COMPUTER SIMULATION AND OPTIMIZATION OF THE NOx ABATEMENT SYSTEM AT THE RADFORD FACILITY AND ARMY AMMUNITION PLANT

by

Andrew J. Sweeney

Thesis submitted to the Graduate Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Chemical Engineering

APPROVED:

Y.A. Liu, Chairman

William L. Conger

Joseph T. Sullivan

December, 1999

Blacksburg, Virginia
COMPUTER SIMULATION AND OPTIMIZATION OF THE NOx ABATEMENT SYSTEM AT THE RADFORD FACILITY AND ARMY AMMUNITION PLANT

by
Andrew J. Sweeney
Committee Chairman: Dr. Y. A. Liu
Department of Chemical Engineering

(ABSTRACT)

This thesis discusses findings gained through work with the NOx abatement system at Radford Facility and Army Ammunition Plant (RFAAP). Removal of harmful substances from flue-gas emissions has garnered increased priority in the chemical industry in preceding decades, as governmental restrictions on these substances become more stringent and as national awareness concerning environmental quality and resource utilization continues to grow. These reasons make the study of NOx abatement an important and challenging endeavor.

This work concerns itself specifically with reduction of NOx in flue-gas emissions from stationary sources. First we present an overview of current technology and approaches to controlling NOx for stationary sources. Next, we focus in on one particular approach to control of NOx within the context of a case study of the technology used at the Radford Facility and Army Ammunition Plant. RFAAP employs a scrubber/absorber tower followed in series by a selective catalytic reduction (SCR) reaction vessel in their NOx abatement system. We use as the method of study computer simulations within ASPEN Plus, a process simulation software package for chemical plants.

We develop three different models with which to characterize NOx abatement at RFAAP, a conversion model, an equilibrium model and a kinetic model. The conversion-reaction model approximates the absorption and SCR reactions with constant percentage extent-of-reaction values. Though useful for initial investigation and mass balance information, we find the conversion model’s insensitivity to process changes to be unacceptable for in-depth study of the case of NOx absorption and SCR. The equilibrium-reaction model works on the assumption that all the reactions reach chemical equilibrium. For the conditions studied here, we find the equilibrium model accurately simulates NOx absorption but fails in the case of SCR. Therefore, we introduce a kinetic-reaction model to handle the SCR. The SCR reactions prove to be highly rate-dependant and the kinetic approach performs well.
The final evolution of the ASPEN Plus simulation uses an equilibrium model for the absorption operation and a kinetic model for the SCR. We explore retrofit options using this combined model and propose process improvements. We end this work with observations of the entire project in the form of conclusions and recommendations for improving the operation of the NOx abatement system through process-parameter optimization and equipment-retrofit schemes.

By leading the reader through the process by which we arrived at a successful and highly informative computer model for NOx absorption and SCR, we hope to educate the reader on the subtleties of NOx abatement by absorption and SCR. We attempt to break down the numerous complex processes to present a less daunting prospect to the engineer challenged with the application of current NOx removal technology. In addition, we introduce the reader to the power and usefulness of computer modeling in instances of such complexity. The model teaches us about the details of the process and helps us develop concrete information for its optimization. Ideally, the reader could use a similar approach in tackling related operations and not confine the usefulness of this thesis to NOx absorption and SCR.

The audiences that we think would benefit from exposure to this thesis are the following:

- Environmental engineers with a NOx problem;
- Process engineers interested in optimization tools;
- Design engineers exploring flue-gas treatment options;
- Combustion engineer desiring to learn about SCR;
- Chemists and mathematicians intrigued by the complexities of NOx absorption chemistry.
For Melissa, my love, my inspiration, my reason, my wife...
ACKNOWLEDGEMENTS

My sincere gratitude goes to Dr. Liu for his unending help and motivation in this enterprise. Where others see obstacles he sees opportunities, and where others see failure he sees potential. I am proud to be called his student.

Many thanks go to Dr. William Conger and Dr. Joseph Sullivan for their work on my advisory committee and their real-world insights.

