Engineering Faculty Motivation for and Engagement in Formative Assessment

Kenneth C. Stanton

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of:

Doctor of Philosophy
In
Engineering Education

Richard M. Goff, Chair
Peter E. Doolittle
Brett D. Jones
Tamara W. Knott
Marie C. Paretti

February 17, 2011
Blacksburg, Virginia

Keywords: Engineering, Faculty, Motivation, Engagement, Formative Assessment

Copyright © 2011 by Kenneth C. Stanton
Engineering Faculty Motivation for
and Engagement in Formative Assessment

Kenneth C. Stanton

Abstract

The purposes of this study were to conduct an exploratory study of the status quo of engineering faculty motivation for and engagement in formative assessment, and to conduct a preliminary validation of a motivational model, based in self-determination theory, that explains relationships between these variables. To do so, a survey instrument was first developed and validated, in accordance with a process prescribed in the literature, that measured individual engineering faculty members’ motivational traits and engagement regarding formative assessment, as no such instrument existed. The survey asked engineering faculty about their satisfaction of autonomy, competence, and relatedness needs, degree of self-determined motivation experienced, and engagement, all relative to formative assessment of student learning.

Data from the final instrument were obtained from a stratified national sample of approximately 2,500 U.S. engineering faculty, attaining 223 responses, and was first evaluated for validity and reliability. The major validity check utilized was to review two examples of formative assessment that respondents provided and then discard data from invalid responses; over 70% of responses qualified as valid. Only responses with valid examples of formative assessment were used, indicating that the inferences drawn from this study only directly pertain to faculty who understand formative assessment, a subset of the U.S. engineering faculty population. The reliability of instrument constructs was evaluated through use of Cronbach’s Alpha, including removal of low-scoring survey items. Following, the remaining data were
analyzed with descriptive statistics to evaluate trends and with linear regression to validate the motivational model.

Results show that, for the subset of engineering faculty studied, engagement in formative assessment is positive, motivation for it is self-determined and largely derives from faculty identifying its contribution to teaching and learning, and needs of autonomy, competence, and relatedness are moderately to highly satisfied. Further, from testing of the motivational model, it can be reasonably concluded that faculty engagement is significantly predicted by self-determined motivation, but the prediction of self-determined motivation by motivational needs has a caveat: the self-determined motivation of male engineering faculty was predicted by autonomy and relatedness, but by autonomy and competence for females.
Dedication

This work is dedicated to Jeremy Michael Herbstritt, whose life was taken in the tragic shootings at Virginia Tech on April 16, 2007. After meeting him and his father, Michael, in the summer of 2006 as he moved in to my apartment building, we quickly became great friends. He was a hard-worker, a true friend, an honest guy, and gave everything he could to others. He introduced me to Gaurav Bansal, who we initially feared was lost in the shootings that day but instead was safe and later became a great friend, too.

I got to spend a lot of time with Jeremy’s family in the days following the shootings, and was so proud of how they handled everything. Getting to know them better showed me exactly where the bright and dedicated traits that defined Jeremy came from. I hope that, with this very personal and public dedication, they can see once again how much impact their son had on the people who met him, and how proud they should be to have contributed so much to the world through him.

This dedication is to Jeremy, also, as at the time of the tragedy, I was en route to the Dean’s of Engineering office, just one floor above where Jeremy was that day, to announce my decision to join the Ph.D. program in Engineering Education, for which this dissertation is submitted. In the time Jeremy’s life ended, I was beginning this journey, and his sister was completing the Boston Marathon. I wish to end this part of my journey by recognizing him.
Acknowledgement

I would like to acknowledge many parties for helping to make this possible. First, I would like to recognize the efforts of both Dr. Hayden Griffin and colleagues, who worked so hard to make this Ph.D. program possible, and of my advisement committee. My advisor, Dr. Richard Goff, has been tremendously helpful and persistent throughout, and has challenged me at the times when I really needed it. My other committee members, Dr. Brett Jones, Dr. Marie Paretti, Dr. Peter Doolittle, and Prof. Tamara Knott, have endured a lot as I have struggled through this Ph.D. process, and I want to acknowledge their hard work and challenges to help me do my best work; I have learned a lot from it. Not only was this my first thesis, but in many cases I was the first to attempt the exams of the Engineering Education Ph.D. program, and it was tough for all of us. I would also like to thank Dr. Phil Chapman for his time serving as my statistical consultant; his input was instrumental in describing many of my statistical results correctly and with the proper backing. Finally, I would like to acknowledge Drs. Tom Bradley and Tom Siller of Colorado State University for their willingness to work with me before completing my Ph.D., and for their support while I finished this work.

Second, I need to acknowledge those who have supported me through all of this. To my Mom, Mary, my Dad, Ken, and my step-Dad, Jeff, you have given me so much and there is no way I can put my gratitude into words. You are amazing parents and have been there as I’ve chased my dreams, and I wouldn’t be here without your love and support. Also, to my wonderful fiancé, Alyson Boyce, who has seen all my ups and downs through this process and yet still followed me halfway across the country and agreed to marry me. I’m a very lucky guy, and I look forward to being there for you as you work through your graduate program. Last, but not least, I want to thank all my awesome students, many of which I am still good friends with,
who constantly reminded me what it is I’m after: bringing out all the exciting and challenging things that define engineering into the classrooms and hallways of higher education.

Finally, I would like to thank those who supported me financially. For many years of my Ph.D. studies, the Department of Engineering Education offered me a Graduate Teaching Assistanceship, which made it possible for me to afford my graduate schooling but also gave me the opportunity to do what I really love – teach. As well, I want to thank the Virginia Tech Graduate Student Assembly (GSA), which provided partial funding of $200 to offset the costs of the online survey services used in this study.
Table of Contents

Abstract ... ii
Dedication ... iv
Acknowledgement ... v
Table of Contents .. vii
List of Figures .. x
List of Tables .. xi
Glossary of Terms .. xiii

Chapter 1: Introduction .. 1
 1.1 Background of the Problem ... 1
 1.2 Statement of the Problem .. 4
 1.2.1 A Note about the Study Population .. 5
 1.3 Purpose and Research Questions .. 5
 1.4 Significance of the Study ... 6
 1.5 Assumptions and Limitations ... 7
 1.6 Organization of the Dissertation .. 8

Chapter 2: Background .. 9
 2.1 Assessment ... 9
 2.1.1 Formative and Summative Assessment .. 9
 2.1.2 Benefits of Formative Assessment .. 13
 2.1.3 Other Aspects of Assessment ... 15
 2.1.4 Assessment Summary .. 16
 2.2 Engagement in Formative Assessment .. 16
 2.2.1 Constructs of Engagement ... 17
 2.3 Self-Determination Theory ... 19
 2.3.1 The Theory ... 20
 2.3.2 Self-Determination in Assessment .. 24
 2.3.2.1 The Role of Accreditation .. 25
 2.3.3 Self-Determination Theory Summary .. 27
 2.4 Hierarchical Model of Motivation ... 27
 2.4.1 The Model .. 28
 2.4.2 The Hierarchical Model in Education .. 30
 2.5 Background Summary ... 32
Chapter 3: Methodology ... 33
 3.1 Research Design ... 33
 3.1.1 Context .. 34
 3.2 Instrument Design ... 35
 3.2.1 Procedure ... 35
 3.2.2 Validity and Reliability .. 38
 3.2.3 Instrument Constructs Required .. 40
 3.2.4 Instrument Structure ... 42
 3.2.5 Existing Instruments Used ... 44
 3.2.6 Additional Constructs and Items ... 47
 3.2.7 Instrument Design Summary ... 48
 3.3 Sample Selection ... 48
 3.3.1 Population .. 48
 3.3.2 Pilot Sample .. 49
 3.3.3 Final Survey Instrument Sample .. 49
 3.3.3.1 Summary of Respondents ... 50
 3.3.3.2 Response Rate Concerns ... 54
 3.4 Data Collection Procedures ... 61
 3.4.1 Participant Privacy and IRB ... 61
 3.4.2 Data Collection and Tools ... 62
 3.5 Data Analysis Procedures ... 63
 3.5.1 Pilot Survey Interviews .. 63
 3.5.2 Final Instrument Validity and Reliability ... 65
 3.5.3 Construct Scoring and Descriptive Statistics for RQ1 66
 3.5.4 Regression for RQ2 and RQ3 Model Validation ... 67
 3.5.5 Data Analysis Summary .. 70
Chapter 4: Results ... 71
 4.1 Instrument Development .. 71
 4.1.1 Pilot Survey .. 71
 4.1.1.1 Pilot Interviews ... 71
 4.1.1.2 Changes to Survey ... 72
 4.1.2 Final Survey .. 72
 4.1.2.1 Examples of Formative Assessment .. 73
4.1.2.2 Reliability..75
4.1.2.3 Assumptions of Regression...77
 4.1.2.3.1 Linearity of Regression Relationships ..78
 4.1.2.3.2 No Multicollinearity ..80
 4.1.2.3.3 Independence of Errors ..81
 4.1.2.3.4 Homoscedasticity ..82
4.2 Research Questions ...82
 4.2.1 Research Question 1 ..83
 4.2.2 Research Question 2 ..88
 4.2.3 Research Question 3 ..92
Chapter 5: Discussion ...96
 5.1 Motivational Needs ..96
 5.1.1 Autonomy ...97
 5.1.2 Competence ..98
 5.1.3 Relatedness ...99
 5.1.4 Sex Differences in Motivational Needs ...102
 5.2 Self-Determined Motivation ..105
 5.2.1 Identified Regulation ..106
 5.2.2 Intrinsic Motivation ...107
 5.2.3 External and Introjected Regulation ...107
 5.2.4 Self-Determined Motivation ...109
 5.3 Engagement in Formative Assessment ..110
Chapter 6: Conclusions ...114
References ..118
Appendix A: Pilot Instrument ...124
Appendix B: Pilot Interview Questions and Procedure ..130
Appendix C: Research Question Breakdown and Construct List132
Appendix D: Final Survey Instrument ..134
Appendix E: Survey Instrument with Final Constitution of Construct Items, for use in Future Studies .. 140
Appendix F: Additional Data from Analysis of Regression Assumptions146
Appendix G: Individual Survey Item Average Scores ..154
Appendix H: Back Matter ...157
List of Figures

Figure 2.1: The process typically utilized for a class assignment (top) versus the process typically employed with formative assessment (bottom) .. 12

Figure 2.2: The self-determination continuum showing types of motivation with their regulatory styles, loci of causality, and corresponding processes (Ryan & Deci, 2000, p. 72) .. 20

Figure 2.3: Motivational model tested in this study, which was based on Vallerand’s (1997) Hierarchical Model of self-determination theory where perceived satisfaction of motivational needs leads to different motivational types and degree of self-determination, which lead to different aspects of engagement in formative assessment ... 28

Figure 2.4: Vallerand’s (1997) Hierarchical Model of motivation. Note: this diagram was intended for use in a study of education and sport motivation, and hence has more specific motivational contexts in the contextual level (Vallerand & Losier, 1999) .. 29

Figure 3.1: Two possible scenarios of what the sample of this study may look like, where the shaded area represents faculty who knew what formative assessment is .. 60

Figure 4.1: Scatterplots for data relationships between motivational needs and self-determined motivation .. 78

Figure 4.2: Scatterplots for data relationships between self-determined motivation and some engagement constructs .. 79

Figure 4.3: Scatterplots for data relationships between self-determined motivation and the remaining engagement constructs .. 80
List of Tables

Table 3.1: Basic demographics of 149 respondents, whose data were used in analyses, including 95% confidence interval of sample percentage and national averages of the population, as available. Note: not all respondents provided demographic data, so numbers may not add up to 149. ... 51

Table 3.2: Demographics of respondents’ colleges and universities. ... 53

Table 3.3: Summary and count of comments received from respondents via email and in input box at the end of the survey. .. 60

Table 3.4: Expected regression relationships from motivational needs to self-determined motivation. 69

Table 3.5: Expected regression relationships from self-determined motivation to engagement constructs. .. 69

Table 4.1: Scoring rubric for examples of formative assessment provided by participants. 74

Table 4.2: Description of the two-pass evaluation process for categorizing both examples of formative assessment provided by respondents. ... 75

Table 4.3: Reliability analysis results for motivational needs constructs, including subjective ratings as described in section 3.5.2; (R) indicates that the item was reverse-scored. ... 76

Table 4.4: Reliability analysis results for self-determined motivation constructs; (R) indicates that the item was reverse scored. ... 76

Table 4.5: Reliability analysis results for engagement constructs; (R) indicates that the item was reverse scored. ... 76

Table 4.6: Abbreviations used in statistical software... 77

Table 4.7: Correlations between dependent variables of regressions. ... 81

Table 4.8: Residual plots for each regression performed. ... 81

Table 4.9: Construct sample means, standard deviations, and confidence intervals resulting from final survey data collection. .. 83

Table 4.10: Results from regression from motivational needs to self-determined motivation. 89
Table 4.11: Results of regressions from motivational needs to self-determined motivation separated by sex. ... 90

Table 4.12: Results of regression from motivational needs to external regulation. 91

Table 4.13: Results of regression from motivational needs to introjected regulation. 91

Table 4.14: Results of regression from motivational needs to identified regulation. 92

Table 4.15: Results of regression from motivational needs to intrinsic motivation. 92

Table 4.16: Results of regressions from self-determined motivation to engagement 93

Table 4.17: Results of regressions from intrinsic motivation, identified regulation, introjected regulation, and external regulation to each of the engagement constructs... 94

Table 5.1: Standard deviations for competence, relatedness, and self-determined motivation scores by sex, with p-values for F-test comparison of the standard deviations... 104
Glossary of Terms

Motivation and Self-Determination Theory

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amotivation</td>
<td>represents a state one step beyond external regulation, whereby the individual’s competence or autonomy is so compromised that they lack any intention to act at all towards the goal (Deci & Ryan, 2000b; Niemiec & Ryan, 2009; Ryan & Niemiec, 2009)</td>
</tr>
<tr>
<td>Autonomy</td>
<td>an innate motivational need that “reflects the desire of individuals to be the origin or source of their own behavior and is experienced when individuals perceive their behavior as self-endorsed” (Vlachopoulos & Michailidou, 2006, p. 180)</td>
</tr>
<tr>
<td>Competence</td>
<td>an innate motivational need that “refers to one’s propensity to interact effectively with one’s environment and to experience opportunities to exercise and express one’s capacities” (Vlachopoulos & Michailidou, 2006, p. 180)</td>
</tr>
<tr>
<td>Extrinsic motivation</td>
<td>a behavior engaged to obtain an outcome external to the self; separated into four types of regulation: integrated, identified, introjected, and external (Niemiec & Ryan, 2009)</td>
</tr>
<tr>
<td>Identified regulation</td>
<td>the underlying value of a behavior is somewhat external but still identified with as internal (Deci & Ryan, 2000b; Niemiec & Ryan, 2009; Ryan & Niemiec, 2009)</td>
</tr>
<tr>
<td>Integrated regulation</td>
<td>the most internalized of extrinsic motivations, where the external purposes of undertaking the activity are fully integrated with the individual’s sense of self (Deci & Ryan, 2000b; Niemiec & Ryan, 2009; Ryan & Niemiec, 2009)</td>
</tr>
<tr>
<td>Internalization</td>
<td>a process in which individuals attempt to reform an activity, or their perspective of it, in such a way that it can be taken in as aligned with the sense of self (Deci & Ryan, 2000b; Niemiec & Ryan, 2009)</td>
</tr>
<tr>
<td>Intrinsic motivation</td>
<td>a state where an individual engages in behaviors they find interesting and enjoyable per their own volition and in which any external consequences or benefits are not salient, and is highly self-determined (Deci & Ryan, 2000b; Niemiec & Ryan, 2009)</td>
</tr>
<tr>
<td>Introjected regulation</td>
<td>external regulations are held externally, and not internalized, in the sense that the person feels failure to act will affect their image (an external construct) but not necessarily their sense of self (internal) (Deci & Ryan, 2000b; Niemiec & Ryan, 2009)</td>
</tr>
<tr>
<td>Motivation</td>
<td>“a mental construct […] indicated by the intensity, direction, and persistence of a goal-directed behavior or action” (Motivation, emotion, and cognition : integrative perspectives on intellectual functioning and development, 2004, p. 11)</td>
</tr>
<tr>
<td>Relatedness</td>
<td>an innate motivational need that “refers to feeling connected with significant others, cared for, or that one belongs in a given social milieu” (Vlachopoulos & Michailidou, 2006, p. 180)</td>
</tr>
<tr>
<td>Self-determination</td>
<td>“communicates an inner endorsement of one’s actions – the sense that an action is freely initiated and emanates from within one’s self” (Reeve, 2002, p. 196)</td>
</tr>
</tbody>
</table>

Assessment of Student Learning

Assessment	an ongoing process aimed at understanding and improving student learning. It involves making our expectations explicit; systematically gathering, analyzing, and interpreting evidence to determine how well performance matches those expectations and standards; and using the resulting information to document, explain, and improve performance. (Angelo, 1995)
Formative assessment	Formative assessment is an ongoing process aimed at understanding and improving teaching and student learning in the midst of educational efforts. It involves making our methods explicit; systematically gathering, analyzing, and interpreting evidence to determine how well performance matches those expectations and standards; and using the resulting information before summative assessments or evaluations are performed to improve teaching and learning. (study definition)
Summative assessment	used to seek evidence at the end of a course or program to examine whether or not educational objectives were achieved, and typically is not intended to improve teaching and learning while it is in progress as formative assessment methods are (Moskal, 2008; Barbara M. Olds & Miller, 2008; Barbra M. Olds, Moskal, & Miller, 2005)

Engagement in Formative Assessment

Choice of behavior	choosing to do assessment over other education/research tasks and choosing to engage in all four assessment stages: using various methods, collecting data, analyzing data, and applying results to improve teaching and learning
Concentration / attention	The ability to focus on assessment tasks while in progress
Engagement	In the context of the classroom, engagement refers to behaviors and the “concentration of attentional, cognitive, and affective resources” (p. 339) on a task or activity (Chen, Lattuca, & Hamilton, 2008)
Intent	reporting intentions to use formative assessment in the future
Persistence	staying on-task even when faced with negative results or difficulties
Satisfaction	feeling satisfied when performing formative assessment, even if results are not always positive
Chapter 1: Introduction

This introductory chapter provides a background to the problem, and then a statement of the problem itself. Following, the purpose and research questions of the study are presented, followed by the significance of the study results. Lastly, assumptions and limitations of the study are put forth and an outline of the remainder of the dissertation presented.

1.1 Background of the Problem

Engineering programs aim to provide the best education possible as they prepare students for careers as the future engineers of the world. However, engineering programs are struggling to retain students through to graduation (Ohland et al., 2008) even though engineering jobs are currently hard to fill (Coster, 2010). Worse, programs aren’t just losing their lowest performers, they are losing their best students, and those in between, at nearly the same rates (Ohland et al., 2008; Seymour & Hewitt, 1997), indicating that it is more than just their ability influencing their decisions to stay or leave.

In 1997, a major study by Seymour and Hewitt found that the primary factor cited in engineering and science students’ decisions to leave their field were issues with teaching quality; recent studies have confirmed this finding (e.g., see Ohland et al., 2008). Over the years, a number of reform efforts in engineering education have targeted teaching quality for this reason (Splitt, 2002), and the National Academy of Engineering (2005) saw the same problem and solution:

In a 1998 study, fully 98 percent of students switching from engineering to another major cited poor teaching as a major reason for their departure…. Thus, increased attention to teaching, to how students learn, and to student mentoring is important for improving the undergraduate experience. (p. 23)
Calls for improvement of engineering education have come from organizations like ABET, ASEE, NRC, and NAE (National Academy of Engineering, 2005; Splitt, 2002; Volkwein, Lattuca, & Terenzini, 2008) that seek to increase the quality of teaching and learning, and subsequently improve student retention and engagement. Various approaches have been suggested, such as seeking positive culture changes, developing communities of practice, changing accreditation standards, increasing faculty buy-in to changes, increasing reflective and student-centered teaching, and increasing use of assessment. For example, ABET’s new accreditation standards, known as EC-2000, include requirements for engineering programs to perform assessment of student learning (ABET, 2009; Shuman, Besterfield-Sacre, & McGourty, 2005). These requirements stress assessment use because it serves as a feedback mechanism to inform better teaching and learning (Moskal, 2008), and it has been shown to be successful in attaining improvements in teaching and learning (Black & Wiliam, 1998a, 1998b). Of the two common types, formative and summative, formative assessment has the most immediate and direct impact on improving teaching and learning as it is, by definition, used in the near-term to make adjustments to educational efforts in the midst of the education process, before any summative evaluation of learning takes place (Moskal, 2008; Rowntree, 1987). Many formal and informal techniques are available for educators to use in performing formative assessment (e.g., Angelo & Cross, 1993; Black & Wiliam, 1998b; Fisher, 2007).

With the goal of increasing presence of assessment in academic programs, most policymakers and administrators have used large-scale mandates and requirements to get faculty to perform summative assessment (e.g., see ABET, 2009; Prados, Peterson, & Lattuca, 2005a; Volkwein et al., 2008). However, smaller-scale efforts, like those within a college or program, have taken different approaches, such as building group cohesion (Bird, 2001), appealing to
teaching interests (Brown, 2005), and creating engaging environments (Clark, 2009). In terms of motivation, each of these approaches has different effects on different people, meaning that some initiatives may attain engagement in assessment from some individuals but not from others.

To better understand its effects, studies of education reform are increasingly considering the psychological construct of motivation, since it is a major underlying factor in individuals’ decisions to engage in behaviors and embrace changes. Fink, Ambrose, and Wheeler (2005) suggest that:

If we want to introduce meaningful change in how engineering education is practiced throughout the profession, faculty members will need a new perspective that validates why learning about teaching is important, i.e., motivation that comes from the culture, as well as opportunities to engage in what and how to learn about teaching, e.g., a systematic way for continual educational development. (p. 192)

Thus, if the status and role of motivational factors for various players in educational reform were better understood, they could be used to inform policies and interventions, potentially with higher impact than approaches that do not have such knowledge (Niemiec & Ryan, 2009). For example, Niemiec and Ryan (2009) found that policy changes made by administrators without consideration for the motivations of teachers suffered not only in compliance, but in the enthusiasm and creativity demonstrated, as compared to changes that were made by taking teachers’ motivations into account. In reform efforts intended to increase the use and effectiveness of formative assessment, therefore, it would be advantageous to have knowledge of faculty motivation for it. This knowledge would allow for optimization of approaches to attaining faculty buy-in, engagement, and persistent participation in formative assessment, and for each member’s participation to be considered individually (McKeachie, 1996; Wallin, 2003).
Self-determination theory is a useful theory to explain motivations for formative assessment as it has a unique view of the relationship between internal and external motivation – a relationship that can provide distinctive explanations of why individuals engage the way they do in activities. The theory is based on three innate needs, believed to be universal to all humans: autonomy, competence, and relatedness (Deci & Ryan, 2000). This universality is important as it provides analyses with more power to overcome issues of cultural variance, subjectivity, and incomplete motivational descriptions, in comparison to other motivation theories (Deci & Ryan, 2000; Sutton, 2005). Further, the empirical outcomes of self-determined motivation are positive affect, behavior, and cognition toward the factor being considered (Vallerand, 1997). Therefore, self-determination theory ought to explain and predict faculty’s affective, behavioral, and cognitive engagement in formative assessment, which are of value as they should lead to the desired improvements of teaching and learning in engineering.

1.2 Statement of the Problem

Research has shown that formative assessment is a valuable task for improving teaching and learning (e.g., Black & Wiliam, 1998b); however, very little work has been done to understand engineering faculty motivations for teaching-related activities (e.g., see J. Turns, Eliot, Neal, & Linse, 2007), and no literature was found that studied the motivation of engineering faculty as it pertains to assessment. Additionally, there is a lack of information about engineering faculty engagement in and attitudes toward formative assessment, in general. Furthermore, formative and summative assessment have not been studied separately, such that differences can be accounted for in policymaking and intervention development.

Therefore, the problem is that there is a dearth of information available on faculty motivation that could be used to inform assessment policy and, if deemed necessary,
interventions for formative assessment. In response, this study intended to do three things: 1) develop and test a survey instrument that can be used to study engineering faculty motivation for formative assessment, since no such instrument existed; 2) provide a much needed, preliminary description of engineering faculty's attitudes and motivation regarding formative assessment; and 3) given current challenges in engineering faculty teaching, present and test a model that could provide a basis for future work on how to increase faculty's use of formative assessment.

1.2.1 A Note about the Study Population

As part of this investigation, care had to be given to ensure that engineering faculty who responded to the survey understood what formative assessment is, else inferences might mistakenly be drawn about something else, such as summative assessment. This was addressed by screening the respondents, as described in section 3.2.2 and executed in section 4.1.2.1, and including in analyses only those who demonstrated understanding of formative assessment. As a direct result, this study’s inferences only apply to the subset of U.S. engineering faculty who understand what formative assessment is. Therefore, from here forward, discussion of the population studied will be referred to as the “subset” of U.S. engineering faculty or “these” faculty, to be clear that inferences may not extend to all U.S. engineering faculty at large.

1.3 Purpose and Research Questions

The purposes of this work were to conduct a preliminary, exploratory study of the status quo of motivation for and engagement in formative assessment for the subset of engineering faculty studied, and to provide a preliminary validation of a motivational model, based in self-determination theory, that explains relationships between these variables for this population. To do so, a survey instrument was first developed and validated that measures engineering faculty members’ satisfaction of motivational needs, self-determined motivation, and engagement
regarding formative assessment of student learning, as no such instrument existed, and then the data were used to answer the research questions and hypotheses for this study:

RQ1: What are current levels of the following: 1) affective, behavioral, and cognitive engagement; 2) self-determined motivation; and 3) satisfaction of motivational needs regarding formative assessment for the subset of engineering faculty studied?

RQ2: Does satisfaction of autonomy, competence, and relatedness needs predict self-determined motivation for formative assessment in the subset of engineering faculty studied?

H1: Multiple regression coefficients of autonomy, competence, and relatedness to self-determined motivation will be positive and significant.

RQ3: Does self-determined motivation for formative assessment predict positive interest/enjoyment, value/usefulness, satisfaction, choice of behavior, persistence, effort/importance, intent, or concentration/attention, or negative anxiety in the subset of engineering faculty studied?

H2: Regression coefficients of self-determined motivation to engagement constructs of interest/enjoyment, value/usefulness, satisfaction, choice of behavior, persistence, effort/importance, intent, or concentration/attention will be positive and significant or of anxiety will be negative and significant.

1.4 Significance of the Study

Three outcomes from this work make significant contributions to the knowledge base of engineering education. First, the survey instrument that was developed provides a valid and reliable measurement tool for investigating faculty engagement and motivation for formative assessment. Second, the data from the national sample of engineering faculty provides a
preliminary description of the status quo of engagement and motivation with regard to formative assessment for the subset of faculty studied, which can be used to establish a foundation and expectations for future studies. Third, since the motivational model holds (with a caveat) for the subset of the population studied, it provides a preliminary basis for understanding engagement and motivation in formative assessment. Therefore, this work contributes to the growing bodies of work on motivation, assessment of student learning, and formative assessment, and begins new work in the specific area of faculty motivation and engagement regarding formative assessment.

1.5 Assumptions and Limitations

This study made one major assumption: that faculty members responsible for administering a course are also the best candidates to perform assessment on their own course. Some (e.g. Rowntree, 1987) argue that there is a conflict of interest in this, and that external assessors should be used. Since this work focuses on formative assessment, which is typically not used for tenure or promotion decisions but rather internally, it is unlikely that this would be of concern.

There were several limitations to this study. First, since this study only had participants from U.S. institutions of higher education, results are only generalizable to such a population. Second, and similarly, due to some significant differences in demographics of the respondents and those of the national averages (in ASEE, 2009), the findings herein may not be generalizable to all U.S. engineering faculty; this is discussed in more detail in section 3.3.3.1. Third, due to the 9% survey response rate and lack of a priori knowledge of engineering faculty’s understanding of formative assessment, concerns exist for possible bias in results; this limitation is explored in detail in section 3.3.3.2. A fourth and final limitation is that the assessment
definition used here limits the types of assessment to which results of this work can be generalized.

