Contents

List of Figures ix
List of Tables xiv

1 Introduction and Background 1
1.1 Introduction .. 1
1.2 Literature Review ... 2
1.3 Statement of the Problem and Research Objectives 11
1.4 Organization of the Thesis 13

2 The Discontinuous Galerkin Method for Hyperbolic Problems 15
2.1 Notations .. 15
2.2 Conservation Laws .. 17
2.3 The Discontinuous Galerkin Method 22
2.4 Finite Element Spaces .. 24
2.5 Mappings for Triangle Elements 25
2.6 Orthogonal Polynomial Basis on Triangles 26
2.7 Numerical Integration Rules 32

3 Local and Global Error Analysis 33
3.1 DG Formulation and Preliminary Results 33
3.2 Local DG Error Analysis 41
3.3 Nonlinear Convection Reaction Model Problems 58
3.4 Nonlinear Conservation Laws ... 59
3.5 Local Superconvergence Points ... 64
3.6 Global Error Analysis ... 66
3.7 Computational Examples .. 73
3.8 Conclusion ... 88

4 A Posteriori Error Estimation for Hyperbolic Problems 89
4.1 Modified Discontinuous Galerkin Formulation 90
4.2 Finite Element Spaces For the Error 92
 4.2.1 Basis functions for element of type I 92
 4.2.2 Basis functions for elements of type II 94
 4.2.3 Basis functions for elements of type III 100
4.3 Time-Dependent Scalar Transport Equation 102
4.4 A Posteriori Error Estimation .. 103
 4.4.1 Error estimation for linear problems 103
 4.4.2 Error estimation for nonlinear problems 104
 4.4.3 Error estimation for time-dependent problems 106
4.5 Computational Examples ... 107
4.6 Implementation ... 146
4.7 Conclusion ... 147

5 DG Solutions for Hyperbolic Problems on Unstructured Meshes 148
5.1 Error Analysis for Linear Problems 149
 5.1.1 Superconvergence results for elements of type I 149
 5.1.2 Superconvergence results for elements of type II and III .. 151
 5.1.3 Finite Element Spaces for the Error 152
5.2 Computational Examples ... 154
5.3 Conclusions ... 160

6 Conclusion and Future Work ... 161
6.1 Contributions ... 161
6.2 Future Work ... 163

Bibliography ... 164

Vitae ... 170
List of Figures

1.1 Nonconforming mesh with discontinuous approximations. 4
2.1 Different characteristic lines. 20
2.2 Example of an order of triangles for the DG method with $a = [\alpha, \beta]^T$, $\alpha, \beta > 0$ 24
2.3 The spaces P_p (upper left), V_p (upper right) and U_p (bottom) for $p = 0$ to 5. 25
2.4 Mapping of a triangle Ω_j (left) onto a canonical triangle T_0 (right). 26
2.5 Legendre polynomials from degree 0 to 7 (upper left to lower right). 28
2.6 Right Radau polynomials from degree 1 to 8 (upper left to lower right). 28
2.7 Illustration of the mapping between a reference square and a reference triangle. 29
2.8 Dubiner polynomials for degrees 0 to 4 (upper left to lower right). 30
3.1 A triangular element with its components labeled. 34
3.2 Element Δ with inflow boundaries shown with solid lines and outflow boundary with dashed lines. 36
3.3 Elements of type I (left), II (center) and III (right). 38
3.4 Superconvergence points (marked by \times) and the lines given by (3.175) on a triangle of type I, where $\alpha > 0$, and $\beta > 0$, $U \in U_p$ with $p = 1$ (left) and superconvergence points for $p = 2$ (right). 66
3.5 Legendre superconvergence points (marked by \times) on a triangle of type II, $\alpha > 0$ and $\beta > 0$, using P_p, $p = 0$ to 3 (left to right). 67
3.6 Superconvergence points (marked by \times) on a triangle of type II, $\alpha > 0$ and $\beta > 0$, using V_p, $p = 1, 2, 3$ (left to right). 67
3.7 Superconvergence points (marked by \times) on a triangle of type II, $\alpha > 0$ and $\beta > 0$ using U_p, $p = 1, 2, 3$ (left to right). For $p = 1$ we show two curves of superconvergence points given by (3.177). 68
3.8 Superconvergence points (marked by \(\times\)) on triangle of type III, \(\alpha > 0\) and \(\beta = 0\), using \(V_p, p = 1\) (left), \(p = 2\) (center) and \(p = 3\) (right). 68