Thank you to Andrew Lavin, RFAAP, Radford VA, whose assistance with this collaboration was invaluable. I greatly appreciate the ongoing work by the personnel at RFAAP involved in continuing the mutually productive joint efforts with Virginia Tech Chemical Engineering.

Thanks to Neeraj Khare, an outstanding doctoral student and teacher at Virginia Tech.

Thank you to the undergraduate student groups under my guidance for part of this project; Shannon Harper, Hae Suk Park, Nathan Blanton, Heather Osborne, Andrew Capozzi, Gino Venditti, Renzo Rocchegiani, Jennifer McKinney, and Ted Hastings.

All of my love and appreciation to my parents and family who always supported and cheered me.

Most of all, thank you to Melissa, my wife. She has given all of her love and energy to help me succeed when without her I would have failed. She has worked harder for me than I would for myself. Might I endeavor to deserve her. I dedicate this effort to her.
TABLE OF CONTENTS

CHAPTER 1:
Introduction

1. Why Nitrogen Oxides? ... 2
2. Why Computer Modeling? ... 3
3. An Overview of This Thesis ... 4
4. Nomenclature .. 6

Chapter 2:
Literature Review

1. Nitrogen Oxides in the Environment ... 8
 1.1 Hazards Associated with Nitrogen Oxide Compounds in the Environment 8
 1.2 Sources of NOx Gases Released to the Environment 8
2. Various NOx Control Techniques for Flue-Gas Emissions from Stationary Sources 12
 2.1 Wet Processes .. 13
 2.1.1 Wet Scrubbing .. 13
 2.1.2 Extended Absorption .. 16
 2.2 Dry Processes ... 18
 2.2.1 Non-Selective Catalytic Reduction (NSCR)................................. 18
 2.2.2 Selective Catalytic Reduction (SCR) ... 21
 2.2.3 Selective Non-Catalytic Reduction (SNCR) 23
3. Catalyst Varieties for Selective Catalytic Reduction (SCR) 25
2.5 Computer Modeling Techniques ... 50
 2.5.1 Special Challenges of NOx Absorption .. 50
 2.5.2 ASPEN Plus .. 52
 2.5.3 Fundamental Approach ... 54

2.6 Summary ... 55

2.7 Nomenclature ... 58

2.8 References ... 59

Chapter 3
Introduction to the NOx Abatement Process at RFAAP and Computer Simulation of the NOx Abatement Process as a Conversion-Reaction Model

CHAPTER 3: ... 61

3.1 Introduction .. 62
 3.1.1 An Overview .. 62
 3.1.2 Introduction to NOx Removal at RFAAP .. 63
 3.1.3 Purpose of NOx Abatement at RFAAP ... 64
 3.1.4 Process Description .. 65

3.2 Detailed Explanation of Process Equipment .. 71
 3.2.1 Scrubber/Absorber .. 71
 3.2.2 Demister .. 81
 3.2.3 Heat Exchangers and Process Heaters ... 83
 3.2.4 Catalyst Vessel .. 88
 3.2.5 NOx Abatement System Input and Output Flow Rates 95

3.3 Introduction to ASPEN Plus Simulation of NOx Abatement 99
3.3.1 Purpose for ASPEN Plus Simulation of NOx Abatement................................. 99
3.3.2 Motivation for a Conversion-Reaction Model.. 100
3.3.3 ASPEN Simulation Procedure... 102
3.3.4 The Conversion-Reaction Model... 103
3.4 Discussion of the Conversion Model Results... 110
 3.4.1 The Preliminary ASPEN Model... 110
 3.4.1.1 Scrubber/Absorber .. 110
 3.4.1.2 Demister .. 111
 3.4.1.3 Heat Exchangers and Process Heaters .. 112
 3.4.1.4 Catalyst Vessel .. 113
 3.4.2 Absorption-Column Performance... 117
 3.4.3 Sensitivity Analysis .. 125
 3.4.3.1 Fume-Feed Temperature .. 125
 3.4.3.2 Top-Stage Pressure ... 128
 3.4.3.3 Water Flow Rate ... 128
3.5 Conclusions ... 131
 3.5.1 Conclusions Regarding Process Variables.. 131
 3.5.2 Problems with the First Equilibrium Model ... 132
3.6 Recommendations .. 134
3.8 Nomenclature .. 135
3.9 References ... 136
Chapter 4: Computer Simulation of the NOx Abatement Process as an Equilibrium-Reaction Model