1.6 Organization of the Dissertation

Preceding this introductory chapter, a glossary of terms is provided that defines terms that may be new to readers or more common terms that are used in a specific way in this study. The second chapter of this dissertation summarizes findings from a review of key literature for the central aspects of this work: formative assessment of student learning, motivation and self-determination theory, and the model that was tested in this study. The third chapter describes the research methodology, including the study samples and survey instrument. Chapter four presents the results of the survey development and data to be used in determining current perspectives of formative assessment and for validation of the motivational model. Following, chapter five discusses inferences drawn from the results presented in chapter four. Finally, chapter six concludes the study, and suggests future work.
Chapter 2: Background

This chapter summarizes a literature review for the key components of this work. First, assessment, formative assessment, and the operationalization of engagement in formative assessment are discussed. Second, self-determination theory is presented and operationalized for this study. Third, the motivational model is presented and discussed in the context of this study.

2.1 Assessment

The term “assessment” has various definitions in the education lexicon pertaining to learning, grading, accreditation, accountability, and research. This work focuses on assessment of student learning, as defined by Angelo (1995):

Assessment is an ongoing process aimed at understanding and improving student learning. It involves making our methods explicit; systematically gathering, analyzing, and interpreting evidence to determine how well performance matches those expectations and standards; and using the resulting information to document, explain, and improve performance. (p. 7)

An important aspect of this definition is that it includes four essential elements: the assessment method(s) used, the collection of assessment data, the analysis of collected data, and the application of results for improvements of teaching and learning. The following sections explore this and other relevant aspects of assessment in more detail.

2.1.1 Formative and Summative Assessment

If the goal of learning is to achieve deep understanding, then formative assessment should identify problems and progress toward that goal, and summative assessment should measure the level of success at reaching that goal. (Bransford, Brown, Cocking, Donovan, & Pellegrino, 2000, p. 258)
This quote from *How People Learn* provides a basic comparison of formative and summative assessment. Formative assessment measures student learning in the midst of a course or program with the intention of making improvements while still in progress (McManus, 2008; Moskal, 2008; Barbara M. Olds & Miller, 2008; Barbra M. Olds et al., 2005). An example of formative assessment would be using an in-class discussion question aimed at measuring student understanding of a new concept, and addressing misconceptions that students have based on the findings of that assessment. Summative assessment is, by contrast, not intended to improve teaching and learning while in progress like formative assessment methods are, but rather is used to collect evidence at the end of a course or program to examine whether or not educational objectives were achieved (Moskal, 2008; Barbara M. Olds & Miller, 2008; Barbra M. Olds et al., 2005). An example of summative assessment would be giving an exam at the end of a course to measure performance on key topics and using results of the exam for inferences about students’ attainment of key learning objectives (i.e., outcomes-based assessment).

Combining the specifics of formative assessment with the general definition of assessment above, the working definition of formative assessment for this study is obtained:

Formative assessment is an ongoing process aimed at understanding and improving teaching and student learning in the midst of educational efforts. It involves making our methods explicit; systematically gathering, analyzing, and interpreting evidence to determine how well performance matches those expectations and standards; and using the resulting information before summative assessments or evaluations are performed to improve teaching and learning.

A crucial aspect of assessment is the timely use of feedback that it provides, in the form of assessment data, to both instructors and students. Often the feedback given to students
through tests and papers is summative in nature, meaning that they only see the outcome of their learning and have little to no opportunity to improve on it (Bransford et al., 2000). In this way, student learning takes place with minimal feedback or direction from instructors, and the instructor takes little to no information from the student’s work as to how well learning has progressed until the instructional period is over (Bransford et al., 2000). When a course assignment is implemented this way, the topic is taught, the student receives and completes the work, the instructor grades it, and the grade is recorded and returned to the student; this process is illustrated in the top of Figure 2.1. With formative assessment, on the other hand, students get timely feedback on their learning, giving ample opportunity to improve before they are tested in summative ways, which deeply impact their grades, and instructors are able to adapt and respond to issues with teaching and learning as they arise (Bransford et al., 2000); this assessment process is illustrated in the bottom of Figure 2.1.
Formative assessment was the focus of this work due to two deciding factors. First, formative assessment has more direct and immediate impact on teaching and learning than summative since the feedback is employed in the near-term (Moskal, 2008; Rowntree, 1987); this is more likely to support faculty’s competence than feedback that comes some time after the teaching has completed (Stumpf & Rindova, 1996). Second, formative assessment methods and results are typically controlled by the instructor, as opposed to summative data that are often prescribed by accreditors and department administration (McManus, 2008); this is more likely to support autonomy of faculty (Stumpf & Rindova, 1996). Summative assessment, on the other hand, is typically standardized and mandated, and as such, is likely to impair competence and autonomy and therefore unlikely to be self-determined; this is not to imply that a study of motivation for summative assessment would not be of value, it is just less likely to provide variance amongst individual faculty members due to these issues.

The proper role and implementation of grading is outside the scope of this work, but the effects of assigning grades are relevant to discuss briefly in terms of motivation. Grades are sometimes confused as assessment; while grades do provide some feedback on performance,
they alone do not convey enough depth of information to enlighten the types of decisions that assessment is designed for. The use of rubrics, an assessment technique, is one example of a bridge between assessment and grading, allowing for the breakdown of a grade into key components with specific feedback on each (see M. Besterfield-Sacre, Gerchak, Lyons, Shuman, & Wolfe, 2004; Moskal, 2008; Moskal, Leydens, & Pavelich, 2002; Walvoord, 2004). More importantly, though, grades can act as extrinsic motivators to both students and instructors since they are used by external agents – such as employers, administrators, and parents – for important decisions, and can thus have motivational ramifications. In this study, grades were considered extrinsic motivators and excluded from evaluations of faculty motivation to assess student learning.

2.1.2 Benefits of Formative Assessment

There are at least two specific ways in which the use of formative assessment has benefits for academia: through faculty, in their improvement of teaching and learning, and through students, in their learning and self-development.

Black and Wiliam (1998a, 1998b) posit that formative assessment is a highly effective means of improving teaching and learning, based on their meta-analysis of over 680 pieces of literature. In one part of their study, a meta-analysis of 43 related studies revealed that formative assessment led to very large improvements on test scores – with normalized effect sizes between 0.4 and 0.7 – for the lowest performers, which is often a challenging group for instructors to assist. Further, when reviewing the effects of feedback from formative assessment, they found that benefits to teaching were greatest when faculty were confident in themselves and their teaching ability. At the same time, they concluded that formative assessment is not well understood or used by faculty and that addressing this would require changes in instructors’
motivation for assessment, such that they make efforts to learn more about it; this finding is in line with the theory applied in this study, in that motivation for assessment predicts engagement in it.

Considering more recent research, interviews with teachers and observations of classes at 12 schools in Scotland found that an initiative specifically created to use formative assessment had very positive effects on both students and faculty. The faculty formed a community of practice and shared values, which resulted in increased interest to improve their teaching and try new pedagogies, stating that they could not have sustained their engagement without these (Kirton, Hallam, Peffers, Robertson, & Stobart, 2007). Other recent research (Bond, 2009; Ecclestone, 2006; R. Stiggins, 2006; Yue et al., 2008) has tested and confirmed various benefits of formative assessment on faculty’s teaching and students’ learning, as well.

Research has found that when formative assessment is used, students make significant gains as well. From a survey of 751 undergraduates and 85 of their faculty, Myers (2008) found that assessment plays a significant role in student retention and learning when it is used to measure students’ prior knowledge, learning priorities, and goals. Since the learning priorities and goals of students often do not match those of faculty, these differing expectations can clash in the classroom, impairing learning. In this sense, assessing these priorities and goals at the beginning of a course gives students a voice in the way the course is conducted, creating a strong opportunity to maximize learning. Use of formative assessment methods, such as the background survey, and fostering faculty-student communication not only yields information that can improve learning and increase retention, but students have reported that courses administered this way are also conducive to establishing their identity and sense of self (Myers, 2008). An abundance of additional research supports these conclusions and adds others,
including positive effects on student motivation, achievement, and persistence on difficult tasks (see Black & Wiliam, 1998a, 1998b; Brookhart & DeVoge, 1999; Ecclestone, 2006; Hallinan & Danaher, 1994; Hancock, 2007; Kirton et al., 2007; McMillan & Hearn, 2009; Poulos & Mahony, 2008; Seale, Chapman, & Davey, 2000; Shepard, 1995; R. Stiggins, 2006, 2007; R. J. Stiggins, 1999; Swing, 2001; Yue et al., 2008). This work seeks ways to increase positive engagement in formative assessment by faculty, in order that these benefits and others are realized to their full potential, and to address related issues being pursued by engineering educators.

2.1.3 Other Aspects of Assessment

Beyond formative and summative assessment, other aspects of assessment found in the literature were considered in the framing of this study: assessment data collected for experimental purposes, as both direct and indirect measures of learning, and from both inside and outside of the classroom. First, assessment data obtained for experimental purposes are that which are used to evaluate the effectiveness of either a current or new approach to teaching, as opposed to simply descriptive (summative) purposes (Dues, Fuehne, Cooley, Denton, & Kraebber, 2008); this study is interested in experimental, as it is in line with the principle of formative assessment being used to improve teaching and learning. Second, direct assessments of student learning are those that use student work as data, and indirect assessments ask students for their opinions and perceptions or use other data, such as GPA (Dues et al., 2008); this study is interested in both as they have complementary contributions to measuring learning. Third, classroom assessment includes assignments, projects, reports, and exams that students complete for a class (Dues et al., 2008), and this study is interested in those as well as any data faculty
might attain from other sources (e.g. other professors, student surveys, etc.) in attempts to improve teaching and learning.

2.1.4 Assessment Summary

This section highlighted aspects of assessment relevant to this study, including formative and summative assessment and the benefits of using formative assessment. Assessment, and more specifically, formative assessment, was defined and discussed in terms of its benefits to both educators and students. In this study, the benefits to educators are the focus, specifically in the near-term feedback provided used to inform teaching and learning decisions. The next section will discuss the idea of engagement in formative assessment, which is the desired outcome of self-determined motivation for formative assessment.

2.2 Engagement in Formative Assessment

Positive engagement in formative assessment is sought in order to gain the benefits discussed in section 2.1.2. In the context of the classroom, engagement refers to behaviors and the “concentration of attentional, cognitive, and affective resources” (p. 339) on a task or activity (Chen, Lattuca, & Hamilton, 2008). Therefore, in this study, positive affect, behavior, and cognition were considered the desired outcomes of self-determined motivation for formative assessment, as attainment of these outcomes should make progress toward improvement of teaching and learning.

As is discussed further in section 2.4, Vallerand’s (1997) Hierarchical Model of motivation posits that the consequences of self-determined motivation are positive engagement in the categories of affect, behavior, and cognition. The studies cited in Vallerand’s work (1997) identified empirically-tested outcomes of affect to be interest, positive emotions, satisfaction, and anxiety; of behavior to be choice of behavior (prioritization), persistence, intensity, complexity,
intent, and performance; and of cognition to be concentration, attention, memory, and conceptual learning (p. 320). Thus, engagement in formative assessment by engineering faculty was operationalized in this study as positive affect, behavior, and cognition toward such assessment. Each of the three types is discussed in more detail in the following section; more detail on how they were measured can be found in section 3.2.

2.2.1 Constructs of Engagement

First, in this study, the affective domain included interest, positive emotions, satisfaction, and anxiety. Interest was measured collectively with enjoyment, the way they were combined in existing instruments, as an inclination toward formative assessment. Under the category of positive emotion, value and usefulness were constructs from existing instruments measured collectively as seeing worth in using formative assessment. Satisfaction was measured as feeling satisfied with use of formative assessment, even if results are not always positive. Anxiety was measured as pressure, tension, and anxiety (constructs from existing instruments) and was expected to have a negative relationship with self-determined motivation.

Second, the behavior domain included choice of behavior, persistence, and intent. Choice of behavior was measured as choosing to do assessment over other education or research tasks and choosing to engage in all four assessment stages: using various methods, collecting data, analyzing data, and applying results to improve teaching and learning. Persistence in formative assessment was measured as staying on-task even when faced with negative results or difficulties. Intent was considered to be reporting intentions to use formative assessment in the future. Intent was also important as the link between behavioral intentions and actual behavior have been well established (Richer, Blanchard, & Vallerand, 2002, p. 2094) but with the added
caveat that this relationship breaks down when a person is controlled or has no choice in the matter (Richer et al., 2002, p. 2105).

Third, the cognitive domain included concentration and attention. Concentration and attention are closely tied and were measured collectively in existing instruments, and were considered to be the ability to focus on the assessment tasks while in progress.

The rationale for choosing these specific elements of affect, behavior, and cognition consequences to represent engagement in formative assessment is based on a synthesis of the motivation literature and a subjective evaluation of their application to this study. First, select motivation studies based in Vallerand’s Hierarchical Model and self-determination theory (Guay, Vallerand, & Blanchard, 2000; Miserandino, 1996; Reeve, 2002; Roth, Assor, Kanat-Maymon, & Kaplan, 2007; Sebire, Standage, & Vansteenkiste, 2009; Vallerand, Fortier, & Guay, 1997; Vallerand & Losier, 1999) have used elements of the three categories of consequences (engagement) in studies of education, sports, and exercise. Specifically, in the educational context, interest, anxiety, persistence, intensity, and concentration were most commonly used (Miserandino, 1996; Reeve, 2002; Roth et al., 2007; Vallerand et al., 1997), which demonstrated some applicability of these constructs in the context of the education-based study conducted here. Second, elements of interest, positive emotions, anxiety, persistence, intensity, and concentration were also favored because they have been successfully measured by existing survey instruments, such as the Intrinsic Motivation Inventory (IMI), to be discussed more in the chapter three. Third, elements of complexity and performance didn’t seem to have as much relevance to this study compared to the others, from a subjective evaluation of their applicability to this self-report study of formative assessment perspectives. Fourth, and similarly, the memory and conceptual learning constructs were measured in the literature (Benware & Deci, 1984) by
direct observation rather than self-report, and weren’t able to be translated to survey items for use in this study. Finally, satisfaction, choice of behavior, and attention were selected for inclusion as they are expected to be outcomes that impact effectiveness of formative assessment as well as being of interest to engineering education researchers.

2.3 Self-Determination Theory

Motivation was defined by Dai and Sternberg as “a mental construct […] indicated by the intensity, direction, and persistence of a goal-directed behavior or action” (Motivation, emotion, and cognition: integrative perspectives on intellectual functioning and development, 2004, p. 11). McKeachie (1996) emphasized the role of motivation when studying individuals’ behavior: “When people in the same situation with similar backgrounds differ in behavior, it is natural for us to attribute the differences to motivation” (p. 19). This study utilized motivation theory to measure and evaluate the motivation, behavior, and perspectives of engineering faculty with regard to their engagement in formative assessment.

Self-determination theory posits that individuals have three innate needs of autonomy, competence, and relatedness, which the individual must perceive to be satisfied in order to experience and sustain self-determined motivation. There are six levels of motivation described by self-determination theory, each subsequently having a lower degree of self-determination on the motivation continuum: intrinsic motivation, integrated regulation, identified regulation, introjected regulation, external regulation, and amotivation (Deci & Ryan, 2000). Of those, integrated regulation, identified regulation, introjected regulation, and external regulation are classified as extrinsic motivation, and intrinsic motivation, integrated regulation, and identified regulation are classified as self-determined (Vallerand, 1997). This section will expand on the
theory in more detail and then discuss the application of self-determination theory to engagement in formative assessment.

2.3.1 The Theory

Self-determination theory (SDT) states that learning, performing, developing oneself, and curiosity are inherent in human nature and that behaviors are engaged optimally when a person experiences a high degree of self-determined motivation (Ryan & Deci, 2000). This optimal engagement is realized as the most intensely positive affect, behavior, and cognition and is maximized when an individual is intrinsically motivated (Vallerand, 1997). However, not all motivations are intrinsic, and an individual may experience amotivation, extrinsic motivation, or intrinsic motivation globally or for any given context, situation, or activity (Niemiec & Ryan, 2009); refer to Figure 2.2 for the motivation continuum on which these lie.

![Figure 2.2: The self-determination continuum showing types of motivation with their regulatory styles, loci of causality, and corresponding processes (adapted from Ryan & Deci, 2000, p. 72).](image_url)

Intrinsic motivation, extrinsic motivation, and amotivation have different degrees of self-determination and qualities about them. Intrinsic motivation is a highly self-determined state...
where an individual engages in behaviors they find interesting and enjoyable per their own volition and in which any external consequences or benefits are not salient (Deci & Ryan, 2000; Niemiec & Ryan, 2009). A behavior engaged to obtain an outcome external to the self, on the other hand, is classified as extrinsic motivation and is separated into four types of regulation: integrated, identified, introjected, and external (Niemiec & Ryan, 2009), as illustrated in Figure 2.2. Integrated regulation is the most internalized of extrinsic motivations, where the external purposes of undertaking the activity are fully integrated with the individual’s sense of self. Next is identified regulation, whereby the underlying value of a behavior is somewhat external but still identified with internally. At the following level, introjected regulation, the regulators are held externally and not internalized, in the sense that the person feels failure to act will affect their image (an external construct) but not necessarily their sense of self (internal). In the fourth level, external regulation is the most controlling stage of motivation whereby the person engages only to receive a reward or to avoid a punishment, and neither of which are viewed as affecting the individual’s internal sense of self. Finally, amotivation represents a state one step beyond external regulation, whereby the individual’s competence or autonomy is so compromised that they lack any intention to act at all towards the goal (Deci & Ryan, 2000; Niemiec & Ryan, 2009; Ryan & Niemiec, 2009). Within these six classifications, intrinsic motivation and integrated and identified regulation are considered to be self-determined motivation as the locus of causality is, to some degree, perceived to be internal, though all six types have a relative, positive or negative degree of self-determination on the continuum (Ryan & Deci, 2000).

Movement across the motivational continuum toward intrinsic motivation takes place through internalization, a process in which individuals attempt to reform the activity, or their perspective of it, in such a way that it can be perceived as aligning with the sense of self (Deci &
Ryan, 2000; Niemiec & Ryan, 2009). As the person begins to value the activity and become more self-determined in their motivation, any external rewards or prompts become less salient. This internalization process is driven by satisfaction of the individual’s basic psychological needs of autonomy, competence, and relatedness. When these needs are satisfied, the individual will experience motivation in a more internalized way; when hindered – like in controlling, difficult, or socially unwelcoming situations, respectively to each need – motivations will remain or become extrinsic (Deci & Ryan, 2000). Further, in some instances, this may even induce defensive processes to protect the self (Deci & Ryan, 2000). In the following three paragraphs, each need is discussed in more detail.

Autonomy “reflects the desire of individuals to be the origin or source of their own behavior and is experienced when individuals perceive their behavior as self-endorsed” (Vlachopoulos & Michailidou, 2006, p. 180). To be clear, autonomy requires more than just having chosen a behavior, as sometimes options available to a person are either undesirable or do not align with the person’s interests and values (Deci & Ryan, 2000). Further, an individual’s sense of self can change over time, shaped by events that are internalized through reflective processes (e.g., see Matusovich, Streveler, Miller, & Olds, 2009). Autonomy stands in opposition to being controlled by some external entity, per the individual’s perception of the locus of control (Deci & Ryan, 2000), such as an instructor feeling they must perform summative assessments because accreditation requires them, rather than because the instructor finds them to be important and useful. Autonomy is a unique motivational construct, crucial to self-determination but not central to other common motivation theories, such as self-efficacy theory (Niemiec & Ryan, 2009).
Competence relates closely to the construct of self-efficacy and “refers to one’s propensity to interact effectively with one’s environment and to experience opportunities to exercise and express one’s capacities” (Vlachopoulos & Michailidou, 2006, p. 180). For example, a professor may not feel confident assessing students, but if introduced to small challenges over time and given time to practice and master the task, they may feel increasingly competent over time. However, a professor with no knowledge and no guidance is unlikely to feel competent and, therefore, would not enjoy assessing student learning, even when persuaded by an external motivator, such as a mandate (Deci & Ryan, 2000; Niemiec & Ryan, 2009). This view of competence aligns with other motivational views, such as flow theory (Csikszentmihalyi, 1990), expectancy-value theory (Wigfield & Eccles, 2000), and the zone of proximal development (Vygotsky, as cited in Ormrod, 2008), and is a widely-used motivational construct.

Relatedness “refers to feeling connected with significant others, cared for, or that one belongs in a given social milieu” (Vlachopoulos & Michailidou, 2006, p. 180). For example, an instructor may experience relatedness when they feel as though they are more of a part of the faculty body because they make efforts to improve their teaching, as they perceive that this is a social norm. This construct of relatedness, however, carries an important caveat regarding balance. That is, a person who is overly reliant on others and connections to them can actually be the person’s subconscious attempt to compensate for previous thwarting of relatedness, and hence can appear as the need being satisfied when it is actually insatiable. Otherwise, this construct is measured and applied simply, and is common to motivation theories though rarely referred to by the same terminology (Deci & Ryan, 2000). Of note, however, in this study relatedness had to be directly connected to formative assessment or else it may have affected
construct validity; hence, it was slightly more inclined toward sharing assessment results with others than interpersonal connections in general.

2.3.2 Self-Determination in Assessment

One aspect of this work is to determine whether fostering self-determined motivation for formative assessment will increase positive engagement in it. Self-determined engagement can be experienced by faculty members who participate in formative assessment willingly and for internalized reasons, have confidence in themselves and their ability, and experience a healthy connection to other stakeholders; i.e., they should experience self-determined engagement in formative assessment with feelings of autonomy, competence, and relatedness, respectively.

To foster self-determined engagement in assessment, a few things must be considered. College teaching has many opportunities to be intrinsically rewarding – e.g., facilitating students’ growth and learning, experiencing the freedom afforded in teaching, and making connections with both colleagues and students – and research has shown that people generally consider teaching to be intrinsically interesting (Deci, Kasser, & Ryan, 1996). However, when we consider formative assessment instead of teaching, it is less clear how faculty feel about their autonomy, competence, and relatedness needs. If they do assessment for reasons other than that they believe in it or feel their assessment skills are sufficient they may engage in it extrinsically, losing the benefits of engagement that precipitates from self-determined motivation, and, as a worst-case, develop an aversion to it. However, extrinsically-motivated behaviors may become introjected or integrated regulation – more self-determined forms of extrinsic motivation – through the process of internalization, as discussed above (Deci et al., 1996). Therefore, if self-determined engagement is sought as a means to support positive engagement in formative assessment, scholarly inquiry must be conducted to ensure that this model of motivation and
engagement holds for formative assessment. Then, factors that influence the motivation of faculty can be investigated and appropriate policies and interventions designed, knowing that they can produce increasingly positive engagement in formative assessment.

2.3.2.1 The Role of Accreditation

Since accreditation has become prevalent in higher education as a means to establish accountability and ensure quality in educational programs, it is relevant to discuss its role in the study proposed here. Recent changes in engineering accreditation requirements have been aimed at establishing and promoting use of summative assessment for evaluation of programs’ effectiveness in attaining educational objectives. As well, engineering’s academic accreditation agency, ABET, reformed their standards with, amongst others, a goal of increasing engagement in formative assessment at the institutions they accredit (M. Besterfield-Sacre et al., 2000; Prados, Peterson, & Lattuca, 2005b; Volkwein et al., 2008).

However, it seems unlikely that an external agency could induce self-determined engagement in assessment, as accreditation tasks will be viewed as external requirements; this has been reflected in studies on the impact of the newest ABET requirements on use of assessment by faculty. In Volkwein et al. (2008), through simple questionnaires, faculty reported that they thought about assessment more in the years after the new accreditation requirements were introduced, but department heads reported that they were not seeing improvements in usage of or impact from assessment. Further, per his critical review of assessment and accreditation literature, Woolston (2008) stated that in many cases, institutions conduct a great deal of assessment as accreditation reports come due, but immediately fall back to minimal use once reaccreditation is attained. These are symptomatic of extrinsic engagement in assessment, where the faculty members were engaging in the assessment tasks – or not
engaging at all – because they were forced to and because they never internalized the behaviors. Prados, Peterson, and Lattuca (2005b) discuss the relaxation of accreditation standards when ABET revised them in 2000; this was likely done to increase autonomy in accreditation, as programs were given the ability to define their assessment goals and actions in accordance with their own institutional and departmental cultures, reported through their “self-study” plan. Woolston (2008), however, still has reservations about accreditation ever becoming a promoter of intrinsic engagement in assessment, as he argues that key assumptions underlying the new standards endorse a philosophy that will necessarily impair autonomy.

Sutton (2005) sees accreditation as a barrier to attaining self-determined motivation for assessment, arguing that faculty and administration “feel coerced and so resist or even undermine assessment activities on campus,” and cites a statement released from the 2005 meeting of the North Central Association Higher Learning Commission that said “effective assessment is a matter of commitment not compliance” (p. 4). Grounding her view of the problem and solution in self-determination theory, she describes faculty’s engagement in assessment to be unproductive and unappreciated when it is found in the more extrinsic forms of motivation, and suggests ways to internalize the engagement by addressing faculty’s autonomy, competence, and relatedness with respect to assessment. Specifically, she suggests: using simple terminology, giving faculty feedback on their work, and holding discussions about assessment, to improve competence feelings; emphasizing the improvement of teaching and learning over meeting accreditation demands, proving that there is choice in how assessment is conducted and aligning it with personal goals, and providing rationale for assessment tasks, to improve autonomy feelings; and supporting both positive and negative assessment results and making assessment a fun, team effort, to improve relatedness.
As such, it is doubtful that accreditation requirements could foster self-determined motivation to engage in assessment and thereby contribute to the model presented in this study. Nonetheless, it may be that, over time, accreditation could build momentum for assessment usage until the requirement is no longer necessary; then, the extrinsic motivators could be removed and assessment would continue intrinsically. Research supports the notion that this can and does occur through the process of internalization in individuals (Deci et al., 1996). However, and in summary, accreditation is not targeted in this work for the same reasons that summative assessment is not – it is not likely to promote self-determined motivation directly. Therefore, accreditation and summative assessment will not be discussed further and will not be measured, though their possible role in attaining the research objective should not ignored and could be the focus of future studies using self-determination theory.

2.3.3 Self-Determination Theory Summary

Self-determination theory posits that individuals experience intrinsic and self-determined motivation when their needs of autonomy, competence, and relatedness are satisfied. In assessment, it is argued that the idea of formative assessment has the greatest potential to satisfy these needs, especially in comparison to accreditation and summative assessment. As such, this study is intended to test the nature of formative assessment in motivation, and the next section will discuss the model by which this relationship is being explored.

2.4 Hierarchical Model of Motivation

Figure 2.3 is a hypothesized model of the relationships between the perceived satisfaction of motivational needs (autonomy, competence, and relatedness), the subsequent degree of self-determined motivation, and the resulting engagement (Deci & Ryan, 2000; Vallerand, 1997). Applied to this study, an engineering faculty member’s perceptions of autonomy, competence,
relatedness needs being satisfied in formative assessment were hypothesized to lead to a degree of self-determined motivation experienced, and the subsequent motivation were hypothesized to lead to positive affective, behavioral, and cognitive engagement in formative assessment. In addition, different degrees and types of motivation are hypothesized to lead to different levels of engagement in various formative assessment behaviors. In the section that follows, the model and its application to this study of formative assessment are explored in more detail.

2.4.1 The Model

The Hierarchical Model of motivation was constructed by Vallerand (1997) to represent motivation, as described by self-determination theory, more completely by modeling at multiple hierarchical levels and across interdependent stages. The model includes three levels of
generality: the global, or personality, level; the contextual, or life domain, level; and the situational, or state, level. Within each level, it is theorized that social factors determine mediators of autonomy, competence, and relatedness, which determine the degree of self-determination experienced, which determine outcomes/consequences of affect, behavior, and cognition; see Figure 2.4 for an illustration.