3.9 Superconvergence points on solid thick lines and points marked by \(\times\) on a triangle of type III, \(\alpha > 0\) and \(\beta = 0\), using \(U_p, p = 1\) (left), \(p = 2\) (center) and \(p = 3\) (right). 69

3.10 A horizontal strip of elements of type III with \([\alpha, \beta] = [1, 0]\). 71

3.11 Zero-level curves of the true error for Example 3.1 on a mesh having \(N = 32\) elements using the spaces \(P_p, p = 0, 1, 2, 3\) (upper left to lower right). 75

3.12 Zero-level curves of the true error for Example 3.1 on a mesh having \(N = 72\) elements using the spaces \(P_p, p = 0, 1, 2, 3\) (upper left to lower right). 75

3.13 Zero-level curves of the true error for Example 3.1 on a mesh having \(N = 32\) elements using the spaces \(V_p, p = 0, 1, 2, 3\) (upper left to lower right). 76

3.14 Zero-level curves of the true error for Example 3.1 on a mesh having \(N = 72\) elements using the spaces \(V_p, p = 0, 1, 2, 3\) (upper left to lower right). 76

3.15 Zero-level curves of the true error for Example 3.1 on a mesh having \(N = 32\) elements using the spaces \(U_p, p = 0, 1, 2, 3\) (upper left to lower right). 77

3.16 Zero-level curves of the true error for Example 3.1 on a mesh having \(N = 72\) elements using the spaces \(U_p, p = 0, 1, 2, 3\) (upper left to lower right). 77

3.17 Zero-level curves of the true error for Example 3.2 on uniform meshes having \(N = 72\) elements using \(P_p, p = 0\) to 3 (upper left to lower right). 79

3.18 Zero-level curves of the true error for Example 3.2 on uniform meshes having \(N = 72\) elements using \(V_p, p = 0\) to 3 (upper left to lower right). 79

3.19 Zero-level curves of the true error for Example 3.2 on uniform meshes having \(N = 72\) elements using \(U_p, p = 0\) to 3 (upper left to lower right). 80

3.20 Zero-level curves of the true error for Example 3.3 on uniform meshes having \(N = 96\) elements using \(P_2\) (top left), \(V_2\) (top right) and \(U_2\) (bottom). 82

3.21 Zero-level curves of the true error for Example 3.4 on uniform meshes having \(N = 64\) elements using \(P_2\) (top left), \(V_2\) (top right) and \(U_2\) (bottom). 83

3.22 Zero-level curves of the true error for Example 3.5 on uniform meshes having \(N = 64\) elements using \(P_2\) (top left), \(V_2\) (top right) and \(U_2\) (bottom). 85