4.1 Introduction .. 138

4.1.1 An Overview ... 138

4.1.2 Motivation for an Equilibrium-Absorption Model ... 139

4.1.3 Complexities of NOx Absorption ... 140

4.1.4 Simplification of Reaction Mechanism ... 143

4.1.5 Assumptions Made for the Equilibrium Model ... 149

4.1.5.1 Assumption I: Neglect Reaction (4.1) .. 149

4.1.5.2 Assumption II: Treat Reaction (4.2) as Being in Instantaneous Equilibrium .. 153

4.1.5.3 Assumption III: Combine Reactions (4.4) and 4.(5) 153

4.1.5.4 Assumption IV: Neglect the N2O3 Pathway ... 153

4.1.5.5 Assumption V: Eliminate HNO2 .. 157

4.1.5.6 Assumption VI: Assume Vapor-Phase Acid Concentrations Are Negligible .. 159

4.1.5.7 Assumption VII: Neglect Reaction (4.13) ... 159

4.1.6 Equilibrium Model of the SCR Unit .. 164

4.2 Discussion of the First Equilibrium Model ... 164

4.2.1 Results of the First Equilibrium Model ... 169

4.2.2 Sensitivity Analyses for the First Equilibrium Model .. 174

4.2.2.1 Column-Tray Number .. 176
4.2.2.2 Column Cooling ... 178
4.2.2.3 Fume-Feed Temperature .. 181
4.2.2.4 Filtered-Water Feed Temperature 192
4.2.2.5 Cooling-Jacket Duty ... 194
4.2.2.6 Column Pressure .. 196
4.2.2.7 NO Feed Rate to the Scrubber/Absorber 203
4.2.2.8 NO\textsubscript{2} Feed Rate to the Scrubber/Absorber 205
4.2.2.9 Filtered-Water Flow Rate to Top of Column 212
4.2.2.10 NO Feed Rate to the Catalyst Vessel 218
4.2.2.11 Ammonia Feed Rate to the Catalyst Vessel 221
4.2.2.12 Steam Feed Rate to the Catalyst Vessel 223

4.2.3 Advantages of the First Equilibrium Model 226
4.2.4 Disadvantages of the First Equilibrium Model 226

4.3 The Second Equilibrium Model .. 227
4.3.1 Motivation for a Second Equilibrium Model 227
4.3.2 Vaporization Efficiencies .. 227
4.3.3 Results of the Second Equilibrium Model 233
4.3.4 Sensitivity Analyses .. 238
4.3.4.1 Column Cooling: Fume-Feed Temperature 238
4.3.4.2 Top-Stage Pressure ... 238
4.3.4.3 NO\textsubscript{2} Feed Flow Rate 241
4.3.5 Advantages of the Second Equilibrium Model 244
4.3.6 Disadvantages of the Second Equilibrium Model ... 244

4.4 Conclusions ... 246
 4.4.1 Conclusions Regarding Process Parameters .. 248
 4.4.2 Itemized Conclusions ... 248

4.5 Recommendations .. 249

4.6 Nomenclature .. 250

4.7 References ... 251

Chapter 5:
Computer Simulation of the NOx Abatement Process as a Kinetic-Reaction Model

Chapter 5: ... 252

5.1 Introduction .. 253

5.2 The Kinetic-Reaction Model.. 254
 5.2.1 Motivation for a Kinetic-Reaction Absorption Model .. 254
 5.2.2 Mechanism of Kinetic Reactions .. 254
 5.2.3 Characteristics of the Kinetic Model ... 255

5.3 Discussion of the Kinetic Model .. 259
 5.3.1 Results of the Kinetic Model .. 259
 5.3.2 Sensitivity Analysis ... 260
 5.3.2.1 NO Flow Rate to Catalyst Vessel .. 260
 5.3.2.2 Ammonia Flow Rate to Catalyst Vessel .. 264
 5.3.2.3 Steam Flow Rate to Catalyst Vessel .. 266
 5.3.2.4 Oxygen Percentage in Feed to Catalyst Vessel 268
Chapter 6:
Retrofit and Economics for NOx Absorption with Selective Catalytic Reduction (SCR)