There are five postulates of the Hierarchical Model, most of which are relevant to the study herein. Postulate one says that a complete consideration of motivation must include consideration for all three types of motivation: amotivation, extrinsic motivation, and intrinsic motivation (Vallerand, 1997). In this study, all three will be considered as they exist on the motivation continuum, measured as the Relative Autonomy Index (RAI) in the survey instrument. Postulate two states that motivation exists within the three hierarchical levels of the
model: global, contextual, and situational (Vallerand, 1997). This is of particular concern to this study, as formative assessment, measured as a general activity, falls somewhere in between the education context and teaching situation. Therefore, measuring formative assessment as defined means that findings will be “circumscribed to this level of generality” (Bob Vallerand, personal communication, March 23, 2010). Postulate three says that motivation at any given level results from both social factors at that level and top-down effects from another level (Vallerand, 1997). This study aims to provide evidence that there is a relationship between motivational needs, self-determined motivation, and engagement in formative assessment, and exploration of the effects of the other variables suggested in the postulate is left as future work. Postulate four asserts that bottom-up effects can influence motivation at a higher level (Vallerand, 1997), but, as above, these extraneous variables will not be considered in the current study. This may mean that some variance between needs and motivation is unexplained, but should not negatively affect the results of the model being tested herein. Finally, postulate five states that motivation leads to important consequences (Vallerand, 1997). In this study, the consequences are the affective, behavioral, and cognitive engagement in formative assessment, as described in section 2.2.

2.4.2 The Hierarchical Model in Education

Vallerand’s (1997) Hierarchical Model has been empirically tested at the global level (e.g., Guay et. al, 1996, as cited in Vallerand, 1997) and for various contexts (e.g., Miserandino, 1996; Sebire et al., 2009; Vallerand et al., 1997; Vallerand & Losier, 1999) and situations (e.g., Guay et al., 2000; Vallerand and Blanchard, 1996b, as cited in Vallerand, 1997). In these studies, the model has held, as proposed, for most of the variables tested. For example, Guay et al. (2000), conducted five studies to validate their Situational Motivation Scale (SIMS) questionnaire. In the third study, 145 French-Canadian college students completed the SIMS
questionnaire by recalling a conversation they had in the previous two hours with a significant other. Results showed that the participants whose significant other afforded them the most sovereignty in the conversation had the highest satisfaction of autonomy, competence, and relatedness needs in the conversational situation, had the highest scores on the most internalized motivations (i.e., intrinsic motivation and identified regulation) and the lowest scores on the external motivations (i.e., external regulation and amotivation), and had the strongest indication that they desired to have more conversations with the person (Guay et al., 2000). These results showed support for the validity of not only the Hierarchical Model on the situational level, but the ability of the survey instrument to measure the model constructs.

In the context of education, Vallerand et al. (1997), conducted an investigation of high school dropout that is quite analogous to the study that was conducted here. In their investigation, over 4,500 9th and 10th grade French-Canadian students completed a questionnaire consisting of five parts: parent and teacher autonomy support (social factors), perceived school autonomy and competence (motivational mediators), the Academic Motivation Scale (self-determined motivation), future schooling intentions (consequences), and demographics (pp. 1164-1165). A year later, the schools were again contacted to supplement the future schooling intentions of the students with actual dropout and persistence information. The authors first analyzed data with ANOVA tests to look for significant differences across categories of students. Of relevance, they found that 6 of the 7 motivation types (e.g. introjected regulation, intrinsic motivation) showed significantly higher self-determination for persisting students than for dropouts. Second, the authors tested the Hierarchical Model using structural equation modeling, a statistical technique with factor analysis and regression at its roots. Results completely confirmed the model; that is, low autonomy support from parents and teachers lead to low
autonomy and competence feelings of students toward school, which in turn led to low self-determination toward school, which was a strong predictor of dropout. The only variable that was not significant in the model was autonomy support by school administrators, which was predicted to be a weaker connection before the onset of the study (Vallerand et al., 1997).

There are many implications from this study for the one conducted here. First, the Hierarchical Model was shown to hold in an educational context, showing support for application of both the model and self-determination theory in education. Second, the methods used in their study bear strong semblance to those used here, lending some support for the methodology of this study. Third, the scoring of the motivation scale, though not discussed above, was addressed in the same manner as was used here, where the motivational construct scores (e.g. introjected regulation, intrinsic motivation) are combined to form a singular, continuous score of self-determination (Relative Autonomy Index, RAI). Fourth, and finally, the construct of intent was tested and confirmed to be a valid measure of future behavior, which lends some support for the same construct used in the study here.

2.5 Background Summary

In this chapter, a summary of the literature was presented, focusing on three key areas relating to the study: formative assessment and engagement in it, self-determination theory, and the motivational model tested. In the next chapter on methodology, the study design is presented along with data collection and analysis.
Chapter 3: Methodology

This work was a quantitative study that included a survey-instrument development, where the survey instrument was used to collect data for the quantitative study. Primarily, the goal of the instrument development was to create and validate a survey instrument that measures engineering faculty members’ satisfaction of their autonomy, competence, and relatedness needs, their degree of self-determined motivation, and their engagement, all pertaining to formative assessment. Secondarily, the goal of the quantitative study was to answer the research questions by collecting data from a national sample of engineering faculty and using a subset of it to provide a preliminary description of the status quo and for validation of the motivational model. This chapter will further expand on the research design, instrument design, sample selection, and data collection and analysis in the sections that follow.

3.1 Research Design

This work was a quantitative study that included a survey instrument design. The survey instrument was designed to provide data necessary to draw valid and reliable inferences to answer the research questions, and the methods used to construct this instrument were based on the process recommended by Colton and Covert (2007). Section 3.2 of this document contains details on the instrument design procedure and section 3.5 describes the data analysis, including the quantitative study. This section will elaborate on the choices made in the research design.

First, in order that the research questions could be investigated with the most generalizable results, a relatively-large and representative sample of engineering faculty was desired. Quantitative studies are best suited for collecting and analyzing data from larger samples, and lend themselves well to statistical analyses (J. W. Creswell, 2002). In the work conducted here, the study of motivation necessitated that either interviews or surveys be used,
since direct input from the individual is required to understand their motivation \cite{Motivation, emotion, and cognition : integrative perspectives on intellectual functioning and development, 2004}. Furthermore, validation of the motivational model required use of statistical analyses on a relatively large data set to ensure that the necessary statistical power was obtained for all variables. Therefore, a quantitative survey instrument was the ideal method to employ to develop the instrument and answer the research questions of this study.

Second, it was necessary to develop a survey instrument that could collect the required data, as such an instrument did not exist. Even though several existing instruments, which had undergone validation and reliability testing, were used to construct this instrument, significant modifications were made in some cases and hence needed to be developed carefully and undergo validation and reliability testing. Therefore, various survey instrument design methods were reviewed. Colton and Covert (2007) was selected for this study as it is written specifically for use in the social sciences and since the approach was familiar to the researcher. The eight-step process that Colton and Covert (2007) recommend, discussed in more detail in section 3.2, also adhered to many of the oft-cited recommendations of Creswell (2002) for research design, such as considering validity through the whole design process and carefully devising research questions and purpose statements before anything else.

3.1.1 Context

The context for this study was undergraduate engineering education classes in U.S. institutions of higher education. Engineering education classes include any undergraduate classes that are intended to educate students on engineering topics. There are a few reasons for the selection of this context.
First, engineering faculty were studied, versus faculty in all fields, as the desire was to draw inferences about the motivation and engagement in formative assessment of engineering faculty specifically. This way, specific analyses can be performed within the narrowed context of engineering education using knowledge and literature that is specific to the field.

Second, the rationale for limiting this population to faculty at U.S. institutions was to mitigate issues with language, national culture, and research ethics (such as IRB) for both participants’ interpretation of the survey and researchers’ analysis of the results. It was also more convenient to target U.S. institutions, as the American Society of Engineering Education (ASEE) has published a book with information solely on such colleges (ASEE, 2009).

3.2 Instrument Design

For the instrument design, eight steps were taken to ensure the most valid and reliable survey instrument was developed (Colton & Covert, 2007). The sections that follow will discuss these steps and relevant information in more detail.

3.2.1 Procedure

The survey instrument design process in this study was recommended by Colton and Covert (2007). The steps of this process were:

1. Identify the purpose and focus of the study, and questions to be answered;
2. Obtain feedback from stakeholders to clarify the purpose and focus;
3. Identify the research methodology and type of instrument to use;
4. Begin to formulate questions or items;
5. Pretest items and preliminary draft with expert reviewers;
6. Revise instrument based on feedback and prepare for pilot testing;
7. Pilot test and revise prior to final administration; and
8. Administer instrument, and analyze and report results (p. 18).

In the following paragraphs, each step is discussed in more detail.

Step 1 required background literature to be synthesized and analyzed to define the purpose and focus of the study, to establish research questions, and to define the constructs and their operationalization (Colton & Covert, 2007). In this dissertation, chapter 2 discussed the literature review and defined constructs, and chapter 1 presented the purpose, focus, and research questions of the study.

Step 2 was conducted in the proposal review meeting, where the expert committee reviewed the purpose and focus of this work, to ensure efforts were clear and well-directed (Colton & Covert, 2007).

Step 3 required the research methodology and methods to be defined based on the purpose of the study and background research reviewed (Colton & Covert, 2007). The choice of methods was limited to surveys and interviews since this work studied motivation of individuals, which requires participants to self-report their perceptions of situations. Further, this work sought to develop an instrument that is widely applicable and generalizable, for which a survey is most adept at achieving given the ability to distribute it widely and to a large sample and ability to analyze survey data quantitatively (J. W. Creswell, 2002; J. W. Creswell & Clark, 2007). For more information on the methodology and research design, refer to section 3.1.

In step 4 the preliminary instrument was formed by bringing together constructs to be measured, reviewing existing instruments, and identifying steps necessary for validation (Colton & Covert, 2007). This dissertation discusses these three tasks in sections 3.2.3, 3.2.5, and 3.2.2, respectively.
Step 5 was a review of the preliminary instrument, in which an evaluation of the survey was conducted for construct validity, clarity of purpose, and clarity of instructions and questions (Colton & Covert, 2007). Reviewers for the instrument included the experts of the PhD advisory committee, and only minor changes were made to the preliminary instrument.

Step 6 required revisions to the preliminary instrument, based on feedback obtained in step 5, to form the pilot survey. Details reviewed included wording, questions and sections order, item and response formats, relevance, clarity, and grammar, and time requirement (Colton & Covert, 2007, pp. 131-132).

Step 7 was the pilot testing and final revision stage, where the pilot survey was reviewed with a small sample of participants (discussed in section 3.3.2) and then revised to form the final survey; participants in this step were excluded from participating in the final instrument. The goal of the survey piloting was to investigate how respondents understood the survey questions, identify the types of information participants retrieved to answer questions, and evaluate whether participants performed the survey task the way that was intended; see section 4.1.1 for results. The pilot testing was conducted as brief interviews where participants were first given a paper copy of the survey and asked to fill it out, taking notes and/or vocalizing thoughts as they proceeded such that they could provide thoughts, concerns, or problems along with their responses. Then, following completion, questions were posed to solicit qualitative feedback on each quantitative survey item or block of items; these interview questions are provided in Appendix B. After data were collected from the pilot testing, checks for validity and reliability were performed, aimed at attaining the goals listed above. Survey items or sections that had reliability or validity issues were revised to complete the final instrument (Colton & Covert, 2007). The full pilot procedure and questions are listed in Appendix B.
Lastly, for step 8, the final instrument was administered to the sample described in section 3.3.3, and final data collected as discussed in section 3.4. Analysis of the data was performed per section 3.5, and reported in chapter four along with a discussion in chapter five.

3.2.2 Validity and Reliability

Validation is “the process of accumulating evidence that supports the appropriateness of the inferences that are made of responses to an assessment instrument for specified [...] uses” (Moskal et al., 2002, p. 351). Therefore, to validate inferences drawn to answer the questions in section 3.2.1, pertinent evidence was sought to allow the inferences to be tested. A few different validation aspects appear in the literature (e.g., Colton & Covert, 2007; Messick, 1995; Moskal et al., 2002); this study addressed four aspects discussed in Colton and Covert (2007): content, construct, external, and internal validity. Content validity is the degree to which the intended content of the instrument, including the topic and processes addressed, are represented completely. Construct validity requires that the definition and operationalization of constructs are informed by theory and backed by measurements on actual data, and tested for both convergence and discrimination. External validity looks at the ability to generalize results from the study to those of a broader population. Internal validity is concerned with the confidence that can be placed on the predictability of causal variables to effect variables.

Before looking further at the specific categories of validity addressed, however, it was important to note that items for a good portion of the survey instrument were formed from existing survey instruments that have been validated for measuring the constructs of this study; these instruments are discussed in section 3.2.5. The items taken from these were altered as little as possible to fit the context and purposes of this study, yet still required revalidation.
Content validity was addressed in steps 1, 3, and 4 of the design process, and reviewed at steps 2, 5, and 7 through expert reviews and participant feedback. The goal was to ensure that all constructs are represented in the instrument completely; as such, the study’s purpose, background, and constructs were used to check against. In steps 1, 3, and 4, a number of actions were taken to ensure content validity: using an existing, tested motivational model to determine the necessary constructs (i.e., Vallerand, 1997), performing a literature review to ensure a thorough approach, and using survey items that have already been tested to measure the constructs (Colton & Covert, 2007).

Construct validity was addressed through both convergent and discriminant validity. At a basic level, construct validity was provided by the literature review and construct definitions in this work, establishing a singular meaning to operationalize the constructs. Later, in the piloting stage, open-ended questions were provided that requested participants to add commentary on what they believed was being measured by every constructs’ items, looking for alignment between participant responses and the construct definitions. In the final step of the instrument development, reliability measures were utilized to ensure that the questions pertaining to each construct were consistently measuring that construct and not others, which are the convergent and discriminant aspects of construct validity, respectively (Colton & Covert, 2007). Results of these analyses are presented in section 4.1.1.1.

External validity was evaluated in two sections of this work: 3.3.3.1 and 3.3.3.2. In the former section, the demographics of the respondents were compared to the demographics of all U.S. engineering faculty. In the latter section, an evaluation of non-response bias on the results of the study was performed and discussed. Together, these approaches sought to evaluate the
ability of the results and inferences from this study to be generalized to the population of U.S. engineering faculty at large.

Internal validity was evaluated at a small scale while reviewing the regression results in section 4.2. In this evaluation, the R-squared values were assessed for the likelihood that other confounding variables might be present that affected the outcomes.

Reliability is “the extent to which an instrument produces the same information at a given time or over a period of time” (Colton & Covert, 2007, p. 74). In this study, internal reliability was measured for the various constructs via Cronbach’s Alpha, which permits evaluation of internal reliability by measuring inter-correlations between items and groups of items. From this, the reliability of a single item to measure a construct can be evaluated, and the decision to remove an item may be made if it would significantly increase the reliability of the remaining items. This process was applied to the final instrument, where Cronbach’s Alpha was aggressively applied before final data analysis to remove items (and their data) where reliability could be significantly improved by doing so. The criteria used to judge Cronbach’s Alpha values were: greater than 0.9 was excellent, between 0.8 and 0.9 was good, between 0.7 and 0.8 was acceptable, between 0.6 and 0.7 was questionable, between 0.5 and 0.6 was poor, and below 0.5 was unacceptable (George and Mallery, 2003, as cited in Jones, Paretti, Hein, & Knott, 2010, p. 323). Results of reliability analysis are presented in section 4.1.2.2.

3.2.3 Instrument Constructs Required

The instrument needed to collect data that could be used to answer the study’s research questions, which are repeated here for convenience:
RQ1: What are current levels of the following: 1) affective, behavioral, and cognitive engagement; 2) self-determined motivation; and 3) satisfaction of motivational needs regarding formative assessment for the subset of engineering faculty studied?

RQ2: Does satisfaction of autonomy, competence, and relatedness needs predict self-determined motivation for formative assessment in the subset of engineering faculty studied?

RQ3: Does self-determined motivation for formative assessment predict positive interest/enjoyment, value/usefulness, satisfaction, choice of behavior, persistence, effort/importance, intent, or concentration/attention, or negative anxiety in the subset of engineering faculty studied?

Considering these questions, three categories of constructs were established: satisfaction of motivational needs by formative assessment (RQ1 and RQ2), motivation for formative assessment (RQ1 and RQ2), and engagement in formative assessment (RQ1 and RQ3). For satisfaction of motivational needs, the constructs were autonomy, competence, and relatedness, as prescribed by self-determination theory (Deci & Ryan, 2000). For motivation for formative assessment, the constructs were external regulation, introjected regulation, identified regulation, and intrinsic motivation, as prescribed by self-determination theory (Deci & Ryan, 2000); additionally, the variable Relative Autonomy Index (RAI) was calculated as a combined score of these four motivation constructs\(^1\), to indicate the degree of self-determined motivation; refer to section 2.3 for more details on these constructs and the motivational needs discussed above. For engagement in formative assessment, the constructs were interest/enjoyment, value/usefulness, satisfaction, and anxiety as the affective constructs; choice of behavior, persistence, persistence,

\(^1\) The RAI was calculated as 2 x Intrinsic Motivation + Identified Regulation – Introjected Regulation – 2 x External Regulation, as recommended in the IMI survey (see section 3.2.5).
effort/importance, and intent for the behavioral constructs; and concentration/attention for the
cognitive constructs, as listed in Vallera (1997); refer to section 2.2 for more detail on the
engagement constructs. Additionally, demographic variables of sex, ethnicity, academic rank,
institution, engineering discipline, and number of classes taught were included, which were
adopted from the ASEE text (2009).

3.2.4 Instrument Structure

In step four of the instrument development procedure, the structure for the instrument
was developed to guide construction and layout and to ensure all necessary parts were included.
This structure is given here; see Appendix D for the instrument itself:

1. Informed consent request – must accept to enter survey, or decline to participate.

2. Survey Title
 a. Clear and simple, with unambiguous terms, conveys basic purpose.

3. Introduction.
 a. Clear and simple purpose and goals of study.

4. Directions.
 a. Overall directions, including definition and explanation of formative assessment.
 b. Subsection directions, to ensure response process is clear.

5. Examples of formative assessment (open-ended).
 a. Two questions requesting examples of formal names or informal descriptions
 of formative assessment.

6. Survey items (close-ended).
a. Engagement of formative assessment questions – asked early on to help solidify meaning of formative assessment for participants.

b. Self-determination for assessment questions.

c. Satisfaction of three needs for assessment questions.

7. Demographics questions.

a. Sex, ethnicity, academic rank, institution, engineering discipline, and number of classes taught.

8. Closing.

a. Open-ended comments, thank for participation, repeat contact information.

All of the main survey items collected quantitative data in close-ended form, ideal for statistical analysis such that results are generalizable and the instrument is widely useful (John W. Creswell, Plano Clark, Gutmann, & Hanson, 2003). These questions solicited two quantitative data types, nominal and interval. Nominal, or categorical, data break people into categories by demographic information, which is useful for describing participants. Interval, or scaled, data are recorded in numerical values with equal spacing between choices, whereby few limitations exist to the statistical techniques that can be used. This second type of data is generally good to collect if extensive statistical analysis is important to the research (Suskie, 1992), as was the case in this study using regression analysis. The interval-type questions asked on typical self-determination theory instruments (see Deci & Ryan, 2010) have a range of 1 to 7, with 1 being labeled “not at all true” and 7 being labeled “very true” with 4 sometimes described as “somewhat true.” This format has an advantage over Likert-rating scale questions, which provide ordinal data only, typically on a 5-point scale ranging from “strongly-agree” to “strongly-disagree” and including “neutral” in the middle: the robustness of ordering Likert data
is questioned, and the ordinal data obtained somewhat limits statistical analysis (Suskie, 1992). As such, all of the items on this survey instrument used the interval-type format with a response range of 1 to 7 as described above, which, in most cases, matched the existing instruments from which they were taken.

3.2.5 Existing Instruments Used

The survey for this study was formed from four existing instruments that were designed to measure the constructs of interest: 1) the Intrinsic Motivation Inventory (IMI), 2) the Exercise Self-Regulation Questionnaire (SRQ-E), 3) the Basic Psychological Needs Scale (BPNS), and 4) the Rochester Assessment of Intellectual and Social Engagement (RAISE).

The Intrinsic Motivation Inventory (IMI) is available for research use on the SDT website (Deci & Ryan, 2010) and contains items that were modified for use in this study’s instrument. Of the many constructs available for measure, interest/enjoyment, value/usefulness (for positive emotion), pressure/tension (for anxiety), and effort/importance (for intensity) were used. Items for each construct have multiple questions related to an activity for which the respondent chooses their answer on a scale of 1 to 7, where 1 is “not at all true” and 7 is “very true,” with 4 being labeled “somewhat true;” scoring for a construct is the average of all responses for that construct after any necessary items are reverse coded. Multiple questionnaires were listed on the website under the IMI, with many of their questions taking the generic form of “I enjoyed doing the task very much.” After selecting questions from the IMI questionnaires for the constructs listed above, they were reworded for the present tense and for formative assessment to be the task considered. One validation of the IMI was by McAuley, Duncan, and Tammen (1989) through a basketball free-throw shooting game: 116 participants played in the game, and then took the IMI immediately following. Confirmatory factor analysis and coefficient alphas showed adequate
support for the constructs contained in the IMI (interest/enjoyment, $\alpha = 0.78$; value/usefulness $\alpha = 0.80$; pressure/tension, $\alpha = 0.68$; effort/importance, $\alpha = 0.84$).

The Exercise Self-Regulation Questionnaire (SRQ-E) is available for research use on the SDT website (Deci & Ryan, 2010) and contains items that were modified for use in this study’s instrument. The constructs of the instrument are external regulation, introjected regulation, identified regulation, and intrinsic motivation2, which are combined to form a single score for self-determined motivation called the Relative Autonomy Index (RAI). Since this study most directly used the self-determination score, the other motivation type (amotivation) was not be added, as it was not part of the RAI scoring. Items for each construct in the SRQ-E have multiple questions related to a base activity for which the respondent chooses their answer on a scale of 1 to 7, where 1 is “not at all true” and 7 is “very true,” with 4 being labeled “somewhat true,” and scoring for a construct is the average of all responses for that construct. Multiple questionnaires are listed on the website under the SRQ-E, and many of them have a stem such as “I try to exercise on a regular basis” and then items such as “because it’s fun.” The questionnaire called “Motivation for Exercise” was selected, as the items’ stems were appropriate for the audience and easily reworded for formative assessment for this study. Levesque et al., (2007) validated a similar version of the SRQ for the health-care domain by sampling 2,731 people from various backgrounds. Through exploratory and confirmatory factor analysis, support was found for all but one item, and coefficient alpha values were good (intrinsic motivation, $\alpha = 0.85$ to 0.93; identified regulation, $\alpha = 0.73$ to 0.79; introjected regulation, $\alpha = 0.74$ to 0.86; and external regulation, $\alpha = 0.73$ to 0.91).

2 It is worth noting that intrinsic motivation and integrated regulation have not been empirically separable in studies, and therefore are not measured separately.
The Basic Psychological Needs Scale (BPNS) is available for research use on the SDT website (Deci & Ryan, 2010) and contains items that were modified for use in this study’s instrument. The constructs of the instrument pertain to satisfaction of the motivational needs of autonomy, competence, and relatedness. Items for each construct have multiple questions related to a context for which the respondent chooses their answer on a scale of 1 to 7, where 1 is “not at all true” and 7 is “very true,” with 4 being labeled “somewhat true,” and scoring for a construct is the average of all responses for that construct. Multiple questionnaires are listed on the website under the BPNS with statements such as “I do not feel very competent when I am at work.” The “Basic Need Satisfaction in General” questionnaire was selected of the BPNS instruments available, as the questions were appropriate for the audience and easy to reword for formative assessment for this study. Vlachopoulos and Michailidou (2006) developed and validated a version of this instrument for the exercise domain with two samples of 500 participants from private fitness centers. Results of the study found adequate validity and reliability for the factor structure, internal consistency, generalizability, discriminate validity, predictive validity, test-retest reliability, and social desirability effects (autonomy, α = 0.84; competence, α = 0.81, relatedness, α = 0.92).

The Rochester Assessment of Intellectual and Social Engagement (RAISE) is available for research use from a journal article (Miserandino, 1996) and contains items that were modified for use in this study’s instrument. This instrument was designed for measuring perceived engagement or disaffection constructs, amongst others, and from it, items for anxiety, persistence, and concentration were adopted. Items for each construct have multiple questions related to situations for which the respondent chooses their answer on a scale of 1 to 4, where 1 is “not at all,” 2 is “not very true,” 3 is “sort of true,” and 4 is “very true,” and scoring for a
construct is the average of all responses for that construct. The questionnaire has statements such as “When my teacher explains new material, I feel scared.” These questions were reworded for formative assessment, slightly revised for age-appropriateness, and the scale increased to 1 to 7 to be consistent with the other scales this study. Miserandino (1996) tested the instrument with 187 third and fourth grade students and analyzed data with factor analyses, and found that most factors and items had adequate validity and reliability scores; the items used in this survey instrument scored adequately (anxiety, $\alpha = 0.72$; persistence, $\alpha = 0.77$; and concentration $\alpha = 0.79$).

3.2.6 Additional Constructs and Items

Items for three of the constructs were modified significantly or extracted from non-survey studies, and hence were the most subject to validity and reliability issues. However, as discussed in sections 4.1.1.1 and 4.1.2.2, all three showed sufficient evidence that the survey items were both valid and reliable as applied in this study.

First, for the construct of satisfaction, items were taken from the Academic Motivation Scale ($\alpha = 0.85$), in Vallerand et al. (1993), and the Employee Attitude Survey ($\alpha = 0.92$), in Deci, Connell, and Ryan (1989), and were combined and reworded. Second, for the construct of intent, items were taken from the questionnaire developed by Vallerand, Fortier, and Guay (1997) ($\alpha = 0.64$), and then reworded for this study. Finally, for the construct of choice of behavior, items were extracted from the study in Swann and Pittman (1977), which did not use a survey but rather interviews and observations. Since the researchers’ comments were quoted, it was possible to take survey items from these quotes and descriptions in the study, but no alpha values or other statistical tests were performed. This elevated concern for validity and reliability of this construct, as it had not been tested in survey form; results in sections 4.1.1.1 and 4.1.2.2
showed good support for the construct in the pilot analysis and final survey reliability, respectively.

3.2.7 Instrument Design Summary

In this section, the eight steps of the instrument design process were presented and discussed, including the development and testing of preliminary, pilot, and final versions of the instrument. Subsections discussed inferences deduced from analysis of the instrument data, measures taken to ensure validity and reliability of those inferences, and the use of existing instruments and literature to form the survey items for this study. The next section will discuss privacy concerns and data collection with the instrument.

3.3 Sample Selection

This section discusses the target population for the motivational model to apply to, as validated, and the samples attained for both the quantitative study and the instrument development.

3.3.1 Population

The target population of this study consisted of engineering faculty who teach engineering courses at U.S. institutions of higher education and who understand formative assessment (as it is defined in this study). Faculty could be of any level, including but not limited to instructors, administrators, and adjunct, assistant, associate, and full professors, as any of them may use formative assessment to measure student learning. Institutions at which they serve included but were not limited to community colleges, teaching institutions, research institutions, and graduate degree-granting institutions; the Carnegie Foundation has a complete listing of classifications ("The Carnegie Classification of Institutions of Higher Education," 2005), which was used to identify colleges and universities that participated in this study.
3.3.2 Pilot Sample

An intentional, convenience sample of five engineering faculty at Virginia Tech was selected to participate in the survey pilot study. These five participants satisfied at least one of the following criteria, and all four criteria were covered by the five participants: 1) on a departmental assessment committee, 2) utilizing formative assessment currently, 3) unfamiliar with formative assessment, and 4) little to no interest in using formative assessment. Satisfaction of these criteria allowed for input from a variety of perspectives on the survey instrument and for early validation of the survey constructs. The most difficult to find was someone who had little to no interest in using formative assessment, since the definition of formative assessment is such that almost every faculty member uses it to some degree. As a result, two faculty members were interviewed who were unfamiliar with and had some aversion to the terminology.