3.23 Zero-level curves of the true error for Example 3.6 on uniform meshes having \(N = 32\) elements using \(P_1, V_1, U_1\), (left) and \(P_2, V_2, U_2\), (right). The superconvergence points are marked by \(\times\). 87
4.1 Basis functions for the space U_p for $p=1$ to 4 on elements of type I. 94
4.2 Basis functions for the space P_p for $p=1$ to 4 on elements of type II. 95
4.3 Basis functions for the space U_p for $p=1$ to 4 on elements of type III. 101
4.4 Basis functions for the space V_p for $p=1$ to 6 on elements of type III. 101
4.5 Zero-level curves of the true error for Example 4.1 on a uniform mesh having $N = 32$ elements using the space V_p for $p = 0$ to $p = 3$ (upper left to lower right). 109
4.6 Local effectivity indices on a uniform mesh having $N = 32$ elements with P_p, $p = 0$ to 3 (upper left to lower right) for Example 4.1. 110
4.7 Local effectivity indices on a uniform mesh having $N = 72$ elements with P_p, $p = 0$ to 3 (upper left to lower right) for Example 4.1. 111
4.8 Local effectivity indices on a uniform mesh having $N = 32$ elements with V_p, $p = 0$ to 3 (upper left to lower right) for Example 4.1. 112
4.9 Local effectivity indices on a uniform mesh having $N = 72$ elements with V_p, $p = 0$ to 3 (upper left to lower right) for Example 4.1. 113
4.10 Zero-level curves of the true error for Example 4.2 on uniform meshes having $N = 32$ elements using P_p, $p = 0$ to 3 (upper left to lower right). 114
4.11 Local effectivity indices on a uniform mesh having $N = 32$ elements with P_p, $p = 0$ to 3 (upper left to lower right) for Example 4.2. 115
4.12 Local effectivity indices on a uniform mesh having $N = 72$ elements with P_p, $p = 0$ to 3 (upper left to lower right) for Example 4.2. 116
4.13 Global effectivity index versus N (left) and versus p (right) using the space P_p for Example 4.2. 116
4.14 Zero-level curves of the true error for Example 4.3 on a mesh having $N = 32$ elements using P_1, V_1, U_1, (upper left to lower left) and P_2, V_2, U_2, (upper right to lower right) with DG method (4.1), (4.2). 118
4.15 Surface plot of the error for 4.3 on a 128 element uniform mesh with $p = 1$ (left) and $p = 2$ (right). 120
4.16 Zero-level curves of the true error for Example 4.3 on a mesh having $N = 32$ elements using the spaces U_p, $p = 1, 2, 3, 4$ (upper left to lower right). 120
4.17 Local effectivity indices for Example 4.3 on a mesh having $N = 32$ elements using the spaces U_p, $p = 1, 2, 3, 4$ (upper left to lower right). 121
4.18 Two uniform meshes for Example 4.4 with nonuniform polynomial degree distributions. 122
4.19 Zero-level curves of the error for Example 4.4 with the p-distributions of Figure 4.18.

4.20 Local effectivity indices for Example 4.4 and the p-distributions of Figure 4.18.

4.21 Triangulation of Ω for $h = 1/6$.

4.22 Zero-level curves of the true error for Example 4.5 on a mesh having $N = 72$ elements using the spaces U_p, $p = 1, 2, 3, 4$ (upper left to lower right).

4.23 Global effectivity indices for Example 4.5 on a meshes having $N = 42, 72, 110, 156$ elements using the spaces U_p, $p = 1, 2, 3, 4$ versus N (left) and p (right).

4.24 Local effectivity indices for 4.6 with $(N, p) = (450, 1), (450, 2), (1250, 1), (1250, 2), (5000, 1), (5000, 2), (20000, 1)$, and $(20000, 2)$ (upper left to lower right).

4.25 Zero-level curves of the true error for Example 4.7 on a mesh having $N = 32$ elements using the spaces U_p, $p = 1, 2, 3, 4$ (upper left to lower right).

4.26 Local effectivity indices for Example 4.7 on a mesh having $N = 32$ elements using the spaces U_p, $p = 1, 2, 3, 4$ (upper left to lower right).

4.27 Zero-level curves of the true error for Example 4.8 on a mesh having $N = 32$ elements using the spaces U_p, $p = 1, 2, 3, 4$ (upper left to lower right).

4.28 Zero-level curves of the true error at $t = 1$ for Example 4.9 on a mesh having $N = 48$ elements using the spaces P_p, $p = 0, 1, 2, 3$ (upper left to lower right).

4.29 Zero-level curves of the true error at $t = 1$ for Example 4.9 on a mesh having $N = 48$ elements using the spaces V_p, $p = 0, 1, 2, 3$ (upper left to lower right).

4.30 Zero-level curves of the true error at $t = 1$ for Example 4.9 on a mesh having $N = 48$ elements using the spaces U_p, $p = 0, 1, 2, 3$ (upper left to lower right).

4.31 Zero-level curves of the true error at $t = 1$ for Example 4.10 on a mesh having $N = 32$ elements using the spaces U_p, $p = 1, 2, 3, 4$ (upper left to lower right).