Chapter 6: ... 276

6.1 Introduction ... 277
 6.1.1 An Overview .. 277
 6.1.2 Retrofit Considerations Particular to RFAAP .. 279

6.2 Simple Retrofit Options ... 280
 6.2.1 Side Water Feeds and Draws ... 280
 6.2.2 Cooling the Fume Stream .. 282
 6.2.3 Cooling the Bottom-Acid Recycle ... 286

6.3 Complex Retrofit Design Options .. 288
 6.3.1 Heat Recovery ... 288
 6.3.2 Acid Distillation .. 288
 6.3.3 Cooling Trays or a Cooling Jacket ... 291
 6.3.4 Alternative Approach to Cooling the Fume Stream .. 292
 6.3.5 Ozone ... 294
 6.3.6 Hydrogen Peroxide ... 296
Chapter 7
Conclusions, Recommendations, and Observations

CHAPTER 7: ... 309

7.1 Modeling and ASPEN Plus Computer Simulation.. 310
 7.1.1 Modeling NOx Absorption ... 310
 7.1.2 Modeling SCR .. 310
7.2 Process Improvements ... 311

Appendix

APPENDIX A: .. A.1

Sample Calculations .. A.1
Glossary ... A.9
Vita .. A.12
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Flowsheet for a wet scrubbing process involving simultaneous removal of SOx and NOx.</td>
</tr>
<tr>
<td>2.2</td>
<td>Flowsheet for extended absorption. An additional absorption tower and piping are added (shown dashed) to the existing equipment (solid lines).</td>
</tr>
<tr>
<td>2.3</td>
<td>Flowsheet for a non-selective catalytic reduction (NSCR) process.</td>
</tr>
<tr>
<td>2.4</td>
<td>Flowsheet for a selective catalytic reduction (SCR) process.</td>
</tr>
<tr>
<td>2.5</td>
<td>Flowsheet for a selective non-catalytic reduction (SNCR) process.</td>
</tr>
<tr>
<td>2.6</td>
<td>Proposed mechanism for ammonia binding to vanadia catalyst surface (Efstathiou and Fliatoura, 1995).</td>
</tr>
<tr>
<td>2.7</td>
<td>Proposed mechanism for SCR on vanadia catalyst surfaces (Marangozis, 1992).</td>
</tr>
<tr>
<td>2.8</td>
<td>Importance of oxygen and the role of water inhibition to the reactivity of the vanadia catalyst surface.</td>
</tr>
<tr>
<td>2.9</td>
<td>The effect of nitric acid on NOx absorption in hydrogen peroxide solutions (Thomas and Vanderschuren, 1996). A (%) is the percent of absorption of NOx, OR (%) is the percentage of NOx that is in the NO$_2$ and N$_2$O$_4$ form, the remainder being in the NO form.</td>
</tr>
<tr>
<td>2.10</td>
<td>Plot of the time required for half of the initial NO to be oxidized to NO$_2$ at ambient conditions. The abscissa represents the initial NO concentration, and the ordinate gives the corresponding half-life time for that initial NO concentration (Cheremisinoff and Young, 1977).</td>
</tr>
<tr>
<td>2.11</td>
<td>Plot of NO$_2$ removal efficiency versus scrubber temperature for three different initial concentrations of NO$_2$ (Cheremisinoff and Young, 1977).</td>
</tr>
<tr>
<td>3.1</td>
<td>Simplified design of the NOx abatement process flow diagram.</td>
</tr>
<tr>
<td>3.2</td>
<td>Block flow diagram of NOx abatement system provided by RFAAP.</td>
</tr>
<tr>
<td>3.3</td>
<td>Schematic of bubble-cap tray arrangement.</td>
</tr>
<tr>
<td>3.4</td>
<td>Cutaway view bubble cap and tray.</td>
</tr>
<tr>
<td>3.5</td>
<td>Detailed schematic of absorption section of scrubber/absorber tower.</td>
</tr>
<tr>
<td>3.6</td>
<td>Cutaway view of the scrubber section of the scrubber/absorber tower.</td>
</tr>
<tr>
<td>3.7</td>
<td>Detailed view of the spray nozzles used in the scrubber section of the scrubber/absorber tower.</td>
</tr>
</tbody>
</table>
3.8. Visual representation of reaction network proposed by RFAAP.