3.3.3 Final Survey Instrument Sample

A target of 200-300 responses was deemed sufficient for the various statistical analyses conducted, based on the following rationale. The primary statistical concern for the sample size was the regression analyses, which roughly require a 5:1 ratio for samples to constructs, with a 10:1 ratio being preferable (Ott & Longnecker, 2001; Rawlings, Pantula, & Dickey, 1998). Since there were 16 constructs evaluated in this study, a minimum of 160 responses were preferred, though 80 would have been sufficient; 223 responses were received, and 149 of them used, which satisfied the desired ratio. Beyond the collective regression analyses, though, it was difficult to predict how many responses would be obtained for the analyses performed on smaller groups, such as those grouped by engineering discipline or academic rank. Therefore, the preference was to obtain as many responses as possible, overall. With an expected response rate of 10-20%, this indicated that at least 2,000 – 3,000 faculty should be invited to participate in the
survey. Further, a sample within institutions was preferred, as opposed to a random selection of 3,000 engineering faculty from different schools, so cross-validation and inferences could be attained from multiple faculty across demographics, such as those at the same school or in the same department; unfortunately, responses did not cluster well enough to afford such inferences.

An initial sample of 115 U.S. higher education institutions was selected at random from the Profiles of Engineering and Engineering Technology Colleges (ASEE, 2009) to participate in the study, resulting in a potential sample size of 10,570 engineering faculty according to listed data. For each of the selected institutions, their website was reviewed to find contact email addresses for faculty; only 37 had such information available, resulting in a sample of 3,248 faculty members from the population. This sample made it likely that approximately 200-300 responses would be received, assuming that 80% of the email addresses would be valid and 10% of those with valid addresses would respond. As such, an invitation to partake in the study was sent to these engineering faculty, resulting in 223 responses from the population, an actual response rate of approximately 9%. The impact of this response rate is discussed in detail in section 3.3.3.2.

3.3.3.1 Summary of Respondents

Of the 223 responses to the final survey, 149 were selected for final analysis by the process described in section 3.2.2 and conducted in 4.1.2.1. These respondents are summarized in Table 3.1; however, note that not all respondents provided demographic information, so numbers may not add up to 149. In addition, the Carnegie Classification of Institutions of Higher Education (2005) was used to classify the respondents’ institutions. The undergraduate profile, size and setting, and basic classifications were simplified for use in this study in that not
all the sub-classifications in them were necessary; the resulting classifications are shown in Table 3.2.

In addition to the demographics of survey respondents, Table 3.1 contains statistics regarding national averages for demographics of U.S. engineering faculty, taken from the ASEE text (2009) for sex, ethnicity, discipline, and rank, and 95% confidence intervals for the sample percentages. Noted by asterisks, some of the 95% confidence intervals include the true value of the population in the last column, indicating that there is only a 5% chance that the sample is not actually representative of the population. The data show that it is close but unlikely that the respondents in this study are representative of the population in terms of sex, but rather is more representative of females; this high response from females is a typically-observed trend in surveys, though (Korkeila et al., 2001). As well, it is unlikely that the ethnicities of respondents are representative with oversampling of Caucasians and undersampling of Asian-Americans. However, for the most part, the respondent sample is representative of engineering faculty nation-wide in terms of engineering discipline and academic rank. Despite the differences in the sample and the population, only one significant difference was obtained between any elemental groups of the demographics for the constructs of this study, which was males and females differing on the predictability of competence and relatedness needs to motivation, as described in section 4.2.2.

Table 3.1: Basic demographics of 149 respondents, whose data were used in analyses, including 95% confidence interval of sample percentage and national averages of the population, as available. Note: not all respondents provided demographic data, so numbers may not add up to 149.

<table>
<thead>
<tr>
<th>Demographic:</th>
<th>Response:</th>
<th>Count:</th>
<th>Percent of sample (95% CI):</th>
<th>Nat'l. avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Male</td>
<td>87</td>
<td>71% (63, 79%)</td>
<td>87.7%</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>36</td>
<td>29% (21, 37%)</td>
<td>12.3%</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>African-American</td>
<td>1</td>
<td>0.84% (-0.8, 2.5%)</td>
<td>2.5%*</td>
</tr>
<tr>
<td></td>
<td>Asian-American</td>
<td>4</td>
<td>3.4% (0.1, 6.7%)</td>
<td>22.7%</td>
</tr>
<tr>
<td>Caucasian</td>
<td>104</td>
<td>87% (81, 93%)</td>
<td>64.7%</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>4</td>
<td>3.4% (0.1, 6.7%)</td>
<td>3.5%*</td>
<td></td>
</tr>
<tr>
<td>Native American</td>
<td>1</td>
<td>0.84% (-0.8, 2.5%)</td>
<td>0.2%*</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>5</td>
<td>4.24% (0.6, 7.9%)</td>
<td>6.4%*</td>
<td></td>
</tr>
</tbody>
</table>

College or University			
Austin Community College	1	0.8%	N/A
Boise State Univ.	3	2.4%	
Brown Univ.	1	0.8%	
Bucknell Univ.	7	5.6%	
Cornell Univ.	8	6.5%	
Hofstra Univ.	1	0.8%	
Illinois Institute of Technology	3	2.4%	
IUPUI	2	1.6%	
Iowa State Univ.	1	0.8%	
Kettering Univ.	5	4.0%	
Lake Superior State Univ.	1	0.8%	
Polytechnic Inst. of New York Univ.	1	0.8%	
Purdue Univ.	23	18.5%	
Rose-Hulman	1	0.8%	
Rutgers, The State Univ. of NJ	4	3.2%	
Seattle Univ.	2	1.6%	
Southeast Missouri State Univ.	1	0.8%	
St. Joseph's	1	0.8%	
Syracuse Univ.	1	0.8%	
Univ. of CO at Colorado Springs	1	0.8%	
Univ. of Denver	2	1.6%	
Univ. of Florida	11	8.9%	
Univ. of Hawaii at Manoa	1	0.8%	
Univ. of Kansas	5	4.0%	
Univ. of Mississippi	2	1.6%	
Univ. of Notre Dame	6	4.8%	
Univ. of Rochester	2	1.6%	
Univ. of Texas - Pan American	1	0.8%	
Univ. of Texas at Austin	11	8.9%	
Univ. of Virginia	9	7.3%	
Utah State Univ.	6	4.8%	

<p>| Engineering discipline | | | |
| Aerospace | 3 | 2.4% (-0.4, 5.2%) | 3.0%* |
| Architectural | 1 | 0.8% (-0.8, 2.4%) | 0.5%* |
| Biological and Agricultural | 4 | 3.3% (0.1, 6.6%) | 1.7%* |
| Biomedical | 11 | 8.9% (3.7, 14.1%) | 4.3%* |
| Chemical | 6 | 4.9% (1.0, 8.8%) | 7.5%* |</p>
<table>
<thead>
<tr>
<th>Classification choices</th>
<th>Count</th>
<th>Portion of total:</th>
</tr>
</thead>
<tbody>
<tr>
<td>**Classification:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-year</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>4-year or above</td>
<td>123</td>
<td>99%</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private not-for-profit</td>
<td>41</td>
<td>33%</td>
</tr>
<tr>
<td>Public</td>
<td>83</td>
<td>67%</td>
</tr>
<tr>
<td>Enrollment profile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ExU2 – Exclusively undergraduate 2-year</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>ExU4 – Exclusively undergraduate 4-year</td>
<td>2</td>
<td>2%</td>
</tr>
<tr>
<td>HU – High undergraduate</td>
<td>45</td>
<td>36%</td>
</tr>
<tr>
<td>MGP – Majority graduate/professional</td>
<td>3</td>
<td>2%</td>
</tr>
</tbody>
</table>

* - population value falls within 95% confidence interval from sample

Table 3.2: Demographics of respondents' colleges and universities.
Undergraduate profile (special)	MU – Majority undergraduate	55	44%
LTU – Limited undergraduate	18	15%	
Undergraduate profile (special)	FT4 – Full-time 4-year	7	6%
NHU – Nearly high undergraduate	110	89%	
MFT4 – Medium full-time 4-year	6	5%	
PT2 – Higher part-time 2-year	1	1%	
Size & setting (special)	L4 – Large 4-year	7	6%
M4 – Medium 4-year	96	77%	
S4 – Small 4-year	19	15%	
VL2 – Very large 2-year	1	1%	
Basic	Assoc – Associate’s College	1	1%
Bac – Baccalaureate College	8	6%	
DRU – Doctoral/Research University	1	1%	
Master’s – Master’s Colleges and Universities	8	6%	
RU/H – Research University (high research)	16	13%	
RU/VH – Research University (very high research)	83	67%	
Spec/Engg – Schools of Engineering	7	6%	

3.3.3.2 Response Rate Concerns

Biased results can come from various sources, such as the portion of the survey invitees who don’t respond; a low survey response rate can present problems beyond just concerns of collecting enough data to attain statistical significance. Without consideration for why they don’t respond and what effect that might have on the otherwise-random sample, biased results may be reported without notice. For example, a meta-review of 10 years of *The Journal of Agricultural Education* found that publications reported response rates in the range of 28% to 100% (Lindner, Briers, & Murphy, 2001), but the study also found that only 45% of articles mentioned non-response bias, despite them having less than 100% response rates. Of those, 47% made no attempt to control for non-response bias, and another 31% compared early to late responders to evaluate non-response. Promising, however, was the finding that for all of the studies that
attempted to control for non-response bias, only 6% of them found significant differences in respondents and non-respondents.

Korkeila et al. (2001), found in their review of the literature that “reasons for not returning a questionnaire have been numerous: in gaining no personal benefit from the survey, having no interest in the topic, lack of confidence, feeling of intrusion of privacy, lack of time, forgetfulness, or present illness” (p. 991, references removed); additionally, de Winter et al. (2005), note that “saliency of the research topic” is a common factor. However, Korkeila et al. (2001) also warn that “[l]ow participation rates do not necessarily result in a selection bias” (p. 992). Hence, any study that attains less than 100% response should explore reasons for non-response and/or investigate the bias that the non-respondents may have had on the data (de Winter et al., 2005).

The original target for this study was 30% response, but advisement suggested that this target was too high, and hence it was lowered to 10-20%. The biggest concern for response was originally about receiving enough to be able to conduct the statistical regressions, and the possibility of bias due to non-response was initially overlooked. Miller and Smith (1983, as cited in Lindner et al., 2001) state that non-response bias is a concern for response rates as high as 90%; therefore, the 9% response received from this study certain warranted investigation. To evaluate possible non-response bias, three approaches were used: comparison of early and late respondents, consideration of reasons for non-response, and review of comments from invitees.

First, a comparison of early and late responders was conducted, identified by associating them with the “wave” of email reminders sent – those who responded to the first two email invitations were deemed “early responders” and those who responded to the final reminder (third email sent) were deemed “late responders.” Then, basic statistics, used to answer RQ1, were
calculated for these groups and compared using two-sample t-tests. Following, the regressions used to answer RQ2 and RQ3 of this study (as discussed in section 3.5.4) were run for both groups to see if the data produced different results for them. This procedure to test non-response bias is called a “time trend extrapolation test” (Deutskens, de Ruyter, Wetzels, & Oosterveld, 2004, p. 28) and was described in Lindner et al. (2001) and used in both de Winter et al. (2005) and Korkeila et al. (2001) to evaluate non-response bias. “The assumption is that respondents who respond less readily are similar to non-respondents (Armstrong and Overton, 1977)” (Deutskens et al., 2004, p. 28).

None of the variables produced significantly different means at the p<0.05 level when early and late respondents were compared, and none of the regressions produced differences in the significance of predictors. A few variables (e.g., anxiety) had differences at the p<0.10 level, but the differences still had no practical implications that would affect inferences. Lindner et al. (2001) also found no differences in respondents and non-respondents in their study, and concluded “the results are generalizable to the target population” (p. 45). Therefore, in the best judgment of this study’s results, it appears unlikely that there are major differences between the non-respondents and respondents, and thus it is unlikely that the low response rate would have notable impact on any inferences drawn from the data.

Second, reasons for non-response were considered in context with the timing of the survey invitation sent to engineering faculty, the response to the pilot survey, and possible technical problems with survey distribution. For one, it is widely known that faculty are generally very busy with their duties of teaching, research, and service, and engineering faculty are no exception. However, not all faculty maintain as heavy of a research load as engineering faculty do, and the summer is often when travel and research consume a great deal of time; in
fact, about 100 out-of-office auto-reply emails were received from faculty during this study. As such, since the survey reached engineering faculty in late summer (August 17, 2010) and was closed slightly after the beginning of the fall semester (September 10, 2010), summer travel, preparation for teaching fall classes, and wrapping up summer research all could have been priorities that outranked responding to this survey invitation. As well, the principle investigators had no direct relationship with any of the invitees to the final survey, lowering the chance of interpersonal obligation being a motivator for completing the survey. Two, in preparation for the final survey, the pilot survey was distributed to a sample of engineering faculty at Virginia Tech at the same time that interviews were conducted. While, in the end, none of the data were used in the final instrument development, it is worth noting that only 26 of 253 faculty responded to the pilot survey, for a response rate of just over 10%. Attaining this low of a response rate from an invitation sent much earlier in the summer (June 23 to July 14, 2010) and to a sample with a much more personal connection to the principle investigators suggests that low response may be more due to factors such as the term “formative assessment” being unfamiliar to faculty and less to factors of timing or personal familiarity. Three, while invitations to the final survey were sent to 3,248 engineering faculty emails, there is no doubt that technical problems caused many of those to not reach faculty members. Over 400 rejection notices were received for email addresses that were undeliverable, seven schools had zero respondents (which had a total of 387 faculty, and may have been due to the school blocking messages from SurveyMonkey), and some initial test messages were blocked by junk mail filters. Thus, it is possible that invitations only reached about 2,000 - 2,300 invitees; this would only increase the response rate to about 10%, but this fact should not be overlooked, as only estimates can be made as to how many
emails were actually delivered. Therefore, consideration of these factors suggests that the low response rate wasn’t all that unexpected.

Looking also to the literature for information on typical response rates, it was found that email-only survey distributions typically attain the lowest response rates at about 20%, whereas supplements such as postcards (preceding or following survey distribution) can significantly increase response rates up to about 28%, and mail surveys attain the highest response at 32% (Kaplowitz, Hadlock, & Levine, 2004). These increases are valuable, but come at nearly ten times the cost of an email-based survey distribution (Kaplowitz et al., 2004) and can irritate or annoy potential respondents (Deutskens et al., 2004). Too many follow-up messages have diminishing returns or may be considered spam (Deutskens et al., 2004); this study limited contact to one initial invitation email and two reminder emails. Another suggestion to increase response rate was to offer incentives to participants, either as a direct compensation like a voucher or indirectly as a chance to win a bigger prize, such as $100 gift card. Even though incentives have not been shown to hurt the quality of responses (Deutskens et al., 2004), it would have been somewhat hypocritical to provide external incentives to complete the survey when self-determination theory says that tasks motivated by external regulation produce lesser levels of cognitive engagement (Deci & Ryan, 2000). As well, the issue of non-response wasn’t given great consideration until the survey had concluded, so no budget was available to exercise such options. Lastly, in consideration for the 9% response rate of this study, Deutskens et al. (2004) had a response rate of 9.4% on their long-version survey with a “donation to charity as incentive and an early reminder” (p. 28) whereas other incentive, reminder, and length designs attained upwards of 31.4%. Therefore, findings in the literature support the conclusion above that a
relatively-low response rate was not unexpected for this survey, given the length, incentives, and reminders.

Third, the comments and feedback from invitees were reviewed to better understand those who didn’t respond; Table 3.3 gives a summary of this feedback. Some invitees gave reasons for rejecting the survey based on its format or because they were busy or ill, while quite a few others excused themselves because they weren’t teaching, all of which were expected responses. However, a number of both responding and non-responding faculty had concerns about the educational language used and, more specifically, the term “formative assessment.” This raised the concern that many engineering faculty may not have responded largely because of unfamiliarity or aversion to educational terms used in the survey invitation. As well, compared to other education-focused surveys sent to engineering professors, this survey was about general use of formative assessment versus other surveys that ask about specific educational activities that faculty engage in, such as giving lectures or running a capstone-design course. Therefore, it is possible that a disproportionate percentage of faculty who responded to this survey invitation were very familiar and comfortable with the concept of formative assessment and related educational terminology; Figure 3.1 demonstrates two possible scenarios related to this idea. On the left, out of the sample invited to participate, which is represented by the entire circle, only the small, shaded portion understand formative assessment; in the circle on the right, almost all of the faculty in the sample understand formative assessment. Considering that 71% of the respondents to this survey gave valid examples of formative assessment, as shown in section 4.1.2.1, it would be logical to conclude that this statistic is generalizable to the population, and therefore that the right-most circle in Figure 3.1 is correct. However, noting the comments in Table 3.3 below and discussion above, it is more likely that a strong response bias
existed in the respondents, such that the left-most circle in Figure 3.1 is actually representative and the survey received input from a disproportionately-large portion of the faculty who understand formative assessment. Nonetheless, this possibility should not impact the inferences of this study since they are only intended to extend to the subset of U.S. engineering faculty who understand formative assessment; it is unknown, though, what the actual proportion of the engineering faculty population this is.

Table 3.3: Summary and count of comments received from respondents via email and in input box at the end of the survey.

<table>
<thead>
<tr>
<th>Respondent status:</th>
<th>Faculty comment (paraphrased):</th>
<th>Count:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Did not respond</td>
<td>The survey is full of education lingo.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Won’t complete survey that doesn’t allow skipping of questions</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Couldn’t access survey</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>I am retired/no longer teaching/on sabbatical</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>After studying the questionnaire, I decided I would not participate</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Catching me at the beginning of the semester and I’m busy</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Too busy / have been ill</td>
<td>3</td>
</tr>
<tr>
<td>Completed</td>
<td>The term “formative assessment” is still unfamiliar after explanation (yet respondent gave valid examples of formative assessment)</td>
<td>16 (8)</td>
</tr>
<tr>
<td>(comment at</td>
<td>Survey was too long / too repetitive</td>
<td>10</td>
</tr>
<tr>
<td>end of survey)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.1: Two possible scenarios of what the sample of this study may look like, where the shaded area represents faculty who knew what formative assessment is out of the study sample, represented by the entire circle.
In summary, statistical comparisons of early and late respondents showed no differences, and consideration of non-response factors and review of faculty comments suggested reasons for the low response rate. These findings suggest a low likelihood of bias in the study results from those who did not respond to the survey invitation; however, it does not completely rule out the possibility, and since this is the first such study of engineering faculty motivation for formative assessment, study results should be considered preliminary. In addition, the faculty comments showed a possible bias in the sample from over-representation of those who understand formative assessment, but this bias is inconsequential since this is the subset of the population that inferences of this study extend to. Therefore, in conclusion, these findings indicate a low likelihood that non-response bias tainted the results of this study, and hence the outcomes can be interpreted as an informative, yet preliminary, indication of the attitudes, motivations, and engagement of U.S. engineering faculty who understand formative assessment.

3.4 Data Collection Procedures

This section discusses the means of collecting data that were applied for both the instrument development and the final instrument. Central to this section are concerns for the privacy of participants, as well as the procedure and tools to collect data.

3.4.1 Participant Privacy and IRB

Before data were collected, the privacy and anonymity of participants was ensured in a way that still allowed critical data to be obtained. The Institutional Review Board (IRB) at Virginia Tech is responsible for approving all studies to be conducted on human subjects, and an expedited application was approved for this study on May 25, 2010, under IRB number 10-471. To protect participants’ privacy, numerical codes were used to identity participants without use of their names, though some identifying information from demographics questions was retained.
Further, results are reported in aggregate such that participants cannot be identified from the data; though it was not a problem, in the event that a participant might have been identifiable by data disclosure, data would have been discarded to ensure privacy. All electronic data are held in an encrypted folder to ensure protection, and information connecting participants to their code in a separate, secure location. No risks to participants are expected beyond the privacy concerns noted above.

3.4.2 Data Collection and Tools

Instrument data collection was conducted during the pilot and final instrument testing phases. The final survey instrument was implemented through the online survey website SurveyMonkey.com, chosen for its flexible user interface, trusted data security, and reasonable price. The cost of using the service was $200 due to the number of questions on the instrument and number of responses expected plus $100 to encrypt the data as required by the IRB. A separate instrument was created for each stage of the instrument development such that no data is mixed from one phase to the next.

For the pilot study, participants were chosen as described in section 3.3 for the respective phases and first contacted via email on June 23, 2010, with an invitation to participate via a weblink to the online survey. The invitation included a deadline of July 14, 2010, for the participant to respond by, and reminders were sent on June 30, 2010, and July 7, 2010, to those who had not responded. Data was also collected from the pilot study interviews on the interview question sheets (see Appendix B) and the printed survey instrument provided to participants. The question sheets allowed notes to be taken for both close-ended and open-ended questions used to evaluate the validity of the survey instrument items. As well, with participant permission, interviews were recorded for enhancement and clarification of notes taken.
For the final instrument, participants were chosen as described in section 3.3 and first contacted via email on August 17, 2010, with an invitation to participate via a weblink to the online survey. The invitation included a deadline of September 10, 2010, for the participants to respond by, and reminders were sent on August 24, 2010, and September 2, 2010, to those who had not responded.

3.5 Data Analysis Procedures

This section discusses how the data obtained from pilot and final instrument testing were analyzed. The first section discusses analysis of qualitative data obtained from the pilot instrument testing, for the purpose of creating the final instrument. The second section presents analyses used on the final instrument data for validity and reliability purposes. Following, the third section discusses the basic scoring and statistical analysis used to answer RQ1 in describing the current status of engineering faculty perspectives of formative assessment. Finally, the fourth section discusses use of final instrument data to answer RQ2 and RQ3 to validate the motivational model proposed in this work.

3.5.1 Pilot Survey Interviews

For the pilot instrument, qualitative data collected on the interview question sheets and paper survey instruments were reviewed in instrument development step 7. As noted in Colton and Covert (2007), participants’ comments on these questions were expected to vary in the target and the nature of their response, and as such, required somewhat ad hoc approaches to analyzing the data and revising the instrument. Notwithstanding, a few central questions were addressed to analyze the data and revise the instrument; they are listed in Appendix B and repeated here for convenience:
1. What is the nature of the respondent’s statement? (uncertainty, confusion, objection, or disagreement with the item)

2. What is the root of the issue the respondent is discussing? (the instructions, the item, the responses, etc.)

3. What may be changed about the instrument or item to resolve the issue?

4. Which change would maximize the validity of this item, construct, or section of the instrument?

These questions were used to determine a definitive course of action when considered together with analysis of commentary relevant to question four. Then, the layout, instructions, order, stem, wording, or response of the survey items were revised to increase the overall validity and clarity of the instrument. The results of the pilot and changes to the survey are discussed in sections 4.1.1.1 and 4.1.1.2, respectively.

After completion of the pilot interviews, feedback from the questions above were organized in an electronic document around the respective survey items and constructs for which they pertained; as well, feedback on survey instructions, demographic questions, and layout were organized in pertinent areas of the document. Following, the items, constructs, and format were reviewed with consideration for the feedback received, and then revised to improve clarity and validity. More detailed information on how this analysis of pilot data was performed is presented in results section 4.1.1.
3.5.2 Final Instrument Validity and Reliability

The final instrument data was first used to check and address issues with validity and reliability to ensure they were optimized before using the data to answer the research questions. First, the validity of the responses were checked by reviewing the examples of formative assessment provided. To evaluate the responses, they were coded by a rubric established for use in this survey by combining the study definition of formative assessment with types of formative assessment taken from the literature. In this way, each example provided by engineering faculty could be scored with the rubric, and that score used to determine whether or not the respondent was thinking of formative assessment, as defined (i.e., determine if their response was valid data for answering this study’s research questions). After reviewing and scoring the examples, only the data from respondents whose responses were deemed to be valid were used in the remainder of the analyses, which formed the subset of the U.S. engineering faculty population that this study was most interested in. More details on the outcomes of this analysis are presented in results section 4.1.2.1.

After removing responses to obtain the most valid data set, analysis was performed to ensure that the survey items reliably measured the constructs for which they were designed. As such, Cronbach’s Alpha was calculated for each construct and reviewed. From this, the reliability of a single item to measure a construct was evaluated, and the decision to remove certain items was made when it significantly increased the reliability of the remaining items. This process was applied to the final instrument using the following criteria: greater than 0.9 was excellent, between 0.8 and 0.9 was good, between 0.7 and 0.8 was acceptable, between 0.6 and 0.7 was questionable, between 0.5 and 0.6 was poor, and below 0.5 was unacceptable (George and Mallery, 2003, as cited in Jones et al., 2010, p. 323). Details on the outcomes of this analysis are reported in results section 4.1.2.2.
3.5.3 Construct Scoring and Descriptive Statistics for RQ1

After the items and constructs on the final survey instrument were reduced to those that were reliable, the construct scores were calculated from the respective items for use in descriptive statistics and regression analyses. The constructs in this study required that its items were averaged to calculate the construct score, such that the construct score would always be on the same 1-to-7 scale that the items were rated on, regardless of the number of items in the construct. In this way, the construct scores could be interpreted in the same way that participants responded to the items: a 1 is “not very true,” a 4 is “somewhat true,” and a 7 is “very true,” and those in between. Further, since this data was in interval format, it allowed for numerical interpretations, e.g., a 6.0 is 83% (5/6) of the maximum response value, and enhanced categorical interpretations, e.g., a 6.0 indicates that the respondent feels this is “quite true” or almost “very true.”

The only exception to this average scoring was calculation of the composite score for self-determined motivation, the Relative Autonomy Index (RAI), which was the essential motivational measure for model validation. Calculation of the RAI involved a weighted combination of the four motivation constructs, resulting in a scale of -18 to +18, as follows: 2 x intrinsic motivation + identified regulation - introjected regulation – 2 x external regulation. Interpretations of this score had two qualities: magnitude and direction. The sign of the score indicated the direction of the motivation, which in this case meant negative is controlled motivation and positive is autonomous regulation (Deci & Ryan, 2010). The magnitude was represented by the numerical value, which in this case indicated the magnitude of either the autonomous or the controlled motivation. Therefore, for example, a -12.0 would indicate that the respondent felt very controlled in this case, and therefore the external motivators were most salient to him/her.
Descriptive statistics were used with the construct scores to describe engineering faculty in terms of the various constructs pertaining to motivation and engagement. The statistical means and standard deviations are reported with the results in section 4.2.1, to show the general responses of survey respondents for the constructs measured. Interpretations of these results are provided for these data throughout chapter 5, to show how faculty members generally rate their motivation and engagement in formative assessment.

To determine if responses vary across all of demographic variables, Student t-tests were conducted to check for interactions and significant differences. Statistically significant results were interpreted as demonstrating that different classes of faculty or faculty at different institutions have different levels of motivation and engagement in formative assessment. There were no direct implications of these results to the research questions of this study, but these data were reviewed in the event that they suggest future work to explore factors that influence individual faculty members’ motivation and engagement in formative assessment.

3.5.4 Regression for RQ2 and RQ3 Model Validation

For step 8 of the instrument development process, the final instrument was distributed to engineering faculty at randomly selected U.S. engineering colleges and resulting data collected from the survey website. Analysis of the survey items was performed with SPSS and JMP statistical software though linear regression, used to validate the model illustrated in Figure 2.4 to address RQ2 and RQ3. To test the ability of motivational needs satisfaction to predict motivation types (e.g., external regulation) and self-determined motivation (i.e., the combined score, RAI), the data for the three needs was first entered into the statistical software as the independent variables for regression. Then, the data for the four motivation types and the self-determined motivation were entered one at a time for the dependent variable, to test each
independently. Similarly, to test the ability of motivation types and self-determined motivation to predict affective, behavioral, and cognitive aspects of engagement, the four motivation types and self-determined motivation data were entered into the statistical software as independent variables for regression. Then, the data for each of the engagement constructs was entered one at a time as the dependent variable for testing.

R-squared values for each dependent variable were desired to be as close to 1.0 (100%) as possible, indicating a good fit by the regression, since this value reveals the percentage of variance in the dependent variable explained by the independent variables. In the case that the regression to a construct results in a low R-squared value, i.e., less than 5%, the regression would have been rejected; however, this did not occur. Otherwise, the interpretation of the R-squared value is for internal validity purposes, as described in section 3.2.2, to note the ability of the independent variables to explain the change in the dependent variable and the likelihood that other variables would assist with explaining the variance.