4.32 Effectivity indices $\theta_{c^2}(t)$ versus time for Example 4.10 using U_p with $p = 1$ and $N = 32, 72, 128, 200$ (left), $N = 32$ and $p = 1, 2, 3, 4$ (right).

4.33 Zero level curves for problem (4.71) on a uniform mesh having 32 elements with U_p, $p = 1, 2, 3, 4$, (upper left to lower right).

4.34 Local effectivity indices for problem (4.71) on a uniform mesh having 32 elements with U_p, $p = 1, 2, 3, 4$, (upper left to lower right).

4.35 Zero level curves for of the error using $p = 1, 2$ approximations with 32 elements (left to right) for Example 4.12 on $[0, 1] \times [0, 0.999]$.

xii
4.36 Local effectivity indices for the homogeneous Burger’s equation 4.12 with initial condition (4.72b) on $[0, 1] \times [0, 0.999]$ using meshes having $(N, p) = (1800, 1), (1800, 2), (20000, 1), (20000, 2)$ (upper left to lower right). .. 146

5.1 Mapping of a triangle Δ of Type I (left) onto a canonical triangle Δ_0 (right) 150
5.2 Mapping of a triangle Δ of Type II (left) onto a canonical triangle Δ_0 (right) 151
5.3 Unstructured grids obtained by partitioning the domain into N, $N = 34, 50, 74, 100$ triangles of type I, II and III 155
List of Tables

2.1 Legendre polynomial on $[0, 1]$ and their roots up to degree 6. 27
2.2 Right Radau polynomials on $[0, 1]$ and their roots up to degree 6. 28
2.3 First fifteen un-normalized Dubiner polynomials φ_i of degree $0 \leq i + j \leq 4$. 30
2.4 First six normalized Gram-Schmidt basis functions 32

3.1 Interior Superconvergence points on a triangle of type I for $U \in U_p$ and $[\alpha, \beta] = [1, 1]$ and $p = 2$. .. 67
3.2 Superconvergence points (marked by \times) on a triangle of type II, $\alpha = \beta = 1$, and using V_p, $p = 2, 3$. .. 67
3.3 Superconvergence points (marked by \times) on a triangle of type II, $\alpha = \beta = 1$ using U_p, $p = 2, 3$. .. 68
3.4 Interior superconvergence points on a triangle of type III, $\alpha > 0$ and $\beta = 0$, using V_p, $p = 1, 2, 3$... 69
3.5 Interior superconvergence points on a triangle of type III, $\alpha > 0$ and $\beta = 0$, using U_p, $p = 2, 3$. .. 70
3.6 Maximum errors and orders of convergence at the superconvergence points for Example 3.1 on uniform meshes having $N = 32, 72, 128$ elements. 78
3.7 Maximum errors and orders of convergence at the superconvergence points for Example 3.2 on uniform meshes having $N = 32, 72, 128, 200$ elements. 80
3.8 $\|u - U\|_{L_2}$ and the order of convergence over the whole domain for Example 3.2 on uniform meshes having $N = 32, 72, 128, 200$ elements. 81
3.9 Maximum error and order of convergence at superconvergence points for Example 3.3 on meshes having $N = 96, 216, 384, 600$ elements. 82
3.10 Maximum error and order of convergence at the superconvergence points for Example 3.4 on uniform meshes having $N = 64, 144, 256, 400$ elements. 84
3.11 Maximum error and order of convergence at the superconvergence points on all elements for Example 3.5 on uniform meshes having \(N = 64, 144, 256, 400 \) elements. ... 85

3.12 Maximum error and order of convergence at the superconvergence points on elements not containing the solution discontinuity for Example 3.5 on uniform meshes having \(N = 64, 144, 256, 400 \) elements. ... 86

3.13 Maximum error and order of convergence at the superconvergence points for Example 3.6 on uniform meshes having \(N = 32, 72, 128, 200 \) elements. ... 88

4.1 Error basis functions for the spaces \(\mathcal{U}_p \) for \(p = 1 \) to 3 on elements of type I where \(s = \alpha/\beta \). ... 93