3.9. Detailed diagram of demister construction.

3.10. Detailed diagram of steam preheater.

3.11. Detailed diagram of feed/effluent heat exchanger (economizer).

3.14. Catalyst module for horizontal flow, similar to those used by RFAAP.

3.15. Detailed view of catalyst module with exploded view of catalyst element.

3.16. Catalyst module arrangement within the catalyst vessel.

3.17. Diagram of catalyst vessel in relation to material streams and adjacent equipment.

3.18. Flowsheet used for the conversion-model simulations.

3.19. Temperature and pressure profile for the simulation of the absorption tower. The abscissa corresponds to the theoretical stages in the ASPEN model. ASPEN numbers column stages from top to bottom. Stage 1 corresponds to the top stage (stage 1) in the real column, and stage 7 here corresponds to the bottom stage (stage 16) of the real column.

3.20. Absorber column profile for molar compositions of NO and NO₂. Figure shows the liquid and vapor on the theoretical absorber stages. Stage 1 is the top stage, and stage 7 is the bottom stage.

3.21. Scrubber/absorber column profile for NO₂ flow rate. Stage 1 represents the top tray of the absorption column, stage 16 the last bubble-cap tray. Stage number 17 represents the upper scrubber stage (SCRUBTOP). Stage 18 the lower scrubber stage (SCRUBBOT). Stage 19 represents the fumes fed to the column.

3.22. Comparison of conversion-model results to those presented by Cheremisinoff and Young (1977). We show the y = x line (in = out) to simplify comparison of the two data sources. The conversion model gives optimistic results for NO₂ removal. Also, the removal rate does not vary with inlet concentration to the degree that the experimental results do.

3.23. Sensitivity plot of the effect of scrubber temperature on NO₂ removal efficiency.

3.24. Sensitivity plot of the effect of filtered water flow rate on NO₂ and HNO₃ leaving the scrubber/absorber.
3.25. Sensitivity plot of the effect of scrubber/absorber pressure on NO\textsubscript{2} and HNO\textsubscript{3} leaving the scrubber/absorber.

4.2. Full mechanism of NO\textsubscript{x} absorption in water for the mass transfer and reactions in the scrubber/absorber (Miller, 1987).

4.3. Time-dependent concentration of NO from reaction (4.1) for the conditions of the scrubber/absorber (Suchak and Joshi, 1994). Column residence time = 1/3 minute, less than 10% NO consumed. Initial partial pressure of NO = 0.062 kPa.

4.4. Plot of fraction of initial NO partial pressure vs. time for different starting partial pressures modeling reaction (4.1) within the scrubber/absorber. The NO partial pressure of the fumes entering the scrubber at RFAAP is approximately 0.062 kPa.

4.5. Plot of equilibrium N\textsubscript{2}O\textsubscript{4} ratio vs temperature. Conditions of the stream are 20 psia and the same NO\textsubscript{x} concentration as that of the fumes entering the bottom of the scrubber/absorber.

4.6. Plot of equilibrium N\textsubscript{2}O\textsubscript{3} ratio vs temperature. Conditions of the stream are 20 psia and the same NO\textsubscript{x} concentration as that of the fumes entering the bottom of the scrubber/absorber.

4.7. Elimination of HNO\textsubscript{2} from the reaction mechanism by adding reaction (4.4) to reaction (4.5).

4.8. Elimination of reactions and species based on assumptions for the case of NO\textsubscript{x} absorption at RFAAP.

4.9. Final reaction and absorption mechanism after the application of assumptions I-VII. Note that ASPEN calculates vapor-liquid equilibrium in the scrubber/absorber column, so all species are capable of interfacial mass transport.