Beta values, which represent the slope of the regression line, obtained from the regression analysis were checked for statistical significance, to ensure minimal likelihood that there is actually no effect on the dependent variable by the independent variable. Beta values were expected to be positive and significant for all dependent variables except anxiety; further, Beta values from motivational needs to motivation types are expected to be significant and be highest to lowest from intrinsic motivation down the continuum to external regulation. Tables 3.3 and 3.4 illustrate these expectations for the regressions performed.
Table 3.4: Expected regression relationships from motivational needs to self-determined motivation.

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Dependent variable</th>
<th>Expected outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonomy, Competence,</td>
<td>Extrinsic Regulation</td>
<td>Strong negative relationship</td>
</tr>
<tr>
<td>and Relatedness</td>
<td>Introjected Regulation</td>
<td>Small negative relationship</td>
</tr>
<tr>
<td></td>
<td>Identified Regulation</td>
<td>Small positive relationship</td>
</tr>
<tr>
<td></td>
<td>Intrinsic Motivation</td>
<td>Strong positive relationship</td>
</tr>
<tr>
<td></td>
<td>Motivation Score (RAI)</td>
<td>Strong positive relationship</td>
</tr>
</tbody>
</table>

Table 3.5: Expected regression relationships from self-determined motivation to engagement constructs.

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Dependent variable</th>
<th>Expected outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivation Score (RAI)</td>
<td>Interest/enjoyment</td>
<td>Strong positive relationship</td>
</tr>
<tr>
<td></td>
<td>Value/usefulness</td>
<td>Strong positive relationship</td>
</tr>
<tr>
<td></td>
<td>Satisfaction</td>
<td>Strong positive relationship</td>
</tr>
<tr>
<td></td>
<td>Pressure/tension</td>
<td>Strong negative relationship</td>
</tr>
<tr>
<td></td>
<td>Choice of behavior</td>
<td>Strong positive relationship</td>
</tr>
<tr>
<td></td>
<td>Persistence</td>
<td>Strong positive relationship</td>
</tr>
<tr>
<td></td>
<td>Effort/importance</td>
<td>Strong positive relationship</td>
</tr>
<tr>
<td></td>
<td>Intent</td>
<td>Strong positive relationship</td>
</tr>
<tr>
<td></td>
<td>Concentration/attention</td>
<td>Strong positive relationship</td>
</tr>
</tbody>
</table>

So long as Beta values were statistically significant (p < 0.05) and reflected the expectations above, the results were considered a validation of the motivational model as proposed. Beyond this validation, the magnitude of Beta values were interpreted for their impact on the variables of interest in this study, namely, the engagement variables. That is, one aim of this work was to explain how motivation affects engagement in formative assessment, such that the motivation of engineering faculty can be addressed (e.g., through interventions) to increase positive engagement in formative assessment. As such, the discussion in chapter five of this study reviews the impact that increasing satisfaction of autonomy, competence, and relatedness has on engagement in formative assessment through self-determined motivation, and the impact that self-determined motivation has directly on engagement in formative assessment, by interpreting the magnitude of the Beta coefficients.

Finally, the basic assumptions of linear regression were evaluated for the data collected in this study, to ensure that the regression results could be interpreted as directly as possible. The
four assumptions evaluated were (and the section where the results are posted): 1) linearity of the relationship between dependent and independent variables (4.1.2.3.1), 2) no multicollinearity between the dependent variables (4.1.2.3.2), 3) independence of the regression residuals, or errors (4.1.2.3.3), and 4) homoscedasticity of regression residuals (4.1.2.3.4).

3.5.5 Data Analysis Summary

This section discussed analyses of qualitative feedback from the pilot study and quantitative data from the final instrument. The qualitative data from the pilot study was used to create the final survey instrument, and results are described in section 4.1.1. The quantitative data was first used for both validity and reliability purposes, and then to test the motivational model, and results are presented in section 4.1.2. The next chapter presents the results of the study for both the instrument development and answering the research questions.
Chapter 4: Results

This chapter first presents results of the instrument development, including both the pilot study and validity and reliability data from the final instrument implementation. Then, results from the implementation of the final instrument are provided, organized by research question.

4.1 Instrument Development

This section describes the results of the pilot study and the final survey implementation, which directly affected the development and finalization of the survey instrument.

4.1.1 Pilot Survey

As described in sections 3.2.2 and 3.5.1, a pilot study was performed as part of the instrument development process recommended by Colton and Covert (2007), where interviews were conducted with five engineering faculty. The sections below discuss results from the interviews and subsequent changes made to form the final instrument.

4.1.1.1 Pilot Interviews

After conducting the interviews and organizing the data for review, each survey item was examined individually. Of all the items, nineteen of the 43 items measuring engagement, five of the 16 items measuring motivation, and seven of the 20 items measuring motivational needs received feedback that indicated the items were unclear or misleading. Further, when interviewees were asked about the grouping of items into constructs, feedback for four of the constructs indicated serious concern for the clarity of their meaning or consistency of their meaning. As a result, nearly all the items of concern were reworded, except for two items that were eliminated, due to inability to reword them in a way that addressed the feedback adequately yet didn’t compromise the intended meaning of the item. Additionally, the instructions and
layout of the survey were slightly revised to improve clarity. These changes are described with
more specificity in the following section.

4.1.1.2 Changes to Survey

Three minor changes were made to the final survey instrument in general, based on pilot
testing results. First, in the instructions, one sentence was added to notify participants that they
could reasonably expect to finish the survey in approximately 15 minutes. Second, the
demographic questions were moved to the end of the survey with the intent of increasing the
sense of privacy participants have. Third, in the instructions for the engagement section, the
words “affective, behavioral, and cognitive” were removed, as interview participants stated the
words were confusing and unnecessary.

Some more significant changes were made to the survey items; changes were considered
insignificant if only minor alterations to one or two words were made. The constructs with items
significantly revised were (with number of items revised): value/usefulness (1), satisfaction (2),
anxiety (1 revised, 2 removed), choice of behavior (3), persistence (5), effort/importance (2), and
concentration/attention (3) from engagement; external regulation (2), introjected regulation (1),
and intrinsic motivation (2) from motivation; and autonomy (1), competence (1), and relatedness
(5) from motivational needs. The pilot and final survey instruments can be reviewed in
Appendices A and D, respectively, to observe these changes directly.

4.1.2 Final Survey

From the implementation of the final survey instrument, 223 responses were received
through the survey website. Of those 223 responses, 220 provided examples of formative
assessment for the first survey question, 201 answered at least some of the engagement
questions, 185 answered at least some of the motivation questions, 183 answered at least some of
the motivational needs questions, and 183 completed all or most of the entire survey. As such, these numbers represent the sample size for each set of statistical analyses used to analyze data, described below.

4.1.2.1 Examples of Formative Assessment

Since it was unknown how well engineering faculty understand the term “formative assessment” and its use, it was imperative to have a way to evaluate what respondents were thinking of as they marked each survey item. That is, if respondents were answering the questions while considering summative assessment, it would tell us very little about their motivation and engagement in formative assessment. As such, participants were asked to provide two examples of formative assessment either by formal name or by description for the first question on the final survey instrument.

The responses to these questions were evaluated with a simple coding approach. First, the responses were collected and roughly categorized to examine the scope of responses to be evaluated. Second, a list of accepted formative assessment techniques was collected from the literature (Adsit, 2002; Angelo & Cross, 1993). Third, all responses that listed one of these accepted techniques were awarded 10 points on the 10-point scoring scale. Fourth, all responses that listed a summative assessment technique were awarded 2 points and all irrelevant or blank responses were awarded 1 point on the 10-point scoring scale. Fifth, the remaining responses, as roughly categorized from step one, were evaluated against the working definition of formative assessment, as given in Section 2.1.1; see Table 4.1 below for a list of the descriptions and numerical scores assigned to the formative assessment examples that respondents provided. Sixth, and finally, the respondents were separated into three categories by reviewing their responses and scores in two passes. The first pass assigned the category of “green” if both of the
two example scores were 7 or greater, “yellow” if both were between 6 and 3, or “red” if both were 2 and lower. In the second pass, they were designated “green” if both examples provided strong evidence that the respondent understands formative assessment, “yellow” if their understanding was still questionable after reviewing both examples, and “red” if there was sufficient evidence that the respondent was not thinking about formative assessment, as described in Table 4.2.

Table 4.1: Scoring rubric for examples of formative assessment provided by participants.

<table>
<thead>
<tr>
<th>General description of examples that earn this score</th>
<th>Score of example</th>
<th>Detailed description of score</th>
<th>Sample of formative assessment examples provided by respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using a [minute paper, muddiest point, student survey, etc.] to inform teaching decisions for current classes</td>
<td>10</td>
<td>Uses recognized technique designed for measuring student learning, data is collected and analyzed, and then used to inform teaching in progress</td>
<td>“One-minute papers. At the beginning or at the end of class students take one minute to answer a question related to the class. I use this info to check students’ prior knowledge or any misconceptions they may have developed after the lesson”</td>
</tr>
<tr>
<td>[minute paper, muddiest point, student survey, etc.]</td>
<td>9</td>
<td>Lists a recognized formative assessment technique but doesn't clarify how the data is analyzed or used. With knowledge of such techniques, it may be implied that the data will be used in a formative manner</td>
<td>“Muddiest point.”; “I-clickers.”; “Background knowledge survey.”</td>
</tr>
<tr>
<td>Using [highly likely measure of student learning] to inform teaching decisions for current classes</td>
<td>8</td>
<td>Describes technique that is very likely to measure student learning, data is collected and analyzed, and then used to inform teaching in progress.</td>
<td>“Posing problems to the class that need use of the concept more than once to check if they got it”</td>
</tr>
<tr>
<td>Using [tests, quizzes, homeworks] to inform teaching decisions for current classes</td>
<td>7</td>
<td>Doesn't use technique specifically designed for measuring student learning, but description indicates that feedback obtained is still used to inform teaching while in progress</td>
<td>“Short homework due every lecture, review homework scores and thought processes of students, students present homework solution at start of class”</td>
</tr>
<tr>
<td>(not used)</td>
<td>6</td>
<td>(not used)</td>
<td>(not used)</td>
</tr>
<tr>
<td>Collect data from [possible measure of student learning] but no clarification or indication of use</td>
<td>5</td>
<td>Probability of qualifying as an assessment is good, but it is unknown if results are used to inform teaching in progress</td>
<td>“End-of-lecture questions to be completed prior to the next class”; “extra problems that will not be graded, posted in the Web.”</td>
</tr>
<tr>
<td>Collect data from [test, quizzes, homeworks] but no indication of use</td>
<td>4</td>
<td>Not a technique designed for measuring student learning, indication that data is collected but no description of use</td>
<td>“Evaluation of homework performance”; “on-line quizzes on Blackboard”</td>
</tr>
<tr>
<td>[test, quizzes, homeworks]</td>
<td>3</td>
<td>Not a technique designed for measuring student learning, no indication of data collection or use</td>
<td>“weekly homework assignments”; “quizzes”</td>
</tr>
</tbody>
</table>
Summative assessment 2 Designed for measuring student learning, but clearly not for use in adjusting teaching practices while in progress “tests”; “Evaluate reports using standard grading worksheet on ABET criteria performance.”

No answer, or unrelated to assessment 1 Minimal category “Pop quizzes when I think they aren't reading”; “Asking questions of students about where in U.S. they have traveled”

<table>
<thead>
<tr>
<th>Pass</th>
<th>Description</th>
<th>Categorization</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>Both example scores ≥ 7</td>
<td>Green</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Both example scores ≤ 6 and ≥ 3</td>
<td>Yellow</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Both example scores ≤ 2</td>
<td>Red</td>
<td>10</td>
</tr>
<tr>
<td>Two</td>
<td>At least one example score ≥ 7 and other example did not shed doubt on respondents’ understanding of formative assessment</td>
<td>Green</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>At least one example score ≥ 3 but neither example showed respondent had strong understanding of formative assessment</td>
<td>Yellow</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>At least one example score ≤ 2and other example did not make a case for respondents’ understanding of formative assessment</td>
<td>Red</td>
<td>18</td>
</tr>
</tbody>
</table>

After this categorization was completed, only the 149 responses categorized as “green” (71% of those who provided examples) were used for analysis in this study including reliability testing and regression analysis, as these were the only responses for which a strong argument could be made that respondents were thinking of formative assessment, as it was defined in this study. Furthermore, since these respondents were a subset of the sample, this subset was the population for which inferences from this study extend to, considered to be those U.S. engineering faculty who understand formative assessment.

4.1.2.2 Reliability

Reliability of the items that constitute a construct was evaluated by calculating the Cronbach’s alpha score for the items that constituted each construct, and then by removing questions that would appreciably increase the alpha value. The final constitution of all
constructs – except for concentration/attention – were able to be modified such that the alpha scores were of acceptable values; concentration/attention was eliminated as a construct due to the unacceptably low alpha value, even after removing questions. The original alpha, deleted questions, final alpha, and final constitution of all constructs from the survey instrument are shown in Tables 4.3, 4.4, and 4.5; Appendix E contains an updated survey instrument with the final constitution of the constructs, for use in future studies. All analysis from this point forward utilized only the data from the items comprising the final constitution of constructs and from respondents whose formative assessment examples were categorized as “green,” as described in the section above.

Table 4.3: Reliability analysis results for motivational needs constructs, including subjective ratings as described in section 3.5.2; (R) indicates that the item was reverse-scored.

<table>
<thead>
<tr>
<th>Construct:</th>
<th>Original alpha</th>
<th>Deleted items</th>
<th>Final alpha (and rating)</th>
<th>Final construct items; construct score is average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonomy</td>
<td>0.770</td>
<td></td>
<td>0.770 (acceptable)</td>
<td>3(R), 6, 8, 14(R), 17, 19(R), 20</td>
</tr>
<tr>
<td>Competence</td>
<td>0.798</td>
<td>12</td>
<td>0.815 (good)</td>
<td>1, 4, 7(R), 10, 15(R)</td>
</tr>
<tr>
<td>Relatedness</td>
<td>0.601</td>
<td>18, 16</td>
<td>0.721 (acceptable)</td>
<td>2, 5, 9, 11, 13</td>
</tr>
</tbody>
</table>

Table 4.4: Reliability analysis results for self-determined motivation constructs; (R) indicates that the item was reverse scored.

<table>
<thead>
<tr>
<th>Construct:</th>
<th>Original alpha</th>
<th>Deleted items</th>
<th>Final alpha (and rating)</th>
<th>Final construct items; construct score is average</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Regulation</td>
<td>0.835</td>
<td></td>
<td>0.835 (good)</td>
<td>2, 7, 11, 14</td>
</tr>
<tr>
<td>Introjected Regulation</td>
<td>0.822</td>
<td></td>
<td>0.822 (good)</td>
<td>1, 4, 6, 13</td>
</tr>
<tr>
<td>Identified Regulation</td>
<td>0.898</td>
<td></td>
<td>0.900 (excellent)</td>
<td>5, 9, 12, 16</td>
</tr>
<tr>
<td>Intrinsic Motivation</td>
<td>0.875</td>
<td></td>
<td>0.875 (good)</td>
<td>3, 8, 10, 15</td>
</tr>
</tbody>
</table>

Table 4.5: Reliability analysis results for engagement constructs; (R) indicates that the item was reverse scored.

<table>
<thead>
<tr>
<th>Construct:</th>
<th>Original alpha</th>
<th>Deleted items</th>
<th>Final alpha (and rating)</th>
<th>Final construct items; construct score is average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest/Enjoyment</td>
<td>0.785</td>
<td></td>
<td>0.785 (acceptable)</td>
<td>1, 16, 23(R), 31</td>
</tr>
<tr>
<td>Value/Usefulness</td>
<td>0.928</td>
<td></td>
<td>0.928 (excellent)</td>
<td>2, 15, 20, 24, 30, 33, 38</td>
</tr>
<tr>
<td>Satisfaction</td>
<td>0.843</td>
<td></td>
<td>0.843 (good)</td>
<td>7, 26, 34</td>
</tr>
<tr>
<td>Anxiety</td>
<td>0.833</td>
<td></td>
<td>0.833 (good)</td>
<td>3, 14, 22(R), 32(R)</td>
</tr>
<tr>
<td>Choice of Behavior</td>
<td>0.545</td>
<td>18</td>
<td>0.720 (acceptable)</td>
<td>9, 21(R), 27, 41</td>
</tr>
<tr>
<td>Persistence</td>
<td>0.700</td>
<td>19</td>
<td>0.726 (acceptable)</td>
<td>5, 11, 13, 29, 36</td>
</tr>
</tbody>
</table>
4.1.2.3 Assumptions of Regression

Before performing simple or multiple linear regressions, it is important to evaluate certain assumptions made about the data used in the regressions. Failure to satisfy these assumptions may require a transformation of the data, the use of non-parametric or non-linear analyses, or that interpretation of the regression results to include special consideration for the failed assumptions. In this study, only minor concerns were identified in the data used for regression, none of which required any of the above scenarios. Due to limitations of the statistical software, the abbreviations listed in Table 4.6 appear where necessary in the data, tables, and figures below.

Table 4.6: Abbreviations used in statistical software.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEED</td>
<td>Motivational need</td>
</tr>
<tr>
<td>SDT</td>
<td>Self-Determination Theory</td>
</tr>
<tr>
<td>ABC</td>
<td>Affective, Behavioral, and Cognitive engagement</td>
</tr>
<tr>
<td>NEED_Auto</td>
<td>Autonomy</td>
</tr>
<tr>
<td>NEED_Comp</td>
<td>Competence</td>
</tr>
<tr>
<td>NEED_Rel</td>
<td>Relatedness</td>
</tr>
<tr>
<td>SDT_Ext</td>
<td>External regulation</td>
</tr>
<tr>
<td>SDT_Itj</td>
<td>Introjected regulation</td>
</tr>
<tr>
<td>SDT_Idn</td>
<td>Identified regulation</td>
</tr>
<tr>
<td>SDT_Itr</td>
<td>Intrinsic motivation</td>
</tr>
<tr>
<td>SDT_RAI</td>
<td>Self-determined motivation (RAI)</td>
</tr>
<tr>
<td>ABC_Int_Enj</td>
<td>Interest/Enjoyment</td>
</tr>
<tr>
<td>ABC_Val_Use</td>
<td>Value/Usefulness</td>
</tr>
<tr>
<td>ABC_Sat</td>
<td>Satisfaction</td>
</tr>
<tr>
<td>ABC_Anx</td>
<td>Anxiety</td>
</tr>
<tr>
<td>ABC_COB</td>
<td>Choice of Behavior</td>
</tr>
</tbody>
</table>
4.1.2.3.1 Linearity of Regression Relationships

One assumption of least-squares linear regression analysis is that the dependent and independent variables are linearly related. Evaluation of this assumption was performed by examining the scatterplots of dependent and independent variables, for a visual confirmation of linearity. In this study’s data, no problems with linearity between dependent and independent variables of the regressions were identified. The scatterplots are presented in Figures 4.1, 4.2, and 4.3.

![Figure 4.1: Scatterplots for data relationships between motivational needs and self-determined motivation](image-url)
Figure 4.2: Scatterplots for data relationships between self-determined motivation and some engagement constructs.
4.1.2.3.2 No Multicollinearity

Least-squares linear regression also relies on the assumption that the dependent variables of a regression are not highly correlated to each other. To evaluate this, the Pearson correlations for the dependent variables to each other were reviewed, to ensure they are less than 0.7. To evaluate this study’s data, correlation tables for all of the dependent variables were reviewed, as shown in Table 4.7. In the upper left portion of the table, the correlation values between the motivation variables are all less than 0.7, indicating that there is little to no concern for multicollinearity. As well, the lower right portion of the table shows that the correlation values for the motivational needs are all well below 0.7, showing that there is no concern for multicollinearity.
Table 4.7: Correlations between dependent variables of regressions.

<table>
<thead>
<tr>
<th></th>
<th>SDT_Ext</th>
<th>SDT_Itj</th>
<th>SDT_Idn</th>
<th>SDT_Itr</th>
<th>NEED_Auto</th>
<th>NEED_Comp</th>
<th>NEED_Rel</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDT_Ext</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDT_Itj</td>
<td>0.6274</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDT_Idn</td>
<td>-0.2177</td>
<td>0.0034</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDT_Itr</td>
<td>0.0431</td>
<td>0.1876</td>
<td>0.5225</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEED_Auto</td>
<td>-0.5527</td>
<td>-0.4165</td>
<td>0.3876</td>
<td>0.1654</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEED_Comp</td>
<td>-0.1281</td>
<td>-0.0189</td>
<td>0.2586</td>
<td>0.4244</td>
<td>0.2879</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>NEED_Rel</td>
<td>0.0672</td>
<td>0.2233</td>
<td>0.6329</td>
<td>0.6526</td>
<td>0.1585</td>
<td>0.4837</td>
<td>1.000</td>
</tr>
</tbody>
</table>

4.1.2.3.3 Independence of Errors

Least-squares linear regression also relies on all of the residuals (errors) to be independent of each other. This can be evaluated by looking for clumps of data points in plots of residual values versus predicted values. A few examples of residuals are shown in Table 4.8; all of the regression residuals are shown in Appendix F. No problems were found with the assumption that errors are independent for the data collected in this study.

Table 4.8: Residual plots for each regression performed.

Residuals of regression from autonomy, competence, and relatedness to composite self-determination score (RAI).

Residuals of regression from autonomy, competence, and relatedness to external regulation.
Residuals of regression from autonomy, competence, and relatedness to introjected regulation.

Residuals of regression from autonomy, competence, and relatedness to identified regulation.

4.1.2.3.4 Homoscedasticity

Another assumption of least-squares linear regression is that the variance is relatively constant over all data points, a condition known as homoscedasticity. A common method for measuring homoscedasticity is to examine plots of regression residuals versus predicted values, and to look for a normal distribution of points with respect to the horizontal axis. Again reviewing the plots in Table 4.8 and Appendix F, all show relatively good homoscedasticity in the residuals’ variance, demonstrated by the cloud-like formation of data points.

It is important to note that some residuals plots show odd patterns of data, which could be mistaken for heteroscedasticity. What is actually seen are patterns that emerge from either statistically insignificant regressions (e.g., see the external regulation to intent regression, the last plot displayed above) or the data being limited by the discrete nature of the response choices of 1 to 7 (e.g., see the autonomy, competence, and relatedness to external regulation regressions, in the top row of plots above).

4.2 Research Questions

This section will present results obtained from analysis of the final survey data, organized by research question. Note that this study was intended to provide preliminary data about the
motivation and engagement of subset of U.S. engineering faculty who understand formative assessment.

4.2.1 Research Question 1

The first research question was: What are current levels of the following: 1) affective, behavioral, and cognitive engagement; 2) self-determined motivation; and 3) satisfaction of motivational needs regarding formative assessment for the subset of engineering faculty studied? To answer this question, the mean, standard deviation, and 95% confidence intervals of construct scores were calculated, and are presented in Table 4.9. If readers wish to extend interpretations of construct scores via individual item means and standard deviations, they can be found in Appendix G.

Table 4.9: Construct sample means, standard deviations, and confidence intervals resulting from final survey data collection.

<table>
<thead>
<tr>
<th>Construct Score</th>
<th>Item Content (range 1-7 unless otherwise specified)</th>
<th>M (95% CI)</th>
<th>SD (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonomy</td>
<td>Avg. of Needs Q’s: 3(R), 6, 8, 14(R), 17, 19(R), 20</td>
<td>5.79 (5.63, 5.94)</td>
<td>0.89 (0.79, 1.02)</td>
</tr>
<tr>
<td>Competence</td>
<td>Avg. of Needs Q’s: 1, 4, 7(R), 10, 15(R)</td>
<td>4.78 (4.59, 4.97)</td>
<td>1.09 (0.97, 1.24)</td>
</tr>
<tr>
<td>Relatedness</td>
<td>Avg. of Needs Q’s: 2, 5, 9, 11, 13</td>
<td>4.39 (4.20, 4.58)</td>
<td>1.06 (0.94, 1.21)</td>
</tr>
<tr>
<td>Intrinsic Motivation</td>
<td>Avg. of Motivation Q’s: 3, 8, 10, 15</td>
<td>3.64 (3.37, 3.91)</td>
<td>1.52 (1.35, 1.74)</td>
</tr>
<tr>
<td>Identified Regulation</td>
<td>Avg. of Motivation Q’s: 5, 9, 12, 16</td>
<td>5.82 (5.63, 6.00)</td>
<td>1.04 (0.93, 1.19)</td>
</tr>
<tr>
<td>Introjected Regulation</td>
<td>Avg. of Motivation Q’s: 1, 4, 6, 13</td>
<td>2.27 (2.07, 2.47)</td>
<td>1.13 (1.01, 1.29)</td>
</tr>
<tr>
<td>External Regulation</td>
<td>Avg. of Motivation Q’s: 2, 7, 11, 14</td>
<td>1.81 (1.62, 2.00)</td>
<td>1.05 (0.93, 1.20)</td>
</tr>
<tr>
<td>Relative Autonomy Index</td>
<td>2 * Intrinsic Motivation + Identified Motivation – Introjected Regulation – 2 * External Regulation (range: -18 to +18)</td>
<td>7.22 (6.39, 8.04)</td>
<td>4.63 (4.12, 5.29)</td>
</tr>
<tr>
<td>Interest / Enjoyment</td>
<td>Avg. of Engagement Q’s: 1, 16, 23(R), 31</td>
<td>4.29 (4.08, 4.50)</td>
<td>1.18 (1.05, 1.34)</td>
</tr>
<tr>
<td>Value / Usefulness</td>
<td>Avg. of Engagement Q’s: 2, 15, 20, 24, 30, 33, 38</td>
<td>5.53 (5.35, 5.70)</td>
<td>0.97 (0.86, 1.10)</td>
</tr>
<tr>
<td>Satisfaction</td>
<td>Avg. of Engagement Q’s: 7, 26, 34</td>
<td>5.13 (4.94, 5.33)</td>
<td>1.12 (0.99, 1.28)</td>
</tr>
<tr>
<td>Anxiety</td>
<td>Avg. of Engagement Q’s: 3, 14, 22(R), 32(R)</td>
<td>3.11 (2.87, 3.36)</td>
<td>1.37 (1.22, 1.57)</td>
</tr>
<tr>
<td>Choice of</td>
<td>Avg. of Engagement Q’s: 9, 21(R), 27, 41</td>
<td>4.15 (3.95, 4.34)</td>
<td>1.11 (0.98, 1.26)</td>
</tr>
</tbody>
</table>
Table 1: Motivational Needs Assessments

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Avg. of Engagement Q’s:</th>
<th>Avg. of Engagement Q’s:</th>
<th>Avg. of Engagement Q’s:</th>
<th>Avg. of Engagement Q’s:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistence</td>
<td>5, 11, 13, 29, 36</td>
<td>5.73 (5.61, 5.86)</td>
<td>5.73 (5.61, 5.86)</td>
<td>5.73 (5.61, 5.86)</td>
</tr>
<tr>
<td>Effort / Importance</td>
<td>12, 25, 37, 39</td>
<td>5.11 (4.93, 5.29)</td>
<td>5.11 (4.93, 5.29)</td>
<td>5.11 (4.93, 5.29)</td>
</tr>
<tr>
<td>Intent</td>
<td>8, 17, 28, 40</td>
<td>5.24 (5.04, 5.45)</td>
<td>5.24 (5.04, 5.45)</td>
<td>5.24 (5.04, 5.45)</td>
</tr>
</tbody>
</table>

The construct scores for motivational needs of autonomy, competence, and relatedness show that, on the average, the subset of engineering faculty feel these needs are satisfied somewhere between “somewhat true (4)” and “very true (7).” Mean autonomy satisfaction was rated highest ($\bar{x} = 5.79$) and with the lowest standard deviation of the three ($s = 0.89$), meaning 68% of respondents (+1 and -1 standard deviation) received autonomy scores between 4.90 and 6.68. The mean competence satisfaction score was a full point lower ($\bar{x} = 4.78$, $s = 1.09$), indicating 68% of respondents scored between 3.69 and 5.87. Mean relatedness scores ($\bar{x} = 4.39$, $s = 1.06$) were just below competence, resulting in 68% of respondents scoring in the range of 3.33 to 5.48.