4.2 Error basis functions for the spaces \(\mathcal{P}_p \) for \(p = 0 \) to 3 on elements of type II. ... 96

4.3 Error basis functions for the spaces \(\mathcal{V}_p \) for \(p = 1 \) to 4 on elements of type II, \(s = \alpha/\beta \). ... 97

4.4 Error basis functions for the spaces \(\mathcal{U}_p \) for \(p = 1 \) to 4 on elements of type II, \(s = \alpha/\beta \). ... 99

4.5 Maximum errors and orders of convergence at the superconvergence points for Example 4.1 on uniform meshes having \(N = 32, 72, 128, 200 \) elements. ... 109

4.6 \(||e||_{\mathcal{L}^2} \) and global effectivity indices for Example 4.1 versus \(N \) and \(p \) using \(\mathcal{P}_p \) ... 110

4.7 \(||e||_{\mathcal{L}^2} \) and global effectivity indices for Example 4.1 versus \(N \) and \(p \) using \(\mathcal{V}_p \) ... 111

4.8 Maximum errors and orders of convergence at the roots of \((p+1)\)-degree Legendre polynomial for Example 4.2 on uniform meshes having \(N = 32, 72, 128, 200 \) elements using \(\mathcal{P}_p \). ... 115

4.9 \(\mathcal{L}^2 \) errors and global effectivity indices for Example 4.2 using uniform meshes having \(N = 32, 72, 128, 200 \), elements and the spaces \(\mathcal{P}_p, \mathcal{V}_p \) and \(\mathcal{U}_p \). ... 117

4.10 Maximum errors and orders of convergence at the superconvergence points for Example 4.3 on uniform meshes having \(N = 32, 72, 128, 200 \) elements. ... 119

4.11 Maximum error and its Rate of convergence at the superconvergence points (marked by \(\times \) in Figure 4.16) on meshes having \(N = 32, 72, 128, 200 \) elements with the spaces \(\mathcal{U}_p, p = 1 \) \(- \) 4, for Example 4.3. ... 119

4.12 \(\mathcal{L}^2 \) errors and global effectivity indices for Example 4.3 on uniform meshes having \(32, 72, 128, 200, 450, 800 \) and 1250 elements using \(\mathcal{U}_p, p = 1, 2, 3, 4 \). ... 121
4.13 Maximum errors and orders of convergence at the roots of \((p + 1)\)-degree Legendre polynomial on the \textit{outflow} edges over all elements of type II for Example 4.5 on meshes having \(N = 42, 72, 110, 156\) elements using \(U_p\) with
\(p = 1, 2, 3, 4\). ... 124

4.14 Maximum errors and rates of convergence at the endpoints of the \textit{inflow} edge on all elements of type I for Example 4.5 on uniform meshes having
\(N = 42, 72, 110, 156\) elements using \(U_p\) with \(p = 1\) to \(4\). 125

4.15 \(\|e\|_{L^2}\) and global effectivity indices for Example 4.5 versus \(h\) and \(p\) using \(U_p\) 125

4.16 Maximum error and its order of convergence at the superconvergence points for Example 4.7 on meshes having \(N = 32, 72, 128, 200\) elements with the
spaces \(U_p\), \(p = 1, 2, 3, 4\). .. 129

4.17 \(L^2\) errors and global effectivity indices for Example 4.7 on uniform meshes having \(32, 72, 128\) and 200 elements using \(U_p\), \(p = 1 - 4\). 130

4.18 Maximum error and its order of convergence at the superconvergence points for Example 4.8 on meshes having \(N = 32, 72, 128, 200\) elements with the
spaces \(U_p\), \(p = 1, 2, 3, 4\). .. 131

4.19 \(L^2\) errors and global effectivity indices for Example 4.8 on uniform meshes having \(32, 72, 128\) and 200 elements using \(U_p\), \(p = 1 - 4\). 131

4.20 Maximum error at \(t = 1\) and its order of convergence at superconvergence points for Example 4.9 on meshes having \(N = 48, 108, 192, 300\) elements. ... 134

4.21 \(L^2\) errors and global effectivity indices at \(t = 1\) for Example 4.9 on uniform meshes having \(N = 48, 108, 192, 300\) elements using and \(P_p, V_p, U_p\), \(p = 1, 2, 3, 4\) 135