4.10. Qualitative representation of diffusing species composition profiles at steady-state.

4.11. Qualitative representation of diffusing species composition profiles at equilibrium.

4.12. Block flow diagram of the NO\textsubscript{x} abatement system for the first equilibrium model.

4.14. Comparison of absorption results to those of Thomas and Vanderschuren (1996). Absorption efficiency and oxidation ratio are terms used by these authors (see Figure 2.9). Absorption efficiency has the same definition as this thesis for overall NOx absorption (NO + NO₂). Thomas and Vanderschuren define the oxidation ratio as total NOx minus NO divided by total NOx.

4.15. Plot of NO₂ out top of column vs total number of “actual” column stages. Assuming 3 stages for the base case is equivalent to 18 actual stages.

4.16. Plot of NO₂ out the top of the column vs. heat removed from column (heat loss). Simulates a cooling jacket or cooling trays. A heat loss of 0.0 btu/hr corresponds to the base-case model simulation.

4.17. Plot of NO₂ escaping the top of the column vs. fume-inlet temperature.

4.18. Plot of NO₂ escaping the top of the column vs. heat lost from the fume stream.

4.19. Plot of weight fraction of nitric acid leaving the column in the WASTACID stream for varying fume-feed temperature. An acid weight fraction of 0.3 represents the minimum value for which acid recovery is viable.

4.20. Total mass flow rate of liquid stream leaving the bottom of the column in WASTACID. Both acid and water flow rate increases as temperature of the fume stream is decreased. The increase in water flow rate dilutes the potential acid product.

4.21. Effect of gas temperature on the time-dependent concentration of NO. Gas temperatures in °F. Gas pressure = 15 psi, NO flow rate = 0.5 lbmol/hr, total gas flow rate = 648 lbmol/hr.

4.22. Plot of NO₂ leaving top of column vs. filtered-water inlet temperature.

4.23. Plot of NO₂ out the top of the column in ABSOUT vs. BTU/hr of heat loss from column (simulating a cooling jacket) comparison of 3.37, 4.0, 5.0 and 6.0 lbmol/hr NO₂ in fumes.

4.24. Plot of NO₂ in ABSOUT, HNO₃ in WASTACID, vs. top-stage column pressure. Rest of column has 5 psi pressure drop.

4.25. Plot of acid Wt.% in WASTACID, HNO₃ in WASTACID, vs. top-stage column pressure.

4.26. Plot of water in WASTACID vs. top-stage column pressure.
4.27. The effect of total column pressure on the time-dependent concentration of NO. Temperature = 85 °F, column height is 73.5 ft., column diameter = 5 ft., void-volume fraction of column = 0.8. The residence time of the column depends on total pressure (see Figure 4.25), NO flow in fumes = 0.5 lbmol/hr.

4.28. Effect of column on residence time for the fumes fed to the scrubber/absorber. Temperature = 85 °F, column height is 73.5 ft., column diameter = 5 ft., void-volume fraction of column = 0.8

4.29. Plot of NO2 leaving the top of the column in ABSOUT and nitric acid leaving in WASTACID versus the NO feed flow rate at a constant fume flow rate of approximately 650 lb-mol/hr.

4.30. Plot of NO2 leaving the top of the column in ABSOUT and nitric acid leaving in WASTACID versus the NO2 feed flow rate at constant fume flow rate of approximately 650 lb-mol/hr.

4.31. Plot of NOx removal efficiency vs. total NOx fed to the column. A constant NO feed rate of 0.39 lbmol/hr (600 ppmv) is fed while we vary the NO2 rate.

4.32. Plot of NO2 reacted on each stage for 3-stage equilibrium model for varying feed flow rates of NO2 in feed.

4.33. Plot of NO2 out top of column and nitric acid wt% in WASTACID versus filtered-water flow rate for NO2 inlet rate of 3.37 lbmol/hr (5200 ppmv) and a total NOx inlet rate of 3.37 lbmol/hr (5800 ppmv) where the balance is NO.

4.34. Plot of NOx removal % and acid wt% in WASTACID vs filtered-water flow rate. Total NOx feed = 3.76 lbmol/hr, fume temperature = 90 Deg F.