Toward answering the research question, preliminary results show that, on the average, the subset of engineering faculty studied consider it to be “somewhat true” to “very true” that they are autonomous in their choice to use formative assessment, competent in their ability to perform formative assessment, and experiencing relatedness with other faculty and/or their students when using formative assessment. A standard deviation of about one point in a six point range (1 to 7) indicates, as above, that nearly 68% of respondents had autonomy, competence, and relatedness scores within ±17% of each other and near or above the “somewhat true” level. Together, this provides support for the conclusion being “somewhat true” to “very true” that the subset of engineering faculty studied feel their needs of autonomy, competence, and relatedness relevant to formative assessment are satisfied. As well, the 95% confidence interval of the mean provides a range in which there is only a 5% chance that this sample’s range does not contain the true value of the mean (μ, the population mean). In other words, if many
more samples were taken of 149 engineering faculty who understand formative assessment, 95% of them would contain the true mean; there is only a 5% chance that this is not one of them. Therefore, since all values in the range of the 95% confidence intervals listed in Table 4.9 for autonomy, competence, and relatedness support the same conclusion as above, the ability of the inferences above to be generalized to the population of study is well-supported, statistically speaking. The same can be said of the confidence intervals of the standard deviation, which, even in the worst-case scenario, do not invalidate the inferences above.

Scores for self-determined motivation constructs showed distinct patterns of how the subset of engineering faculty experience motivation to perform formative assessment. External regulation scored lowest, on average ($\bar{x} = 1.81$, $s = 1.05$), indicating that 68% of respondents scored between 1.00, the minimum score that was designated “not very true (1),” and 2.86. Introjected regulation had the next lowest score ($\bar{x} = 2.27$, $s = 1.13$), with 68% of respondents scoring between 1.14 and 3.40. Intrinsic motivation scored notably higher ($\bar{x} = 3.64$, $s = 1.52$), but still only second highest, with 68% of scores in the wide range of 2.12 to 5.16. Identified regulation had the highest average score ($\bar{x} = 5.82$, $s = 1.04$), with 68% of scores between 4.78 and 6.86. Additionally, the composite score, the average Relative Autonomy Index (RAI; $\bar{x} = 7.22$, $s = 4.63$), was a good reflection of the average scores for the separate motivation constructs (i.e., intrinsic motivation, etc.); using the RAI weighting formula (section 3.5.3) with the separate average scores, the RAI comes out to 7.21. This indicates that the statistical distributions were similar and that neither the means nor the composite score conceal patterns in the response data.

These preliminary results show that the subset of engineering faculty, on the average, experience identified regulation and autonomous (self-determined) motivation to perform formative assessment. The high average score for identified regulation indicates that these
engineering faculty identify formative assessment with the duty of teaching, as can be seen in the wording of survey items in Appendix D. Beyond this identified regulation, results show it is “somewhat true” that these faculty experience some intrinsic motivation to do formative assessment, but that experience is widely-varying across faculty. Further, with relatively low scores on both introjected and external regulation, it is “not very true” that the subset of engineering faculty use formative assessment because they would feel guilty if they didn’t or have external pressure to do so, respectively. In terms of self-determined motivation (via the RAI), results show that most of these faculty have an internalized drive of moderate intensity (7.21 on 18-point scale) to perform formative assessment. The conclusion that the subset of engineering faculty studied largely perform formative assessment for internalized and identified reasons is therefore well-supported, and further supported by the 95% confidence intervals that vary little from the sample mean and standard deviation.

Mean construct scores for engagement in formative assessment indicate positive results, in terms of expectations: all seven positive aspects of engagement had mean scores above 4 (“somewhat true” on the survey response scale) and the one negative aspect of engagement had a mean score below 4. In the affective category, the subset of faculty studied rated their perspective of formative assessment as interesting and enjoyable to be “somewhat true” (\(x = 4.29, s = 1.18\)), on average, and 68% of respondents had scores between 3.11 and 5.47. For the value and usefulness of formative assessment, the subset of engineering faculty scored it between “somewhat true” and “very true” (\(x = 5.53, s = 0.97\)), on average, with 68% of scores between 4.56 and 6.50. These faculty also reported their experience of satisfaction from use of formative assessment to be between “somewhat true” and “very true” (\(x = 5.13, s = 1.12\)), with 68% scoring between 4.01 and 6.25. In terms of anxiety, the negative affective construct, these
faculty reported that they feel anxious about performing formative assessment to be between “somewhat true” and “not very true” ($\bar{x} = 3.11$, $s = 1.37$), on average, with 68% of response scores falling in a wide range from 1.74 to 4.48. In the behavioral category, faculty scored formative assessment being a priority (choice of behavior) to be “somewhat true” ($\bar{x} = 4.15$, $s = 1.11$), with 68% of responses spanning 3.04 to 5.26. The subset of faculty reported that it is between “somewhat true” and “very true” that they are persistent when formative assessment presents challenges ($\bar{x} = 5.73$, $s = 0.69$), with 68% of responses in the range of 5.04 and 6.42. The effort and importance that these engineering faculty reported was also between “somewhat true” and “very true” ($\bar{x} = 5.11$, $s = 1.01$), with 68% of responses falling in that range, specifically between 4.10 and 6.12. Finally, these faculty reported that their intent to use formative assessment in the future was between “somewhat true” and “very true” ($\bar{x} = 5.24$, $s = 1.17$), on average, and 68% of those responses still in that range as they scored between 4.07 and 6.41.

These preliminary results show that, for most aspects of affective and behavioral engagement, it is largely true that these faculty experience positive engagement in formative assessment. While they don’t rate it as a top priority or as their first choice of behaviors, they do see value in it and find formative assessment useful to assist in their teaching and in students’ learning. If things don’t go well, these faculty report that they generally persist rather than dropping the effort, and experience very little anxiety whether things go well or not. They put effort into performing assessment, and intend to continue in the future. Finally, the subset of engineering faculty studied report that they experience satisfaction in the outcomes of their formative assessment efforts, and find it somewhat interesting and enjoyable, as well. Based on
relatively narrow ranges in 95% confidence intervals, it appears that these conclusions hold for
the general population of engineering faculty who understand formative assessment.

To explore the effects of demographic variables, ANOVA tests used to compare the
means of each of these constructs for different sexes, ethnicities, academic ranks, institutions,
institution categorizations, engineering disciplines, and experiences with teaching; however, no
such differences were found. Part of this was due to the low sample sizes for each category; e.g.,
the greatest number of responses received from any one institution was 23. Further, even when
re-categorized to create larger sample sizes for comparison, no significant differences were
found; e.g., number of classes taught was re-grouped into those greater than and those less than
16 courses yet still no significant differences were found.

4.2.2 Research Question 2

The second research question was: Does satisfaction of autonomy, competence, and
relatedness needs predict self-determined motivation for formative assessment in the subset of
engineering faculty studied? Additionally, the hypothesis tested in answering this question was:
Multiple regression coefficients of autonomy, competence, and relatedness to self-determined
motivation will be positive and significant.

The first prediction of self-determined motivation, represented by the composite RAI
score, using all three predictors of autonomy, competence, and relatedness resulted in a
statistically-insignificant coefficient for competence ($p = 0.270$). In response, competence was
removed as a predictor and the regression again conducted; the resulting model coefficients held
statistical significance, and are presented in Table 4.10, which shows the statistical results of the
different models with and without competence as a predictor.
Table 4.10: Results from regression from motivational needs to self-determined motivation.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Relative Autonomy Index</th>
<th></th>
<th></th>
<th>Model R²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>Sig. (p)</td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td></td>
<td>2.42</td>
<td><0.0001</td>
<td>47.0%</td>
</tr>
<tr>
<td>Autonomy</td>
<td></td>
<td>2.52</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Competence</td>
<td></td>
<td>0.370</td>
<td>0.270</td>
<td></td>
</tr>
<tr>
<td>Relatedness</td>
<td></td>
<td>1.62</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
<td>2.52</td>
<td><0.0001</td>
<td>46.4%</td>
</tr>
<tr>
<td>Autonomy</td>
<td></td>
<td>1.62</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Relatedness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As such, it is concluded that the proposed model (and therefore, the hypothesis) does not hold for the predictor of competence according to the preliminary data collected here. Notwithstanding, autonomy and relatedness are significant predictors of self-determined motivation and explain nearly 50% of the variance in responses from engineering faculty. The magnitude of these predictors, however, should be interpreted after normalization, since the independent variables are on a scale of 1 to 7 and the dependent variable (RAI) is on a scale of -18 to +18. Therefore, after normalization³, the autonomy coefficient is 0.42 and relatedness is 0.30. This indicates that, if relatedness is held constant for a given engineering faculty member, a 1-point increase in their autonomy score would amount to a 0.42-point increase in self-determined motivation, on the normalized scale. Similarly, if autonomy was held constant, a 1-point increase in their relatedness score would produce a 0.30-point increase in self-determined motivation, again on the normalized scale. If the satisfaction of both needs were raised by 1 point, then self-determined motivation should increase by 0.72 points, again on the normalized scale. This shows both statistically-significant and practically-meaningful impact of the motivational needs of autonomy and relatedness on self-determined motivation for formative assessment.

³ The normalization equation is: Coeff(norm) = Coeff/6, and an RAI value can be normalized to the 1 to 7 scale with: RAI(norm) = (RAI/6) + 4.
When the regressions were re-evaluated by demographic variables, only one variable had a significant impact on the predictor variables: sex. That is, the regression of autonomy, competence, and relatedness to self-determined motivation produced different significant predictors when separated by male and female responses, as compared to the combined data presented above. When separated by sex, the first regression of self-determined motivation using all three predictors of autonomy, competence, and relatedness resulted in a statistically-insignificant coefficient for either competence or relatedness. In response, each was removed one at a time and the regression again conducted; the resulting model coefficients held statistical significance, and are presented in Table 4.11, along with the original model with competence included.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Relative Autonomy Index - Male</th>
<th>B</th>
<th>Sig. (p)</th>
<th>Model R²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autonomy</td>
<td>2.59</td>
<td><0.0001</td>
<td></td>
<td>48.7%</td>
</tr>
<tr>
<td>Competence</td>
<td>-0.246</td>
<td>0.5589</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relatedness</td>
<td>1.78</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autonomy</td>
<td>2.53</td>
<td><0.0001</td>
<td></td>
<td>48.5%</td>
</tr>
<tr>
<td>Relatedness</td>
<td>1.70</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Relative Autonomy Index - Female</th>
<th>B</th>
<th>Sig. (p)</th>
<th>Model R²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autonomy</td>
<td>2.01</td>
<td>0.0365</td>
<td></td>
<td>49.6%</td>
</tr>
<tr>
<td>Competence</td>
<td>1.45</td>
<td>0.0457</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relatedness</td>
<td>0.89</td>
<td>0.2686</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autonomy</td>
<td>2.04</td>
<td>0.0339</td>
<td></td>
<td>47.6%</td>
</tr>
<tr>
<td>Competence</td>
<td>1.95</td>
<td>0.0011</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These preliminary results show that two different models may be necessary to represent the motivation of the subset of male and female engineering faculty, with regard to formative
assessment. For the males, autonomy and relatedness are significant predictors of self-
determined motivation, which is the same as the model above that included both sexes; when
normalized, the coefficient for autonomy is 0.42 and relatedness is 0.28. For the females,
relatedness is not significant, but competence is, meaning that for female engineering faculty,
autonomy and competence are significant predictors of self-determined motivation for formative
assessment; the normalized coefficients are 0.34 for autonomy and 0.33 for competence.

The regressions from autonomy, competence, and relatedness to external regulation,
introjected regulation, identified regulation, and intrinsic motivation also found competence to be
an insignificant predictor; as well, autonomy was insignificant for predicting intrinsic
motivation. Results of these regressions are shown in Tables 4.12, 4.13, 4.14, and 4.15.

Table 4.12: Results of regression from motivational needs to external regulation.

<table>
<thead>
<tr>
<th>Variable</th>
<th>External Regulation</th>
<th></th>
<th>Model R²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Sig. (p)</td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td></td>
<td></td>
<td>33.2%</td>
</tr>
<tr>
<td>Autonomy</td>
<td>-0.669</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Competence</td>
<td>-0.052</td>
<td>0.5439</td>
<td></td>
</tr>
<tr>
<td>Relatedness</td>
<td>0.181</td>
<td>0.0340</td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
<td></td>
<td>33.0%</td>
</tr>
<tr>
<td>Autonomy</td>
<td>-0.682</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Relatedness</td>
<td>0.157</td>
<td>0.0372</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.13: Results of regression from motivational needs to introjected regulation.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Introjected Regulation</th>
<th></th>
<th>Model R²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Sig. (p)</td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td></td>
<td></td>
<td>26.1%</td>
</tr>
<tr>
<td>Autonomy</td>
<td>-0.578</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Competence</td>
<td>-0.042</td>
<td>0.6640</td>
<td></td>
</tr>
<tr>
<td>Relatedness</td>
<td>0.336</td>
<td>0.0006</td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
<td></td>
<td>26.0%</td>
</tr>
<tr>
<td>Autonomy</td>
<td>-0.590</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Relatedness</td>
<td>0.317</td>
<td>0.0003</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.14: Results of regression from motivational needs to identified regulation.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Identified Regulation</th>
<th></th>
<th>Model R²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Sig. (p)</td>
<td></td>
</tr>
<tr>
<td>Autonomy</td>
<td>0.384</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Competence</td>
<td>-0.146</td>
<td>0.0470</td>
<td>50.2%</td>
</tr>
<tr>
<td>Relatedness</td>
<td>0.644</td>
<td><0.0001</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.15: Results of regression from motivational needs to intrinsic motivation.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Intrinsic Motivation</th>
<th></th>
<th>Model R²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Sig. (p)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autonomy</td>
<td>0.060</td>
<td>0.6257</td>
<td></td>
</tr>
<tr>
<td>Competence</td>
<td>0.186</td>
<td>0.1018</td>
<td>44.2%</td>
</tr>
<tr>
<td>Relatedness</td>
<td>0.837</td>
<td><0.0001</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Intrinsic Motivation</th>
<th></th>
<th>Model R²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Sig. (p)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autonomy</td>
<td>0.109</td>
<td>0.3628</td>
<td>43.0%</td>
</tr>
<tr>
<td>Relatedness</td>
<td>0.922</td>
<td><0.0001</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Intrinsic Motivation</th>
<th></th>
<th>Model R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relatedness</td>
<td>0.937</td>
<td><0.0001</td>
<td>42.6%</td>
</tr>
</tbody>
</table>

4.2.3 Research Question 3

The third research question was: Does self-determined motivation for formative assessment predict positive interest/enjoyment, value/usefulness, satisfaction, choice of behavior, persistence, effort/importance, intent, or concentration/attention, or negative anxiety in the subset of engineering faculty studied? Additionally, the hypothesis put forth to answer this question was: Regression coefficients of self-determined motivation to engagement constructs of interest/enjoyment, value/usefulness, satisfaction, choice of behavior, persistence, effort/importance, intent, or concentration/attention will be positive and significant or of anxiety will be negative and significant.
The regressions from RAI to each of the engagement variables were conducted and showed all of the coefficients to be significant and of the polarity predicted; Table 4.16 shows the results.

Table 4.16: Results of regressions from self-determined motivation to engagement.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Interest/Enjoyment</th>
<th>Value/Usefulness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Sig. (p)</td>
</tr>
<tr>
<td>Relative Autonomy Index (RAI)</td>
<td>0.172</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Satisfaction</th>
<th>Anxiety</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Sig. (p)</td>
</tr>
<tr>
<td>Relative Autonomy Index (RAI)</td>
<td>0.158</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Choice of Behavior</th>
<th>Persistence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Sig. (p)</td>
</tr>
<tr>
<td>Relative Autonomy Index (RAI)</td>
<td>0.125</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Effort / Importance</th>
<th>Intent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Sig. (p)</td>
</tr>
<tr>
<td>Relative Autonomy Index (RAI)</td>
<td>0.132</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Again, coefficients represented the relationship between two different scales, and hence needed to be normalized for interpretation; in this case, however, the coefficients were from a larger scale to a smaller scale, and hence were multiplied by six to normalize. As such, the normalized coefficients, in increasing order, were: -0.62 for anxiety, 0.44 for persistence, 0.75 for choice of behavior, 0.79 for effort/importance, 0.82 for value/usefulness, 0.89 for intent, 0.95 for satisfaction, and 1.03 for interest/enjoyment. Therefore, even for the smallest coefficient (persistence), a 1-point change in the self-determined motivation score (RAI) amounts to a 0.44 point change in the engagement score; all other coefficients are larger in magnitude. This
indicates that the regression coefficients are not only statistically significant, but have a meaningful impact on the relationship.

These preliminary results show that the model (and therefore, the hypothesis) holds for the relationship between self-determined motivation and all of the affective and behavioral engagement constructs tested. As expected, self-determined motivation predicted positive engagement in interest/enjoyment, value/usefulness, satisfaction, choice of behavior, persistence, effort/importance, and intent, and negative engagement in anxiety. However, a different percentage of the variance is explained by the regression for each of the constructs and is quite low in some cases (e.g., anxiety at 12.0%), indicating that other factors may have a significant impact on an individual faculty member’s engagement. While these factors are currently unknown, it is worthwhile to note that self-determined motivation does not explain the majority of variance in the engagement constructs. Notwithstanding, the conclusion still holds that self-determined motivation for formative assessment can significantly predict engagement in formative assessment for the subset of engineering faculty studied and the hypothesis for RQ3 is satisfied.

For the four separate constructs of motivation, regressions were also performed to the engagement constructs; results are shown in Table 4.17.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Interest/Enjoyment</th>
<th>Value/Usefulness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Sig. (p)</td>
</tr>
<tr>
<td>Intrinsic Motivation</td>
<td>0.551</td>
<td><0.0001</td>
</tr>
<tr>
<td>Identified Regulation</td>
<td>0.630</td>
<td><0.0001</td>
</tr>
<tr>
<td>Introjected Regulation</td>
<td>-0.03</td>
<td>0.7668</td>
</tr>
<tr>
<td>External Regulation</td>
<td>-0.187</td>
<td>0.0640</td>
</tr>
<tr>
<td>Variable</td>
<td>Satisfaction</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Sig. (p)</td>
</tr>
<tr>
<td>Intrinsic Motivation</td>
<td>0.474</td>
<td><0.0001</td>
</tr>
<tr>
<td>Identified Regulation</td>
<td>0.733</td>
<td><0.0001</td>
</tr>
<tr>
<td>Introjected Regulation</td>
<td>0.03</td>
<td>0.7420</td>
</tr>
<tr>
<td>External Regulation</td>
<td>-0.194</td>
<td>0.4250</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Choice of Behavior</th>
<th></th>
<th>Persistence</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Sig. (p)</td>
<td>R²</td>
<td>B</td>
</tr>
<tr>
<td>Intrinsic Motivation</td>
<td>0.463</td>
<td><0.0001</td>
<td>40.7%</td>
<td>0.139</td>
</tr>
<tr>
<td>Identified Regulation</td>
<td>0.603</td>
<td><0.0001</td>
<td>32.3%</td>
<td>0.393</td>
</tr>
<tr>
<td>Introjected Regulation</td>
<td>0.102</td>
<td>0.2490</td>
<td>1.1%</td>
<td>-0.115</td>
</tr>
<tr>
<td>External Regulation</td>
<td>-0.009</td>
<td>0.9280</td>
<td>0.0%</td>
<td>-0.168</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Effort / Importance</th>
<th></th>
<th>Intent</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Sig. (p)</td>
<td>R²</td>
<td>B</td>
</tr>
<tr>
<td>Intrinsic Motivation</td>
<td>0.416</td>
<td><0.0001</td>
<td>39.2%</td>
<td>0.490</td>
</tr>
<tr>
<td>Identified Regulation</td>
<td>0.620</td>
<td><0.0001</td>
<td>40.9%</td>
<td>0.745</td>
</tr>
<tr>
<td>Introjected Regulation</td>
<td>0.010</td>
<td>0.9080</td>
<td>0.1%</td>
<td>-0.02</td>
</tr>
<tr>
<td>External Regulation</td>
<td>-0.110</td>
<td>0.2060</td>
<td>1.3%</td>
<td>-0.036</td>
</tr>
</tbody>
</table>
Chapter 5: Discussion

Since there hadn’t been any studies to date of engineering faculty’s perspectives or engagement regarding formative assessment, this study collected data to provide a starting point by exploring the motivational needs, self-determined motivation, and engagement for the subset of the U.S. engineering faculty population who understand formative assessment. As well, a motivational model was proposed and a preliminary validation conducted that presents the predictive abilities of motivational needs to self-determined motivation, and of self-determined motivation to engagement. Discussion of results follows for each of the three categories individually – motivational needs, self-determined motivation, and engagement.

5.1 Motivational Needs

Faculty were surveyed on how they experienced autonomy, competence, and relatedness with regards to formative assessment. Results showed that on average, the subset of engineering faculty studied consider it to be “somewhat true” to “very true” that they are autonomous in their decisions to use formative assessment, are competent in their ability to perform formative assessment, and experience relatedness with other faculty and/or their students when using formative assessment. With a standard deviation of about one point in a six point range (1-to-7), this indicates that nearly 68% of respondents had autonomy, competence, and relatedness scores near or above the “somewhat true” level. Together, this provides support for the conclusion being “somewhat true” to “very true” that the subset of engineering faculty studied feel their needs of autonomy, competence, and relatedness relevant to formative assessment are satisfied. As well, confidence intervals suggest that if more samples of engineering faculty were taken that nearly all of those samples should support the same conclusion.
5.1.1 Autonomy

With their autonomy score in the upper quarter of the scale, it was concluded that the subset of faculty studied believe they are largely have internalized control of their decision to use – or not to use – formative assessment. This is an expected result, as faculty typically have a high degree of freedom in administering and managing their classes and most formative assessment takes place in the classroom. As well, most of the mandates in assessment deal with the summative type, as discussed in chapter two, so the high autonomy score for formative assessment also indicates that faculty are not blurring the lines between formative and summative assessment when they consider their autonomy. Therefore, results indicate that autonomy is not an area of high concern for these faculty, and that little could be done to improve upon it. However, care should be taken not to impair autonomy, either, as it was found to be a significant predictor of self-determined motivation for both male and female engineering faculty. Specifically, a 1-point drop in autonomy (assuming other needs remain constant) would decrease self-determined motivation by 2.52 points; considering the average score for self-determined motivation (RAI) was 7.22, it is apparent that a relatively small infringement of autonomy could have serious consequences for motivation.

Beyond the positive effects of faculty’s autonomy on their own motivation, support for faculty’s autonomy has been shown to affect how they treat their students, as faculty’s perception of being controlled leads to controlling behaviors toward their students (Ryan and Brown, 2005, Roth et al, 2007, and Pelletier et al, 2002, as cited in Niemiec & Ryan, 2009). Self-determination theory posits that this occurs in two ways: by hindering the enthusiasm and creativity that more autonomous motivation would produce, and external demands crowd out the more inspired and effective autonomous teaching methods (Niemiec & Ryan, 2009). Niemiec and Ryan (2009) conclude their discussion of this with a statement that talks directly to issues of
formative and summative assessment: “Thus, to the extent that administrators and policy makers fail to consider the motivation of both teachers and students alike, and instead rely on controlling contingencies to produce ‘accountability’, the more all those involved in the learning process will suffer decrements in motivation and learning outcomes” (p. 140). Therefore, this study’s findings of high autonomy in the subset of engineering faculty show positive results for the faculty and their students, alike.

5.1.2 Competence

Results of faculty competence data suggest that they have some confidence in their effectiveness with formative assessment, but not a great deal. Survey items that comprised this construct asked for faculty’s beliefs about how good they are at assessing their students’ learning, but in no way attempted to measure their actual ability. As such, the results indicate that the subset of faculty studied are slightly doubting their ability to do formative assessment, even though no one was evaluating it; this can be interpreted in a few ways. From one angle, it could indicate that faculty have a good understanding of what formative assessment is and report that they know they are not experts at using it; considering that these data came from faculty whose examples of formative assessment were accepted, this seems like a reasonable conclusion. If accurate, this indicates that faculty development efforts could have a significant impact on competence. From another angle, these results could signal low faculty confidence in their understanding of what formative assessment actually is. By this perspective, the moderate competence scores indicate that faculty believe they are doing a good job assessing their students, but aren’t entirely confident since they aren’t sure what all comprises it. Again, these respondents’ data were used because they gave valid examples of formative assessment, but this does not mean that faculty know they have a correct understanding of what it is; in fact, a few
participants’ comments indicated just that. If this is the case, improving faculty understanding of what formative assessment is, through any means, would result in an immediate change in their competence, with some increasing when they realize they do use formative assessment and do it well, and others exactly the opposite. Also, while no data in this study can attest to this, it is also possible that faculty’s confidence in their teaching abilities could influence their perceived competence for formative assessment; this would be tested by measuring social factors that influence satisfaction of motivational needs (i.e., competence), as demonstrated in Vallerand’s Hierarchal Model. Overall, though it is already fairly good, there appears to be some opportunity to improve upon engineering faculty’s perceived competence in formative assessment.

In the prediction of self-determined motivation, competence was found to be insignificant. However, when data were separated by sex, it was found that competence was a significant predictor of self-determined motivation in women, but not men. Further discussion of this can be found in section 5.1.4.

5.1.3 Relatedness

Faculty reported their perceived relatedness to be even lower than their competence, on average, indicating that they feel formative assessment has only a moderate impact on their connections with other faculty members or with their students. With no previous knowledge of faculty’s perspectives of relatedness regarding formative assessment, it was difficult to surmise what outcomes should be expected. As such, interpretation of this result was complemented with a review of responses to the individual relatedness survey items, which produced interesting results. For example, faculty reported higher average scores on needs question 9 than the other items, indicating that they feel formative assessment keeps them in touch with their students and/or their students’ learning. On the other hand, when asked about how formative assessment
connected them with other educators in items 16 and 18 (which were removed from the construct due to low reliability), scores were in the lower quarter of the scale, implying that formative assessment is not highly valued amongst faculty. Therefore, there is evidence that the concept of relatedness may need to be separated into different groups of people that faculty may feel connections to, which are students and other faculty in this case. Further, from questions 2 and 11 it appears that faculty have no particular desire to share results of assessment with other faculty unprovoked, but if it was brought up, they would be more willing to share, even if assessment results were not positive. Overall, this review of faculty’s perceived relatedness shows that there is still a lot to be understood about how connections with others materialize with regard to formative assessment, which is necessary to address before attempting to change relatedness scores.

In the prediction of self-determined motivation, relatedness was found to be significant. Specifically, a one-point increase in relatedness led to a 1.79 point increase in self-determined motivation. While not as high of an impact as autonomy, given the weaker understanding of how this need is perceived by faculty, there is risk of affecting self-determined motivation through unintentional changes in perceived relatedness; this presents an important motive for future research on relatedness in formative assessment. Additionally, when data were separated by sex, it was found that relatedness was a significant predictor of self-determined motivation in men, but not women. Further discussion of this can be found in section 5.1.4.

Since relatedness is not yet well-understood in the context of formative assessment, additional insight from the literature is added here, and since a connection was made in this study between the motivation for teaching and motivation for formative assessment (identified regulation), the literature on teaching can provide insight, as well. For example, a study of
survey responses by the SUCCEED Coalition found that the more teaching workshops faculty had attended, the more they used interactive pedagogies and group activities in their classes and the less they simply lectured (Brawner, Felder, Allen, & Brent, 2001). While speculative, it can be reasonably argued that these types of interactions could increase relatedness experienced between faculty and students, as compared to the typical lecture class. Further, the detailed report from the SUCCEED study (Brawner, Felder, Allen, & Brent, 2002) showed that just over ¾ of engineering faculty members took assessment data of some kind beyond the required end-of-course evaluations, showing a possible opportunity for a connection of assessment and relatedness. Further, nearly half of all engineering faculty discuss teaching with colleagues or graduate students less than 3 times per semester, but teaching workshops increased that frequency significantly (Brawner et al., 2002). Another study conducted in 18 Scottish schools found that introducing formative assessment led to more self-directed learning by students and increased conceptual understanding of formative assessment by faculty. It also led to increased use of learner-centered pedagogies, whereas direct interaction with students was greater and formative assessment was conducted at a more personal and direct level (Kirton et al., 2007). Additionally, Olds, Moskal, and Miller (Barbra M. Olds et al., 2005) suggest collaborations between engineering professors and educational specialists as a means to improve understanding and effectiveness of assessment efforts.