4.22 Maximum error at \(t = 1\) and its order of convergence at superconvergence points for Example 4.9 on meshes having \(N = 48, 108, 192, 300\) elements using \(L^2\) projections. ... 136

4.23 \(L^2\) errors and global effectivity indices at \(t = 1\) for Example 4.9 on uniform meshes having \(N = 48, 108, 192, 300\) elements using \(L^2\) projections and \(P_p, V_p, U_p\), \(p = 1, 2, 3, 4\) 137

4.24 \(L^2\) errors and global effectivity indices at \(t = 1\) for Example 4.9 on uniform meshes having \(N = 48, 108, 192, 300\) elements using and \(P_p, V_p, U_p\), \(p = 1, 2, 3, 4\) 138

4.25 Maximum error at \(t = 1\) and its order of convergence at the superconvergence points marked by \(\times\) in Figure 4.31 for Example 4.10 on meshes having \(N = 32, 72, 128, 200\) elements with the spaces \(U_p\), \(p = 1, 2, 3, 4\). 140

4.26 \(L^2\) errors and global effectivity indices at \(t = 1\) for Example 4.10 on uniform meshes having \(N = 32, 72, 128, 200\) elements using \(U_p\), \(p = 1, 2, 3, 4\). 140
4.27 Maximum error and its order of convergence at the superconvergence points for problem (4.71) on meshes having \(N = 32, 72, 128, 200 \) elements with the spaces \(U_p, \ p = 1, 2, 3, 4 \) 141

4.28 Effectivity indices Problem (4.71) using the linearized error estimator (4.47) on meshes having 32, 72, 128, 200, 400, 800 and 1250 elements and \(U_p, \ p = 1, 2, 3, 4 \) 142

4.29 Global effectivity indices for problem (4.71) using the nonlinear error estimator (4.48) on meshes having 32, 72, 128, 200, 450, 800 and 1250 elements and \(U_p, \ p = 1, 2, 3, 4 \) 144

4.30 Effectivity indices for problem (4.72) on \([0, 1] \times [0, 0.3]\) with the error estimator (4.47) on meshes with \(N = 32, 72, 128, 200, 450, 800, 1250 \) elements and \(U_p, \ p = 1, 2, 3, 4 \) 145

5.1 Maximum error and its order of convergence at the superconvergence points for Example 5.1 on meshes having \(N = 34, 50, 74, 100 \) elements with the spaces \(U_p, \ p = 1, 2, 3, 4 \) 156

5.2 \(L^2 \) errors and global effectivity indices for Example 5.1 on meshes having 34, 50, 74 and 100 elements using \(U_p, \ p = 1, 2, 3, 4 \) 156

5.3 Maximum error at \(t = 1 \) and its order of convergence at the superconvergence points for Example 5.2 on unstructured meshes having \(N = 34, 50, 74, 100 \) elements with the spaces \(U_p, \ p = 1, 2, 3, 4 \) 157

5.4 \(L^2 \) errors and global effectivity indices at \(t = 1 \) for Example 5.2 on unstructured meshes having 34, 50, 74 and 100 elements using \(U_p, \ p = 1, 2, 3, 4 \) 158

5.5 Maximum error and its order of convergence at the superconvergence points for Example 5.3 on meshes having \(N = 34, 50, 74, 100 \) elements with the spaces \(U_p, \ p = 1, 2, 3, 4 \) 159

5.6 \(L^2 \) errors and global effectivity indices for Example 5.3 on meshes having 34, 50, 74 and 100 elements using \(U_p, \ p = 1, 2, 3, 4 \) 159

5.7 Maximum error and its order of convergence at the superconvergence points on \([0, 1] \times [0, 0.999]\) for Example 5.3 on meshes having \(N = 34, 50, 74, 100 \) elements with the spaces \(U_p, \ p = 1, 2, 3, 4 \) 159
5.8 \mathcal{L}^2 errors and global effectivity indices on $[0, 1] \times [0, 0.999]$ for Example 5.3 on meshes having 34, 50, 74 and 100 elements using U_p, $p = 1, 2, 3, 4$. 160