4.35. Plot of NO2 escaping in ABSOUT versus filtered-water flow rate (FILTE-W).

4.36. Plot of the amount of NO exiting the SCR vs the amount of NO fed to the SCR for an ammonia flow rate of 1.5 lbmol/hr.

4.37. Equilibrium model results for the amount of NO leaving the column vs. ammonia feed rate for several different NO inlet rates.

4.38. Plot of NO exiting the SCR vs. the steam flow rate fed with ammonia to the SCR.

4.39. Plot of the NO that leaves the SCR unit unreacted versus the amount of steam fed to the SCR. RFAAP uses steam to vaporize the ammonia feed to the catalyst vessel.
4.40. Block flow diagram of NOx abatement system for second equilibrium model. 231
4.41. Column profile for stage temperatures for the second equilibrium model. 235
4.42. Simulation results for vapor-component stage compositions for the scrubber/absorber for the second equilibrium model. 236
4.43. Simulation results for liquid-component stage compositions for the scrubber/absorber for the second equilibrium model. 237
4.44. Sensitivity plot of the effect of fume-feed temperature on key components exiting the column. 239
4.45. Sensitivity plot of the effect of top-stage pressure on key components exiting the column. 240
4.46. Stage-by-stage reaction profile for NO\textsubscript{2} in the scrubber/absorber for the second equilibrium model. Negative values correspond to NO\textsubscript{2} consumed by reaction, and positive values correspond to NO\textsubscript{2} production. 243
5.1. Plot of fractional conversions of NO and NO\textsubscript{2} versus the feed rate of NO to the catalyst vessel. 261
5.2. Plot of NO escaping the catalyst vessel versus the feed rate of NO to the catalyst vessel. 263
5.3. Plot of the fraction of the feed that escapes the catalyst vessel versus the ammonia to NO\textsubscript{x} feed ratio. 265
5.4. Plot of the effect of water in the feed on the fractional conversion of NO. We present our model results for comparison to those of Willi et al. (1996). 267
5.5. Plot of the effect of oxygen in the feed on the fractional conversion of NO. We present our model results for comparison to those of Willi et al. (1996). 269
5.6. The effect of pressure and moisture in the feed on the fractional conversions of NO and NO\textsubscript{2}. 271
6.1. Flowsheet showing the installation of the filtered-water side streams. 281
6.2. Block flow diagram of NOx abatement system utilizing fumes cooling. 284
6.3. Plot of the heat exchanger area versus cooled fume temperature. 285
6.4. Block flow diagram of NOx abatement system utilizing chilled acidic water recycle. 287
6.5. Block flow diagram of NOx abatement system implementing acid flash. 290
6.6. Block flow diagram of NOx abatement system utilizing dual fume-stream heat exchangers. 293
<table>
<thead>
<tr>
<th></th>
<th>Block flow diagram of NOx abatement system utilizing ozone.</th>
<th>295</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.8</td>
<td>Block flow diagram of NOx abatement system to mimic the Kuhlmann process and incorporate H$_2$O$_2$ (Matasa and Tonca, 1973).</td>
<td>297</td>
</tr>
<tr>
<td>6.9</td>
<td>Block flow diagram of NOx abatement system utilizing hydrogen peroxide.</td>
<td>299</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>2.1.</td>
<td>List of types of stationary sources and their primary NOx species emitted Cheremisinoff and Young, 1977.</td>
<td>10</td>
</tr>
<tr>
<td>2.2.</td>
<td>Reaction steps and pathway equations for the sodium acetate direct absorption process for simultaneous NOx and SOx removal (OECD, 1983).</td>
