Figure 4.11 Pattern of white and pigmented vegetative compatibility (VC) groups of *C. parasitica* in a 7 x 7 lattice plot (17.8 x 17.8 cm) of canker TG-303..46

Figure 4.12 Pattern of white and pigmented isolates of *C. parasitica* in a lattice plot (17.8 x 17.8 cm) and distribution of white and pigmented isolates in the same major VC group of branch canker TG-303..47

Figure 5.1 Sectoring of pigmented single-spore THL-513b to yield a white isolate, which could not convert the pigmented single-spore parent ..60
LIST OF TABLES

Table 4.1	Number of white and pigmented isolates of *Cryphonectria parasitica* collected from the 49 cankers sampled at various distances from the hypovirulent strain inoculated zone on grafted American chestnuts at Lesesne State Forest
Table 4.2	Number of major VC groups (those with two or more isolates) in each graft along with corresponding number of isolates in each VC group from that graft
Table 4.3	Colony morphology criteria used for classification of white and pigmented strains or isolates, as proposed by Elliston, Coskun et al., and Hogan and Griffin
Table 4.4	White isolates recovered from the three grafted American chestnut trees classified with CM group 1 cultural characteristics (white centers and “fast, advancing” margins) at 14 days on single spore plates
Table 4.5	White isolates recovered from the three grafted American chestnut trees classified with CM group 2 cultural characteristics (white centers with light to dark brown wavy type margins) at 14 days on single spore plates
Table 4.6	White isolates recovered from the three grafted American chestnut trees classified with CM group 3 cultural characteristics (white centers with numerous lightly pigmented yellow-orange pycnidia on margins) at 14 days on single spore plates
Table 4.7	White isolates recovered from the three grafted American chestnut trees classified with CM group 4 cultural characteristics (lightly yellow-orange pigmented centers with white “fast, advancing” margins) at 14 days on single spore plates
Table 4.8	Spatial pattern analysis for culture types and white vegetative compatibility groups of *C. parasitica* isolates recovered from cankers on grafted American chestnut trees
Table 4.9	Number of white and pigmented isolates collected from main stem and branch cankers using a 49-hole lattice plot (17.8 x 17.8 cm)
Table 4.10	Frequency and spatial statistics for major VC groups and white *C. parasitica* isolates recovered from 7 x 7 lattice plots on TH, RM, and TG grafted American chestnut trees