Relatedness for formative assessment may be built through various approaches, such as those that enhance community and an environment of open discussion. At schools like James Madison University and Appalachian State University, for example, there are dedicated assessment days every term where both individual and collective assessment activities take place (Swing, 2001). Positive relationships with students and colleagues may also facilitate the
reception of constructive feedback about assessment efforts, and in away such that competence can be reinforced (Richer et al., 2002). As well, group dynamics, which can improve relatedness, can be effective if well-managed by a facilitator or leader, by taking care to establish clear values and common goals, and working as a group to refine those goals and taking advantage of existing expertise and interests (Bird, 2001). However, collaborations and discussions amongst faculty that may increase relatedness may be inhibited by pre-existing and unrelated negative relationships (Richer et al., 2002). Nonetheless, people tend to internalize the values and actions of others who they want to be connected to (Niemiec & Ryan, 2009), which suggests a possible connection between the motivational need of relatedness and influences of cultures present in academia. Therefore, it is also worth considering the impact of such cultures on the satisfaction of motivational needs like relatedness, which subsequently affects the motivation and engagement of engineering faculty, at least for males; Utschig (2006) suggests many ways that a culture could be built that supports assessment. Altogether, this review of studies related to the concept of relatedness show that a great deal more research is necessary to fully understand the meaning and impact of the construct in formative assessment, perhaps via a qualitative or ethnographic study.

5.1.4 Sex Differences in Motivational Needs

Using the preliminary data from this study, the ability of competence and relatedness to predict self-determined motivation were found to differ for male and female engineering faculty, at least in the subset studied who understand formative assessment. That is, according to results here, competence is a significant predictor of self-determined motivation for female but not male faculty, and relatedness is significant for males but not females. Specifically, if competence satisfaction is changed for females, it will impact their self-determined motivation at a rate of
1.95 points per one point of competence (assuming other needs are held constant). For male faculty, a 1-point change in relatedness predicts a 1.70-point change in self-determined motivation (again, holding other needs constant). In a personal communication with one author of self-determination theory, Dr. Richard Ryan (January 18, 2011), he stated that he has never seen reliable, sex-typed differences in motivational needs in the related literature, but was unsure if it may be different for a task such as formative assessment since it is highly identified with teaching. As such, two approaches were explored to better understand this result.

First, before speculating about the significance of the result, it was important to rule out possible statistical or bias issues that may have affected the regression and given a false result. Two angles were evaluated: statistical variance and bias from ceiling or floor effects. The concern with statistical variance was that if, for example, male faculty had very low variance in their competence scores, it would offer practical explanations but also may have altered the regression results. However, after comparing the sample standard deviations for male and female scores of relatedness, competence, and self-determined motivation (RAI), the only significant difference found at the p<0.05 level, as shown in Table 5.1, was between males and females for competence. This may have helped to explain the sex differences for competence, but would not explain them for relatedness. Therefore, there does not appear to be a bias in the regression results due to variance.

4 The standard deviation is simply the square root of the variance, and was used here because it is easily comparable to other standard deviations reported throughout the dissertation.
Table 5.1: Standard deviations for competence, relatedness, and self-determined motivation scores by sex, with p-values for F-test comparison of the standard deviations.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Competence</td>
<td>4.83</td>
<td>0.97</td>
</tr>
<tr>
<td>Relatedness</td>
<td>4.32</td>
<td>1.08</td>
</tr>
<tr>
<td>Relative Autonomy Index</td>
<td>6.99</td>
<td>4.46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F-test comparison of SD Variables</th>
<th>Sig. (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competence Male vs. Competence Female</td>
<td><0.01</td>
</tr>
<tr>
<td>Relatedness Male vs. Relatedness Female</td>
<td>0.52</td>
</tr>
<tr>
<td>RAI Male vs. RAI Female</td>
<td>0.18</td>
</tr>
<tr>
<td>Competence Male vs. Relatedness Male</td>
<td>0.13</td>
</tr>
<tr>
<td>Competence Female vs. Relatedness Female</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Bias from floor and ceiling effects was also possible in this study, since survey responses were limited to the range of one to seven on each individual item. However, mean scores of competence, relatedness, and self-determined motivation for male and female faculty were well within the bounds of the item response range, with almost two standard deviations between the mean and the scale maximum for both competence and relatedness, and even more for self-determined motivation. Therefore, it seems unlikely that any floor or ceiling effects were experienced in these regressions.

Second, since the possibilities reviewed above didn’t provide explanation for the differences in competence and relatedness by sex, some speculation is provided here to attempt to understand its significance. The most plausible explanation for this result considers Occam’s Razor, in that it is simply possible that male engineering faculty do not concern themselves highly with their ability to do formative assessment effectively, and hence it does not have a significant impact on their motivation, and likewise that feelings of connectedness with regard to formative assessment may not be as important to female engineering faculty, and hence do not have a significant impact on their motivation. That is, other factors may be influencing self-
determined motivation scores, such as the context of teaching or the situations where assessments are actually used; this seems likely considering Vallerand’s Hierarchal Model predicts this inter-level relationship (see section 2.4) and only about half of the regression variance was explained by the variables of this study (see section 4.2.2). As well, the literature shows some support for these possibilities. For example, Landino and Owen (1988) found that female faculty members had lower self-efficacy for certain duties of faculty. Further, in a review of the literature, Malicky (2003) saw that self-efficacy was consistently lower for female engineering students versus male students, and others have corroborated these findings with focus on specific aspects of these differences (e.g., Mary Besterfield-Sacre, Moreno, Shuman, & Atman, 2001). As well, interpersonal relationships have been emphasized for female faculty members (Hutchison-Green, Follman, & Bodner, 2008; Landino & Owen, 1988), altogether supporting the possibility that there are external factors influencing the results of this study. Overall, further research would be necessary to draw more definitive conclusions.

5.2 Self-Determined Motivation

In this work, faculty’s perspectives were also sought on what the basis of their motivation is to perform formative assessment. The results show that the subset of engineering faculty who understand formative assessment, on average, experience identified regulation and autonomous (self-determined) motivation to perform formative assessment. The high score for identified regulation indicates that engineering faculty identify formative assessment with the duty of teaching, as was measured by the survey items for the construct (see Appendix D). Beyond identified regulation, results show it is “somewhat true” that faculty experience some intrinsic motivation to do formative assessment, but that experience is widely-varying across faculty. Additionally, low average scores on both introjected and external regulation show it is “not very
true” that engineering faculty use formative assessment because they would feel guilt if they didn’t or have external pressure to do so, respectively. In terms of self-determined motivation (the composite score, RAI), results show that most faculty have an internalized drive of moderate intensity (7.21 on the 18-point scale) to perform formative assessment. The conclusion that the subset of engineering faculty studied largely perform formative assessment for internalized and identified reasons is therefore well-supported, and further supported by the confidence intervals of these constructs, which vary little.

5.2.1 Identified Regulation

The most pertinent inference from these results is that these faculty’s motivation to do assessment is most strongly rooted in their motivation to teach effectively. This inference is highly supported by research, as Vallerand (1997) found conclusively that motivation from each level of his Hierarchal Model affects the levels above and below it. Recall that this study of formative assessment does not qualify directly for any of Vallerand’s three levels of motivation (global, contextual, and situational), but rather exists between the contextual and situational levels. Therefore, it is not unexpected to find support for the notion that motivation for formative assessment is driven by motivation for the context of education and situations of teaching. This inference, however, has important implications. First, this suggests that changes in motivation for formative assessment may be attained by changes in motivation for teaching and learning, in addition to changes in faculty satisfaction of autonomy, competence, and relatedness. This result is encouraging for positive changes, but it also indicates that decreases in faculty motivation for education and teaching may lead to decreases in motivation to use formative assessment; future work would need to establish these relationships more definitively. For example, given the current struggle of engineering programs to secure research funding and
the debate over whether such demands take away from motivation for teaching (e.g., see S. R. Turns, 1991), significant challenges are likely when trying to increase motivation for formative assessment through teaching.

5.2.2 Intrinsic Motivation

Other than identified regulation, intrinsic motivation to do formative assessment showed some impact. It may also be surmised that if identified regulation decreased for any reason, the self-determined motivation to use formative assessment may actually not fall too drastically, since a degree of intrinsic motivation is present (recall that intrinsic motivation has double the positive weight of identified regulation in determining self-determined motivation). Central to self-determination theory is the idea that motivation is dictated by the salience of internal and external regulators (Deci & Ryan, 2000), and hence, if identified regulation decreased, it is possible that faculty’s intrinsic motivation may increase; however, this is currently only speculation, and further research would be necessary to make definitive inferences. If, however, by any means possible, the intrinsic motivation of engineering faculty to perform formative assessment were to increase, self-determination theory posits that many positive benefits would be attained; some of these benefits were tested in this study as engagement constructs, and are discussed in section 5.3. As well, studies have found that teaching is generally intrinsically motivating (e.g., Deci et al., 1996), so the influence of motivation for teaching on motivation for formative assessment is a plausible expectation.

5.2.3 External and Introjected Regulation

With regard to external and introjected regulation, faculty reported that external factors had relatively low salience in their motivation to do formative assessment. Introjected factors could become more salient if, for example, pressure to utilize formative assessment increased
from other educators or from students. This type of pressure would come from the culture, in essence, as it would not come from superiors but rather those who are equals or inferiors engaged in the academic community. This introjected regulation is not, according to self-determination theory, an optimal type of motivation; however, if experienced, self-determination theory posits that competence and relatedness needs satisfaction may increase over time, which would assist with internalization of the motivation (Deci & Ryan, 2000) and increase engagement in formative assessment, which would subsequently decrease the necessity for the cultural pressure. On the other hand, if superiors began requiring that faculty use formative assessment, external regulation would likely become more salient. If external regulation became dominant, it is theorized that the most negative engagement in formative assessment would be experienced (Deci & Ryan, 2000), and research has shown that this control would likely impair any internal motivation present to do formative assessment (e.g., see Assor, Kaplan, Kanat-Maymon, & Roth, 2005).

Internalization of external motivation has been shown to operate by support of autonomy, competence, and relatedness. Autonomy can be improved through actions such as minimizing the salience of external pressures and coercion, maximizing the voice that individuals have in decisions, and providing rationale for activities engaged in or suggested. Competence can be supported by setting expectations at optimally challenging levels and providing feedback that aims towards mastery. Relatedness can be supported by demonstrating caring and respect (Niemiec & Ryan, 2009). In terms of assessment, Wallin (2003) offers some insight based on her survey of college presidents:

5 The author wishes to note that while he does not see students as “inferior,” some faculty may, and the traditional hierarchy in education has students below faculty.
First, let’s look at what administration should not do. Limiting faculty to rigid “carrot and stick” faculty development programs will not produce any long term change in faculty skills or attitudes. Extrinsic motivation will produce, at best, short term compliance. At worst, it will enervate the faculty and lead to apathy and loss of interest and enthusiasm. (p. 328)

Behaviors motivated by external regulation are poorly maintained once the external enforcement is removed, and usually are not explored more deeply than is required, so relatively shallow learning occurs. Only one step removed from this external regulation is introjected regulation, where the behavior is engaged to avoid guilt or shame or to feel pride or boost ego (Niemiec & Ryan, 2009). Therefore, the results of this study are further supported by the literature, and they appear to be the ideal status for formative assessment.

5.2.4 Self-Determined Motivation

The positive self-determination score showed that the subset of engineering faculty studied engage in formative assessment for internalized reasons. This denotes that the motivation is self-determined, as opposed to controlled, though only 7.23 points up the 18-point scale; as discussed above, there are opportunities to increase the internal forms of motivation for formative assessment, and as such, this score could be improved. Increases in self-determined motivation were expected to have positive impact on engagement in formative assessment, and regression results from validation of the motivational model supported this outcome. This impact is explored in more detail below, alongside the discussion of the status quo of engagement in formative assessment.

While this variable has basic practical meaning, as just discussed, it is largely used as a mediating variable for regression analysis. Therefore, very little extension of the results of self-
determined motivation scores are discussed here, beyond what has already been done, except for a few quick notes. First, it is worth noting that a study of 132 female Jewish school teachers in Israel produced very similar scores for self-determined motivation for teaching as this study found in engineering faculty motivation for formative assessment: a mean score of 7.31 and standard deviation of 3.08 in their study (Roth et al., 2007), compared to a mean of 7.23 and standard deviation of 4.63 in this study. There was no interpretation of this result in their study, but the similarity in scoring gives a general indication that this study’s score is reasonable. Second, Niemiec and Ryan (2009) note some of the impacts of positive self-determination scores, which they term self-regulation, in students:

Grolnick et al. (1991) found that elementary students who reported higher autonomous self-regulation for learning were rated by their teachers as higher on both academic achievement and adjustment in the classroom. Niemiec et al. (2006) found that high-school students who reported higher autonomous self-regulation for attending college reported higher wellbeing (vitality, life satisfaction) and lower ill-being (depression, externalizing problems). Black and Deci (2000) found that college students who reported higher autonomous self-regulation for learning organic chemistry reported higher perceived competence and interest/enjoyment for the course material, as well as lower anxiety. (p. 138)

5.3 Engagement in Formative Assessment

In this work, faculty input was sought on how they experienced various affective and behavioral aspects of engagement in formative assessment (cognitive aspects were also sought, but the measures were not reliable). Results show that, for most aspects of affective and behavioral engagement, it is largely true that the subset of engineering faculty studied experience
positive engagement in formative assessment. While they don’t rate it as a top priority or as their first choice of behaviors, they do see value in it and find it useful to assist their teaching and students’ learning. If things go wrong, these faculty report that they persist rather than dropping the effort and experience very little anxiety either way. They put significant effort into performing assessment, consider it important, and intend to continue in the future. Finally, engineering faculty report that they experience satisfaction in the outcomes of their efforts, and find it somewhat interesting and enjoyable, as well. Based on relatively narrow ranges in confidence intervals, it appears that these conclusions hold well, even given the small chance that the true means were not captured here.

From the results of the motivational model validation, regressions showed that a 1-point increase in self-determined motivation is predicted to produce a positive impact on the engagement variables with normalized magnitudes ranging from 0.44 to 1.03. The affective constructs (interest/enjoyment, value/usefulness, anxiety, and satisfaction) were impacted the most, with coefficient magnitudes falling in the range of 0.62 to 1.03, and the behavioral constructs (choice of behavior, effort/importance, persistence, and intent) slightly less, in the range of 0.44 to 0.79.

The smallest impact of changes in self-determined motivation scores would be on engineering faculty persistence, and with 75% of variance in persistence left unexplained by motivation, it may be difficult to reliably improve on the already-high dedication faculty show when assessment doesn’t go as planned through motivation. Reducing anxiety isn’t much easier, as self-determined motivation has a slightly larger impact on it than persistence but explains less than one-eighth of the variance seen in anxiety scores. Faculty prioritization of formative assessment over other tasks (i.e., choice of behavior) could be improved by ¾ point per
normalized point of self-determined motivation, but again 75% of the variance is unexplained, leaving room for other unexplored variables to impact prioritization, too. The effort and importance that faculty assign to formative assessment is quite dependent on self-determined motivation, with over a third of variance explained by the relationship and almost 0.8 points per normalized point impact, but scores show this is already high for faculty, on average. The value that faculty see in formative assessment and the usefulness of it toward their goals are impacted by self-determined motivation at about the same rate, with over 40% of the variance is explained; this strong relationship is an expected result, as identified regulation and value/usefulness are highly related conceptually. Intent to use formative assessment in the future also is greatly impacted by changes in self-determined motivation, which affirms one of the most direct implications of motivation: positive motivation indicates intent to engage in the future. Somewhat unexpectedly, the satisfaction that faculty experience by using assessment to improve their teaching is highly impacted by their self-determined motivation; while this was expected to be positively affected, it was not anticipated that motivation would have such a high impact on the satisfaction experienced. Finally, self-determined motivation was determined to have the highest influence on the interest and enjoyment faculty experience with formative assessment, with greater than a 1:1 ratio of influence on interest/enjoyment and almost half of the variance explained by motivation alone; this indicates that the more internalized or self-determined (intrinsic) the motivation, the more interesting and enjoyable formative assessment is, which affirms one of the key influences of intrinsic motivation.

These results align with expectations put forth in this study, but also reflect the expectations put forth in Vallerand’s 1997 book chapter that presented the model, and match the
findings of Miserandino (1996), which was a similar study to this one and that also tested constructs from all three categories of engagement variables.
Chapter 6: Conclusions

If faculty professional development is to be a growth-enhancing experience, it needs to be driven by an internal search for meaning, improved self-esteem and performance, and more satisfying relationships. (Wallin, 2003, p. 320)

Overall, the results of this study produced many expected conclusions but also some unexpected ones, in both desirable and undesirable ways. First, a study of current levels of engagement in, motivation for, and satisfaction of motivational needs by formative assessment largely produced expected outcomes. Results showed that engineering faculty who understand formative assessment largely experience positive engagement in formative assessment, with little anxiety, moderate interest, enjoyment, and prioritization of it, and a relatively high degree of effort, importance, intent, satisfaction, value, usefulness, and persistence. As well, these engineering faculty reported that their motivation to use formative assessment is highly related to the fact that they identify such assessment as important to teaching and student learning, and to a smaller degree that they find some intrinsic motivation in it, but that they have almost no feelings of guilt from not doing it or external demands to use it. In terms of motivational needs, engineering faculty reported that they feel largely autonomous in their decision to use formative assessment, somewhat competent in their ability to use it, and somewhat related to others through it.

Second, it was unexpected, but desirable, that the motivational model tested revealed a strong and significant ability for all of the aspects of engagement, listed in the paragraph above, in formative assessment to be predicted by engineering faculty’s self-determined motivation. In this study, all of the aspects of engagement prescribed in Vallerand’s Hierarchal Model (1997) were included for testing, but it was not expected that all of them would be significantly
predicted by motivation. This result showed that self-determined motivation is a strong and reliable measure to use when trying to measure, predict, or improve engagement in formative assessment by engineering faculty who understand formative assessment.

Third, it was unexpected, and undesirable, that the motivational needs of competence and relatedness were found to not predict self-determined motivation in male and female engineering faculty, respectively. According to self-determination theory, the motivation of all people is affected by their satisfaction of the three needs of autonomy, competence, and relatedness, and Vallerand’s Hierarchal Model says that these needs affect motivation for all levels of motivation – global, contextual, situational, and those in between. Therefore, it was undesirable to find that two of the needs’ ability to predict motivation were dependent on sex, but there is the possibility that this will happen at different levels of motivation.

Fourth, it was unexpected, but desirable, to find that a large percentage of all engineering faculty sampled were able to provide valid examples of what formative assessment is, when requested to do so. The first question on the survey instrument developed in this study asked faculty to provide two examples; data were used to extract respondents who provided valid examples, such that conclusions of this study were not drawn from respondents who were thinking of summative assessment or otherwise did not know what formative assessment is. Since there had been no previous work that explored engineering faculty’s understanding of formative assessment, it was encouraging to find that over 70% of respondents to this survey showed evidence of understanding. Nonetheless, it should not be overlooked that about 90% of faculty contacted did not respond to the survey, and hence self-selection bias may have played a part in this result.
With the discoveries of this research, the knowledge-base of engineering education has been expanded in the areas of motivation theory, engineering faculty motivation, and formative assessment. The instrument developed in this study can be used to repeat this study on different populations, or by engineering colleges or departments to explore the motivation for and engagement in formative assessment. Further, the preliminary knowledge of the status quo of engineering faculty motivation and engagement in formative assessment attained here can be used, for example, as a comparison point for engineering colleges or departments who implement the survey instrument. Subsequently, colleges and departments who wish to improve the motivation for and engagement in formative assessment, perhaps based on a comparison to the national sample reported here, can look to the motivational model validated in this study to inform their interventions and policies.

Notwithstanding the positive and informative results of this study, a better understanding of certain aspects of the variables and outcomes would be advantageous. For example, future work could look to enhance the understanding of these results by conducting interviews focused on certain groups. Since differences in the salience of certain motivational needs were found for male and female engineering faculty, interviews of these groups may provide useful explanations of the reasons for these differences. As well, contrasting the data from interviews of faculty who score near the average results to those who score at the extremes may provide explanations for this variance, to better inform interventions and policy changes. Knowledge from such interviews are important to supplement the work here, as engineering faculty were treated collectively for this large-scale, descriptive study but motivation theory clearly shows that all individuals are unique in their motivation. Other areas for potential future work include: attaining a better understanding of the motivational need relatedness in formative assessment,
broadening the study to explore confounding factors, exploring more of the postulates of Vallerand’s Hierarchical Model with regards to formative assessment, and attaining a broader sample of engineering faculty examples of formative assessment to better gauge understanding.
References

McKeachie, W. J. (1996). Wanting to be a Good Teacher: What Have We Learned to Date? In J. L. Bess (Ed.), *Teaching Well & Liking It: Motivating Faculty To Teach Effectively*.

Appendix A: Pilot Instrument
Page 1. IRB Notice

INFORMED CONSENT FORM FOR SOCIAL SCIENCE RESEARCH
Virginia Tech
Title of Project: Motivation for Assessment in Engineering

Principal Investigator: Dr. Richard Goff, Assistant Professor of Engineering Education, Virginia Tech, richgoff@vt.edu Phone: (540) 231-9537

Co-Investigator: Ken Stanton, PhD Candidate in Engineering Education, Virginia Tech, kstanton@vt.edu

1. Purpose of the Study: The purpose of this study is to better understand perspectives of engineering faculty toward formative assessment. We expect to improve understanding of how faculty engage in formative assessment and use results to improve how departments address assessment of student learning. Results will be published in aggregate in a PhD dissertation and possibly in conference or journal articles.

2. Procedures: Participating faculty will complete an online survey consisting of three sections of questions about formative assessment. Most questions ask participants to rate statements to indicate agreement.

3. Discomforts and Risks: Possible discomfort may be experienced if questions relate to topics that participants find difficult to discuss. However, we expect that this occurrence to be highly unlikely due to the general nature of the questions, as they pertain to professional opinions and activities. There are no risks in participating in this research beyond the aforementioned and those experienced in everyday life.

4. Benefits: Participants get to express their opinions and interests regarding formative assessment. Results may apply to research studies aimed at improving engineering education.

5. Duration: Participants are expected to donate no more than one half hour of their time for the survey.

6. Statement of Confidentiality: Survey data collected will not include names or other personally identifying information beyond demographic the information requested. The online survey system will be used to track completion of the survey by invitees, only. Only investigators listed on the IRB paperwork for this project will have access to the data, which will be deleted no later than 2015.

7. Right to Ask Questions: You may ask questions about this research by contacting Dr. Richard Goff at (540) 231-9537 or richgoff@vt.edu and Ken Stanton at kstanton@vt.edu. In addition, you may contact Dr. David Moore, Assistant Vice Provost for Research Compliance at Virginia Tech at (540) 231-4991 for questions about your rights as a research participant.

8. Compensation: There is no additional compensation offered for participating in the study.

9. Voluntary Participation: Your decision is participate in this research is voluntary. You can stop at any time.

You may print this form for your records and future reference.

Participant’s Permission

You must be 18 years or older to take part in this research study. Clicking "next" to enter and completion of this survey implies that you agree to take part in this research study and accept the information outlined above. If you do not wish to participate, simply close this window.

Page 2. Perspectives on Formative Assessment of Student Learning
Purpose:

This survey is designed to measure engineering educators’ perspectives on formative assessment of student learning, as defined below, and the ways in which they engage in it. Results will inform engineering education researchers, administrators, and faculty development personnel on educators’ views of formative assessment and how these views lead to engagement in it.

Instructions:

Please complete all questions on this survey. You will not be personally identifiable. Your responses are anonymous and will not be available to anyone other than the researchers.

Please answer questions by considering your current perspectives, unless asked otherwise. That is, please do not indicate what you think you should do but rather what you currently do.

In this study, formative assessment is considered from your perspective – that is, the things you do and think about measuring and improving student learning. You are not asked what your students think of assessment or how well they are doing. The focus here is on the attempts and efforts you make when teaching undergraduate engineering classes in four specific steps of formative assessment:

- Using approaches that are intended/designed to measure student learning
- Collecting data from assessments for analysis of student learning
- Evaluating the data collected to make inferences about student learning
- Applying results of evaluation to improve teaching, student learning, and future assessment efforts

This is different from summative assessment and accreditation in that:

- Formative assessment is used to adjust teaching “on the fly” and before summative testing
- Summative assessment and accreditation are typically requirements for educators to use
- Formative assessment is often left to the educator to manage

Please provide two example formative assessment techniques that you feel fit the description above (you may use formal names or describe the techniques if you don’t know what they are called):

1.
2.

Page 3. Demographics

Please tell us a little about your background:

Sex:
Male
Female

Ethnicity:
African-American
Asian-American
Caucasian
Foreign National
Hispanic
Native American
Other (please specify)

My primary college or university is:
Virginia Tech
Other (please specify)
The undergraduate engineering discipline I primarily teach in is:
Aerospace
Architectural
Biological and Agricultural
Biomedical
Chemical
Civil
Civil/Environmental
Computer Science
Electrical/Computer
Engineering (general)
Engineering Management
Environmental
Industrial/Manufacturing
Mechanical
Metallurgical & Materials
Mining
Nuclear
Petroleum
Other (please specify)

Number of classes I have taught (total, graduate and undergraduate):
0 - 5
6 - 10
11 - 15
16+

Academic Rank:
Part-time instructor / adjunct
Full-time, non-tenure track instructor / professor
Assistant professor (tenure track)
Associate professor
Full professor
Other (only if very different from above)

Page 4. Engagement in Formative Assessment

Remember that this is anonymous and no one will know how you responded to the questions.

The following questions pertain to your affective, behavioral, and cognitive engagement in formative assessment. Please indicate how true each of the following statement is for you given your experiences doing assessment or your plans to do assessment. If you are not currently using and do not plan to use formative assessment, please answer the questions the best you can – your answers will still be helpful.

Not very true (1) 2 3 Somewhat true (4) 5 6 Very true (7)

1. I enjoy doing formative assessment very much.
2. I think that doing formative assessment is useful for improving my teaching.
3. I am sometimes anxious while evaluating assessment results.
4. I don't put much energy into finding other ways to assess my students.
5. I really pay attention when my students express concerns about what they’re learning.
6. When I'm evaluating student assessments, I find time goes by really slowly
7. I get a sense of fulfillment from applying assessment results to improve my teaching.
8. I intend to learn better ways to apply assessment results to improve my teaching.
9. Sometimes I find myself doing assessment when I should be doing other things.
10. When I come to an assessment issue I can't solve right away, I tend to concentrate on solving it.
Remember that this is anonymous and no one will know how you responded to the questions.

The following questions pertain to your affective, behavioral, and cognitive engagement in formative assessment. Please indicate how true each of the following statement is for you given your experiences doing assessment or your plans to do assessment. If you are not currently using and do not plan to use formative assessment, please answer the questions the best you can – your answers will still be helpful.

Not very true (1) 2 3 Somewhat true (4) 5 6 Very true (7)

11. If I can't get students to get a problem right, I just keep trying.
12. It is important to me that I do a good job assessing my students’ learning.
13. When students don’t get what I’m teaching right away, I just move on.
14. I feel very tense while giving my students assessments.
15. I think doing this kind of assessment could help me to improve the way I teach engineering.
16. I would describe formative assessment as very interesting.
17. When I first try new assessment methods, I feel anxious.
18. In the future, I intend to do a better job of evaluating the assessment data I collect.
19. I wish I could do more assessment in my classes, but time doesn’t permit it.
20. If I can't think of an assessment activity to use, I find that after a minute, something comes to me.