<td>14</td>
</tr>
<tr>
<td>2.3.</td>
<td>Reactions involved in the non-selective catalytic reduction of NOx (OECD, 1983).</td>
<td>18</td>
</tr>
<tr>
<td>2.4.</td>
<td>Catalyst varieties used in SCR.</td>
<td>26</td>
</tr>
<tr>
<td>2.5.</td>
<td>Reactions involving NOx in air and water (Cheremisinoff and Young, 1977).</td>
<td>36</td>
</tr>
<tr>
<td>2.6.</td>
<td>Full reaction and absorption mechanism for NOx and water (Miller, 1987).</td>
<td>38</td>
</tr>
<tr>
<td>2.7.</td>
<td>Mechanism for nitric acid catalyzed NO oxidation (Matasa and Tonca, 1973).</td>
<td>50</td>
</tr>
<tr>
<td>3.1.</td>
<td>Reactions occurring in the scrubber/absorber as proposed by personnel at RFAAP</td>
<td>78</td>
</tr>
<tr>
<td>3.2.</td>
<td>Dissociation reaction of nitric acid in aqueous solution.</td>
<td>78</td>
</tr>
<tr>
<td>3.3.</td>
<td>Process streams, heating units and the temperature changes affected.</td>
<td>84</td>
</tr>
<tr>
<td>3.4.</td>
<td>Reactions proposed for the catalyst vessel.</td>
<td>88</td>
</tr>
<tr>
<td>3.5.</td>
<td>Input flows to the system (values given by RFAAP).</td>
<td>96</td>
</tr>
<tr>
<td>3.6.</td>
<td>Output flows from the system (values given by RFAAP).</td>
<td>97</td>
</tr>
<tr>
<td>3.7.</td>
<td>Streams not specified by RFAAP (calculated or assumed).</td>
<td>98</td>
</tr>
<tr>
<td>3.8.</td>
<td>List of units added to ASPEN Plus simulation.</td>
<td>106</td>
</tr>
<tr>
<td>3.9.</td>
<td>Reactions in the scrubber/absorber and their percent conversion of the reactant shown.</td>
<td>111</td>
</tr>
<tr>
<td>3.10.</td>
<td>Stream temperature changes and heat duties for the heat exchangers and process heaters.</td>
<td>112</td>
</tr>
<tr>
<td>3.11.</td>
<td>Reactions in the catalyst vessel and their percent conversion of the reactant shown.</td>
<td>113</td>
</tr>
<tr>
<td>3.12.</td>
<td>Output flows as calculated by ASPEN compared to those supplied by RFAAP.</td>
<td>115</td>
</tr>
<tr>
<td>4.1.</td>
<td>Full reaction and absorption mechanism for NOx and water (Miller, 1987).</td>
<td>144</td>
</tr>
<tr>
<td>4.2.</td>
<td>NOx absorption chemistry: key component descriptions.</td>
<td>145</td>
</tr>
<tr>
<td>4.3.</td>
<td>NOx absorption chemistry: key reaction descriptions.</td>
<td>146</td>
</tr>
<tr>
<td>4.4.</td>
<td>Simplified reaction mechanism for NOx abatement.</td>
<td>163</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4.5.</td>
<td>Limiting conditions of the assumptions made to arrive at Table 4.2.</td>
<td>164</td>
</tr>
<tr>
<td>4.6.</td>
<td>Output flows for the equilibrium model as compared to those for the conversion model as well as data supplied by RFAAP.</td>
<td>171</td>
</tr>
<tr>
<td>4.7.</td>
<td>Output flows as calculated by ASPEN compared to those supplied by RFAAP.</td>
<td>234</td>
</tr>
<tr>
<td>5.1.</td>
<td>Reactions that occur in the catalyst vessel.</td>
<td>254</td>
</tr>
<tr>
<td>5.2.</td>
<td>Parameter values for the reduction of NO and NO\textsubscript{2} with ammonia.</td>
<td>257</td>
</tr>
<tr>
<td>5.3.</td>
<td>Parameter values in rate equation 5.7 for the reverse of reaction 5.2.</td>
<td>258</td>
</tr>
<tr>
<td>5.4.</td>
<td>Values concerning physical aspects of the catalyst vessel.</td>
<td>258</td>
</tr>
<tr>
<td>5.5.</td>
<td>Stream results for the kinetic model as compared to previous results.</td>
<td>259</td>
</tr>
<tr>
<td>6.1.</td>
<td>Cost analysis for key retrofit design options.</td>
<td>301</td>
</tr>
</tbody>
</table>