Page 6. Engagement in Formative Assessment (page 3)

Remember that this is anonymous and no one will know how you responded to the questions.

The following questions pertain to your affective, behavioral, and cognitive engagement in formative assessment. Please indicate how true each of the following statement is for you given your experiences doing assessment or your plans to do assessment. If you are not currently using and do not plan to use formative assessment, please answer the questions the best you can – your answers will still be helpful.

Not very true (1) 2 3 Somewhat true (4) 5 6 Very true (7)

21. I feel pressure to change my teaching when assessment results are negative.
22. I would be willing to increase my use of formative assessment because it has value to me.
23. I think formative assessment is a boring activity.
24. I think measuring student learning is an important activity.
25. I don't try very hard to do well at assessment.
26. It is satisfying to find ways to improve my students’ learning.
27. If I had an extra hour while at school, I would assess student work to see how they’re doing.
28. It is my intent to collect more data from formative assessments in the future.
29. When I have a hard time getting my class to learn something, I typically just quit trying.
30. I think formative assessment is important to do because it can help students learn better.

Page 7. Engagement in Formative Assessment (page 4)

Remember that this is anonymous and no one will know how you responded to the questions.

The following questions pertain to your affective, behavioral, and cognitive engagement in formative assessment. Please indicate how true each of the following statement is for you given your experiences doing assessment or your plans to do assessment. If you are not currently using and do not plan to use formative assessment, please answer the questions the best you can – your answers will still be helpful.

Not very true (1) 2 3 Somewhat true (4) 5 6 Very true (7)

31. While I am doing formative assessment, I think about how much I enjoy it.
32. I am very relaxed when it comes to assessing student learning.
33. I believe doing formative assessment is beneficial to me and my goals.
34. I get a feeling of satisfaction from assessment even when results aren’t positive.
35. Doing formative assessment does not hold my attention at all.
36. If assessments show students aren’t learning, I keep working at it.
37. I try very hard to use assessments whenever possible.
38. I believe formative assessment could be of some value to me.
39. I put a lot of effort into assessing my students.
40. I intend to learn more ways to assess my students’ learning.
41. I find myself choosing to do assessment over other teaching tasks.
42. I do not feel nervous at all while assessing my students.
43. I rarely prioritize assessment when planning my time.

Page 8. Perspectives on Formative Assessment

Remember that this is anonymous and no one will know how you responded to the questions.

There are a variety of reasons why people might use formative assessment. Please indicate how true each of these reasons is for you.

I use formative assessment...:

Not very true (1) 2 3 Somewhat true (4) 5 6 Very true (7)

1. because I would feel bad about myself if I did not.
2. because others would be disappointed with me if I did not.
3. because I enjoy assessing my students’ learning.
4. because I would feel like a failure if I did not.
5. because it's important to me to try to better teach topics that students are not learning well.
6. because people would think I'm a not a caring person if I didn’t do it.
7. because I feel like I have no choice about doing formative assessment; others make me do it.
8. because I like the challenge of improving my teaching.
9. because I believe using formative assessment helps me teach better.
10. because it's fun.
11. because I worry that I would get in trouble with others if I did not.
12. because it feels important to me personally to improve how my students are learning.
13. because I feel guilty if I do not do something to test my students’ learning.
14. because I want others to acknowledge that I am doing what I have been told I should do.
15. because it is interesting to see if my students are learning and improving.
16. because improving student learning is an important value for me.

Page 9. When I assess my students

Remember that this is anonymous and no one will know how you responded to the questions.

The following questions concern your feelings about your formative assessment efforts or your plans to use formative assessment, as well as your connection with other educators you know who assess their students’ learning. If you are not currently using and do not plan to use formative assessment, please answer the questions the best you can — your answers will still be helpful.

Not very true (1) 2 3 Somewhat true (4) 5 6 Very true (7)

1. I have learned the essential skills needed to assess student learning.
2. I pretty much keep to myself with results from assessing my students’ learning.
3. There is not much opportunity for me to decide for myself how to go about assessing my students.
4. People at school tell me I am good at assessment.
5. I really feel connected with other educators who I know assess their students’ learning.
6. I am able to choose assessment methods based on my own goals for teaching and learning.
7. I do not feel very competent when trying to assess my students’ learning.
8. I am free to express my ideas and opinions on how assessment should be done.
9. I feel a connection to my students when I assess their learning.
10. Most times, I feel a sense of accomplishment from assessing my students’ learning.
11. I am willing to share both positive and negative assessment results with others.
12. When it comes to assessment, I do not get much of a chance to show how capable I am.
13. People at work appreciate me for my assessment efforts.
15. When I think about assessment, I often do not feel very capable.
16. Amongst other educators, I feel like doing assessment is necessary to fit in.
17. I feel like I have a lot of control in deciding how I assess my students’ learning.
18. I feel that my assessment efforts alienate me from other educators.
19. When it comes to assessment, I have to do what I am told.
20. I feel like I can pretty much be myself when assessing my students.

Page 10. Closing

Thank you for taking the time to fill out our survey. We rely on your feedback to help us improve engineering education. Your input is greatly appreciated.

Please direct any comments or questions to Ken Stanton (kstanton@vt.edu) and Dr. Richard Goff (richgoff@vt.edu). In the space that follows, you may provide any feedback you wish to share with the researchers regarding formative assessment, the quality or clarity of the survey, or the study in general:
Appendix B: Pilot Interview Questions and Procedure

The following constitutes the Interview Question Sheet to be used in the pilot testing stages.

The goal of the survey piloting is to:

- investigate how respondents understand the survey questions,
- find the types of information participants retrieve to answer questions,
- understand the types of socially acceptable answers that might be given and why, and
- evaluate whether participants performed the survey task the way that was intended.

The pilot testing will be conducted as brief interviews:

- participants are first given a paper copy of the survey
- participants are asked to fill it out, taking notes and/or vocalizing thoughts as they proceed, such that they can give thoughts, concerns, or problems along with their responses. The following question should be addressed, as well:
 - On average, how long did it take to complete? What was the longest time and what was the shortest time it took to complete the instrument? How much of that time was spent making notes or verbalizing thoughts?
- following completion, the questions below will be posed to solicit qualitative feedback on each quantitative survey item or block of items
- after data are collected from the pilot testing, checks for validity and reliability will be performed, aimed at attaining the goals above, through the following central questions:
 - What is the nature of the respondent’s statement? (uncertainty, confusion, objection, or disagreement with the item)
 - What is the root of the issue the respondent is discussing? (the instructions, the item, the responses, etc.)
 - What may be changed about the instrument or item to resolve the issue?
 - Which change would maximize the validity of this item, or should it be removed?
- survey items or sections that have reliability or validity issues should be removed, revised, or reordered to complete the final instrument, per the questions above

Interview questions (from Colton & Covert, 2007, pp. 140-141):

1. What is your overall reaction to the questionnaire?

2. Was each set of directions clear (that is, the general directions at the beginning of the questionnaire and any subsequent directions provided in the body of the instrument)?
3. Were there any spelling or grammatical problems? Were any items difficult to read due to the sentence length, choice of words, or special terminology?

4. What suggestions do you have for making the questionnaire or individual items easier to understand and complete?

5. Did you experience any problems with the item format(s), and if so, do you have any suggestions for alternate formats?

6. Did you encounter any problems as a result of the organization of the instrument, such as how items flowed?

7. Did you have any concern about the length of the instrument or the time it took to complete?

8. Do you have any concerns about confidentiality or how the questionnaire would be used?

9. Do you have any other concerns?

10. [Give participants a transparency for each page of the survey that identifies which questions pertain to which constructs (e.g. those for autonomy).] How do you interpret each group of items? What do these items collectively mean to you? Do all of the items make sense for that interpretation?
Appendix C: Research Question Breakdown and Construct List

The following breakdown of the research question (RQ) shows inference questions (IQ) and subsequent survey items (SI) and statistical analyses (STAT):

RQ: To what degree does the Hierarchical Model of intrinsic and extrinsic motivation hold for formative assessment of student learning by engineering faculty?

- Summary Questions:
 - IQ1: To what degree are the motivational needs of autonomy, competence, and relatedness of engineering faculty satisfied pertaining to formative assessment?
 - SI: Motivational needs
 - STAT: Mean, Std. Dev., Box plot
 - IQ2: Which motivational types are engineering faculty most strongly experiencing with regard to formative assessment?
 - SI: Motivation types
 - STAT: Mean, Std. Dev., Box plot
 - IQ3: What degree of self-determined motivation are engineering faculty experiencing with regard to formative assessment?
 - SI: Self-determined motivation score
 - STAT: Mean, Std. Dev., Box plot
 - IQ4: To what extent do engineering faculty experience affective, behavioral, and cognitive engagement in formative assessment?
 - SI: Engagement in formative assessment
 - STAT: Mean, Std. Dev., Box plot

- Relationship questions:
 - IQ5: To what degree does satisfaction of self-determination needs lead to self-determined motivation for formative assessment?
 - SI: Motivational needs, Motivation types
 - STAT: Simple linear regression (multiple runs)
 - IQ6: To what degree does self-determined motivation lead to affective, behavioral, and cognitive engagement in formative assessment?
 - SI: Motivation types, Engagement in formative assessment
 - STAT: Simple linear regression (multiple runs)
 - IQ7: Do either of these relationships vary with any demographic variables?
 - SI: Motivational needs, Motivation types, Engagement in formative assessment
 - STAT: ANOVA (multiple runs)
 - IQ8: Are there any other unexpected relationships between variables or constructs?
 - SI: All variables and constructs
 - STAT: Correlation

The categories, constructs, and variables for the instrument are:

- Motivational needs (3)
 - Autonomy, Competence, Relatedness
 - Pertaining to formative assessment
• Motivation types (6)
 o Amotivation, Extrinsic motivation (broken down into External regulation, Introjected regulation, Identified regulation, Integrated regulation), Intrinsic motivation
 o Combined into one self-determined motivation score
 o Pertaining to formative assessment

• Engagement in formative assessment
 o Affective
 ▪ Interest, Positive emotions, Satisfaction, Anxiety
 o Behavioral
 ▪ Choice of behavior, Persistence, Intensity, Intent
 o Cognitive
 ▪ Concentration, Attention, Memory, Conceptual learning

• Demographics of participants
 o Sex, Race, Academic rank, Institution, Department, Years teaching
Appendix D: Final Survey Instrument
Page 1: IRB Notice

INFORMED CONSENT FORM FOR SOCIAL SCIENCE RESEARCH
Virginia Tech
Title of Project: Motivation for Assessment in Engineering

Principal Investigator: Dr. Richard Goff, Assistant Professor of Engineering Education, Virginia Tech, richgoff@vt.edu Phone: (540) 231-9537

Co-Investigator: Ken Stanton, PhD Candidate in Engineering Education, Virginia Tech, kstanton@vt.edu

1. Purpose of the Study: The purpose of this study is to better understand perspectives of engineering faculty toward formative assessment. We expect to improve understanding of how faculty engage in formative assessment and use results to improve how departments address assessment of student learning. Results will be published in aggregate in a PhD dissertation and possibly in conference or journal articles.

2. Procedures: Participating faculty will complete an online survey consisting of three sections of questions about formative assessment. Most questions ask participants to rate statements to indicate agreement.

3. Discomforts and Risks: Possible discomfort may be experienced if questions relate to topics that participants find difficult to discuss. However, we expect that this occurrence to be highly unlikely due to the general nature of the questions, as they pertain to professional opinions and activities. There are no risks in participating in this research beyond the aforementioned and those experienced in everyday life.

4. Benefits: Participants get to express their opinions and interests regarding formative assessment. Results may apply to research studies aimed at improving engineering education.

5. Duration: Participants are expected to donate no more than one half hour of their time for the survey.

6. Statement of Confidentiality: Survey data collected will not include names or other personally identifying information beyond demographic the information requested. The online survey system will be used to track completion of the survey by invitees, only. Only investigators listed on the IRB paperwork for this project will have access to the data, which will be deleted no later than 2015.

7. Right to Ask Questions: You may ask questions about this research by contacting Dr. Richard Goff at (540) 231-9537 or richgoff@vt.edu and Ken Stanton at kstanton@vt.edu. In addition, you may contact Dr. David Moore, Assistant Vice Provost for Research Compliance at Virginia Tech at (540) 231-4991 for questions about your rights as a research participant.

8. Compensation: There is no additional compensation offered for participating in the study.

9. Voluntary Participation: Your decision is participate in this research is voluntary. You can stop at any time.

You may print this form for your records and future reference.

Participant’s Permission

You must be 18 years or older to take part in this research study. Clicking "next" to enter and completion of this survey implies that you agree to take part in this research study and accept the information outlined above. If you do not wish to participate, simply close this window.

PAGE 2: Perspectives on Formative Assessment of Student Learning
Instructions:

Please complete all questions on this survey, unless it truly does not pertain to you. You will not be personally identifiable; your responses are anonymous and will not be available to anyone other than the researchers. Since all questions are formatted the same way, responses are typically quick and require less than 15 minutes to complete.

Please answer questions by considering your current perspectives, unless asked otherwise. That is, please do not indicate what you think you should do but rather what you currently do.

In this study, formative assessment is considered from your perspective – that is, the things you do and think about measuring and improving student learning. You are not asked what your students think of assessment or how well they are doing. The focus here is on the attempts and efforts you make when teaching engineering classes in four specific steps of formative assessment:

- Using approaches that are intended/designed to measure student learning
- Collecting data from assessments for analysis of student learning
- Evaluating the data collected to make inferences about student learning
- Applying results of evaluation to improve teaching, student learning, and future assessment efforts

This is different from summative assessment and accreditation in that:

- Formative assessment is used to adjust teaching “on the fly” and before summative testing
- Summative assessment and accreditation are typically requirements of educators
- Formative assessment is often left to the educator to manage

Please provide two example formative assessment techniques that you feel fit the description above (you may use formal names or describe the techniques if you don’t know what they are called):

1.
2.

PAGE 3: Engagement in Formative Assessment

Remember that this is anonymous and no one will know how you responded to the questions.

The following questions pertain to your engagement in formative assessment. Please indicate how true each of the following statement is for you given your experiences doing assessment or your plans to do assessment. If you are not currently using and do not plan to use formative assessment, please answer the questions the best you can – your answers will still be helpful.

Not very true (1) 2 3 Somewhat true (4) 5 6 Very true (7)

1. I enjoy doing formative assessment very much.
2. I think that doing formative assessment is useful for improving my teaching.
3. I am sometimes anxious while reviewing assessment results.
4. I make efforts to find other ways to assess my students.
5. I pay attention and respond when assessment results show concern for student learning.
6. When I'm evaluating student assessments, I find time goes by really slowly.
7. I get a sense of fulfillment from applying assessment results to improve my teaching.
8. I intend to learn better ways to apply assessment results to improve my teaching.
9. When balancing my teaching duties, formative assessment is an important priority.
10. When I come to an assessment issue I can't solve right away, I tend to concentrate on solving it.

PAGE 4: Engagement in Formative Assessment (page 2)

Remember that this is anonymous and no one will know how you responded to the questions.

The following questions pertain to your engagement in formative assessment. Please indicate how true each of the following statement is for you given your experiences doing assessment or your plans to do assessment. If you are
not currently using and do not plan to use formative assessment, please answer the questions the best you can – your answers will still be helpful. (continued)

<table>
<thead>
<tr>
<th>Not very true (1)</th>
<th>2</th>
<th>3</th>
<th>Somewhat true (4)</th>
<th>5</th>
<th>6</th>
<th>Very true (7)</th>
</tr>
</thead>
</table>

11. If I can't get students to get a problem right, I just keep trying different things.
12. It is important to me that I do a good job assessing my students' learning.
13. When students don’t get what I’m teaching right away, I just move on.
14. I feel very tense while giving my students assessments.
15. I think that doing formative assessment helps me improve the way I teach engineering.
16. I would describe formative assessment as very interesting.
17. I intend to continue using formative assessment in my teaching.
18. I would do more assessment in my classes, but time doesn’t permit it.
19. If I can’t find the right technique to use, I just skip the assessment.
20. I would be willing to increase my use of formative assessment because it has value to me.

PAGE 5: Engagement in Formative Assessment (page 3)

Remember that this is anonymous and no one will know how you responded to the questions.

The following questions pertain to your engagement in formative assessment. Please indicate how true each of the following statement is for you given your experiences doing assessment or your plans to do assessment. If you are not currently using and do not plan to use formative assessment, please answer the questions the best you can – your answers will still be helpful. (continued)

<table>
<thead>
<tr>
<th>Not very true (1)</th>
<th>2</th>
<th>3</th>
<th>Somewhat true (4)</th>
<th>5</th>
<th>6</th>
<th>Very true (7)</th>
</tr>
</thead>
</table>

21. I rarely prioritize assessment when planning my time.
22. I do not feel nervous at all while assessing my students.
23. I think formative assessment is a boring activity.
24. I think measuring student learning is an important activity.
25. I try hard to make my assessments effective.
26. It is satisfying to use formative assessment to improve my teaching.
27. I make time to review formative assessment data from my students.
28. It is my intent to collect data from formative assessments in the future.
29. When I have a hard time getting my class to learn something, I try other approaches.
30. I think formative assessment is important to do because it can help students learn better.

PAGE 6: Engagement in Formative Assessment (page 4)

Remember that this is anonymous and no one will know how you responded to the questions.

The following questions pertain to your engagement in formative assessment. Please indicate how true each of the following statement is for you given your experiences doing assessment or your plans to do assessment. If you are not currently using and do not plan to use formative assessment, please answer the questions the best you can – your answers will still be helpful. (continued)

<table>
<thead>
<tr>
<th>Not very true (1)</th>
<th>2</th>
<th>3</th>
<th>Somewhat true (4)</th>
<th>5</th>
<th>6</th>
<th>Very true (7)</th>
</tr>
</thead>
</table>

31. While I am doing formative assessment, I think about how much I enjoy it.
32. I am very relaxed when it comes to assessing student learning.
33. I believe doing formative assessment is beneficial to me and my goals.
34. I get a feeling of satisfaction just from trying to assess and improve my students’ learning.
35. Doing formative assessment does not hold my attention at all.
36. If assessments show students aren’t learning, I keep working at it.
37. I try very hard to use assessments whenever possible.
38. I believe formative assessment could be of some value to me.
39. I put a lot of effort into assessing my students.
40. I intend to learn more ways to assess my students’ learning.
41. I find myself choosing to do assessment over other teaching tasks.

PAGE 7: Perspectives on Formative Assessment

Remember that this is anonymous and no one will know how you responded to the questions.

There are a variety of reasons why people might use formative assessment. Please indicate how true each of these reasons is for you.

I use formative assessment...:

Not very true (1) 2 3 Somewhat true (4) 5 6 Very true (7)

1. because I would feel bad about myself if I did not.
2. because others would be disappointed with me if I did not.
3. because I enjoy assessing my students’ learning.
4. because I would feel like a failure if I did not.
5. because it's important to me to try to better teach topics that students are not learning well.
6. because people might think I’m not a caring person if I didn’t do it.
7. because I feel like I have no choice about doing formative assessment; others make me do it.
8. because I like the challenge of it.
9. because I believe using formative assessment helps me teach better.
10. because it's fun.
11. because I worry that I would get in trouble if I did not.
12. because it feels important to me personally to improve how my students are learning.
13. because I feel guilty if I do not do something to test my students’ learning.
14. because I want others to see I’m doing what I’ve been told to do.
15. because it’s interesting to do.
16. because improving student learning is an important value for me.

PAGE 8: When I assess my students

Remember that this is anonymous and no one will know how you responded to the questions.

The following questions concern your feelings about your formative assessment efforts or your plans to use formative assessment, as well as your connection with other educators you know who assess their students’ learning. If you are not currently using and do not plan to use formative assessment, please answer the questions the best you can – your answers will still be helpful.

Not very true (1) 2 3 Somewhat true (4) 5 6 Very true (7)

1. I have learned the essential skills needed to assess student learning.
2. I would like to share assessment results with other educators.
3. There is not much opportunity for me to decide for myself how to go about assessing my students.
4. I have reason to believe I do a good job at assessment.
5. I feel formative assessment is valued by my colleagues.
6. I am able to choose assessment methods based on my own goals for teaching and learning.
7. I do not feel very competent when trying to assess my students’ learning.
8. I am free to express my ideas and opinions on how assessment should be done.
9. I feel formative assessment keeps me in touch with my students and their education.
10. Most times, I feel I’m effective at assessing my students’ learning.
11. If it came up, I would be willing to share both positive and negative assessment results with other educators.
12. When it comes to assessment, I get opportunities to show how capable I am.
13. I believe people at work would appreciate me for my assessment efforts.
15. When I think about assessment, I often do not feel very capable.
16. Amongst other educators, I feel like doing assessment is important to fit in.
17. I feel like I have a lot of control in deciding how I assess my students’ learning.
18. I feel that my assessment efforts alienate me from other educators.
19. When it comes to assessment, I have to do what I am told.
20. I feel like I can pretty much be myself when assessing my students.

PAGE 9: Demographics

Please tell us a little about your background (* = required):

Sex:
Male
Female

Ethnicity:
African-American
Asian-American
Caucasian
Foreign National
Hispanic
Native American
Other (please specify)

My primary college or university is:
[List of schools]

The undergraduate engineering discipline I primarily teach in is:
Aerospace
Architectural
Biological and Agricultural
Biomedical
Chemical
Civil
Civil/Environmental
Computer Science
Electrical/Computer
Engineering (general)
Engineering Management
Environmental
Industrial/Manufacturing
Mechanical
Metallurgical & Materials
Mining
Nuclear
Petroleum
Other (please specify)

Number of classes I have taught (total, graduate and undergraduate):
0 - 5
6 - 10
11 - 15
16+

Academic Rank:
Part-time instructor / adjunct
Full-time, non-tenure track instructor / professor
Research professor
Assistant professor (tenure track)
Associate professor
Full professor
Other (only if very different from above)

PAGE 10: Closing

Thank you for taking the time to fill out our survey. We rely on your feedback to help us improve engineering education. Your input is greatly appreciated.

Please direct any comments or questions to Ken Stanton (kstanton@vt.edu) and Dr. Richard Goff (richgoft@vt.edu).

In the space that follows, you may provide any feedback you wish to share with the researchers regarding formative assessment, the quality or clarity of the survey, or the study in general:
Appendix E: Survey Instrument with Final Constitution of Construct Items, for use in Future Studies

NOTICE: Use of this survey instrument is permissible for academic studies at no charge under the condition that this paper is cited in the work. Those wishing to use this instrument for commercial purposes should contact the author at kstanton@vt.edu.

PAGE 1: Engagement in Formative Assessment

Instructions:

Please complete all questions on this survey, unless it truly does not pertain to you. You will not be personally identifiable; your responses are anonymous and will not be available to anyone other than the researchers. Since all questions are formatted the same way, responses are typically quick and require less than 15 minutes to complete.

Please answer questions by considering your current perspectives, unless asked otherwise. That is, please do not indicate what you think you should do but rather what you currently do.

In this study, formative assessment is considered from your perspective – that is, the things you do and think about measuring and improving student learning. You are not asked what your students think of assessment or how well they are doing. The focus here is on the attempts and efforts you make when teaching engineering classes in four specific steps of formative assessment:

- Using approaches that are intended/designed to measure student learning
- Collecting data from assessments for analysis of student learning
- Evaluating the data collected to make inferences about student learning
- Applying results of evaluation to improve teaching, student learning, and future assessment efforts

This is different from summative assessment and accreditation in that:

- Formative assessment is used to adjust teaching “on the fly” and before summative testing
- Summative assessment and accreditation are typically requirements of educators
- Formative assessment is often left to the educator to manage

Please provide two example formative assessment techniques that you feel fit the description above (you may use formal names or describe the techniques if you don’t know what they are called):

1.
2.

PAGE 2: Engagement in Formative Assessment

Remember that this is anonymous and no one will know how you responded to the questions.

The following questions pertain to your engagement in formative assessment. Please indicate how true each of the following statement is for you given your experiences doing assessment or your plans to do assessment. If you are not currently using and do not plan to use formative assessment, please answer the questions the best you can – your answers will still be helpful.

Not very true (1) 2 3 Somewhat true (4) 5 6 Very true (7)

1. I enjoy doing formative assessment very much.
2. I think that doing formative assessment is useful for improving my teaching.
3. I am sometimes anxious while reviewing assessment results.
4. I find myself choosing to do assessment over other teaching tasks.
5. I pay attention and respond when assessment results show concern for student learning.
6. I intend to learn more ways to assess my students’ learning.
7. I get a sense of fulfillment from applying assessment results to improve my teaching.
8. I intend to learn better ways to apply assessment results to improve my teaching.
9. When balancing my teaching duties, formative assessment is an important priority.
10. I put a lot of effort into assessing my students.

PAGE 3: Engagement in Formative Assessment (page 2)

Remember that this is anonymous and no one will know how you responded to the questions.

The following questions pertain to your engagement in formative assessment. Please indicate how true each of the following statement is for you given your experiences doing assessment or your plans to do assessment. If you are not currently using and do not plan to use formative assessment, please answer the questions the best you can – your answers will still be helpful. (continued)

Not very true (1) 2 3 Somewhat true (4) 5 6 Very true (7)

11. If I can't get students to get a problem right, I just keep trying different things.
12. It is important to me that I do a good job assessing my students’ learning.
13. When students don’t get what I’m teaching right away, I just move on.
14. I feel very tense while giving my students assessments.
15. I think that doing formative assessment helps me improve the way I teach engineering.
16. I would describe formative assessment as very interesting.
17. I intend to continue using formative assessment in my teaching.
18. I believe formative assessment could be of some value to me.
19. I try very hard to use assessments whenever possible.
20. I would be willing to increase my use of formative assessment because it has value to me.

PAGE 4: Engagement in Formative Assessment (page 3)

Remember that this is anonymous and no one will know how you responded to the questions.

The following questions pertain to your engagement in formative assessment. Please indicate how true each of the following statement is for you given your experiences doing assessment or your plans to do assessment. If you are not currently using and do not plan to use formative assessment, please answer the questions the best you can – your answers will still be helpful. (continued)

Not very true (1) 2 3 Somewhat true (4) 5 6 Very true (7)

21. I rarely prioritize assessment when planning my time.
22. I do not feel nervous at all while assessing my students.
23. I think formative assessment is a boring activity.
24. I think measuring student learning is an important activity.
25. I try hard to make my assessments effective.
26. It is satisfying to use formative assessment to improve my teaching.
27. I make time to review formative assessment data from my students.
28. It is my intent to collect data from formative assessments in the future.
29. When I have a hard time getting my class to learn something, I try other approaches.
30. I think formative assessment is important to do because it can help students learn better.

PAGE 5: Engagement in Formative Assessment (page 4)

Remember that this is anonymous and no one will know how you responded to the questions.

The following questions pertain to your engagement in formative assessment. Please indicate how true each of the following statement is for you given your experiences doing assessment or your plans to do assessment. If you are
not currently using and do not plan to use formative assessment, please answer the questions the best you can – your answers will still be helpful. (continued)

<table>
<thead>
<tr>
<th>Not very true (1)</th>
<th>2</th>
<th>3</th>
<th>Somewhat true (4)</th>
<th>5</th>
<th>6</th>
<th>Very true (7)</th>
</tr>
</thead>
</table>
31. While I am doing formative assessment, I think about how much I enjoy it.
32. I am very relaxed when it comes to assessing student learning.
33. I believe doing formative assessment is beneficial to my goals and me.
34. I get a feeling of satisfaction just from trying to assess and improve my students’ learning.
35. If assessments show students aren’t learning, I keep working at it.

Construct Key:

<table>
<thead>
<tr>
<th>Construct:</th>
<th>Final construct items; construct score is average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest/Enjoyment</td>
<td>1, 16, 23(R), 31</td>
</tr>
<tr>
<td>Value/Usefulness</td>
<td>2, 15, 18, 20, 24, 30, 33</td>
</tr>
<tr>
<td>Satisfaction</td>
<td>7, 26, 34</td>
</tr>
<tr>
<td>Anxiety</td>
<td>3, 14, 22(R), 32(R)</td>
</tr>
<tr>
<td>Choice of Behavior</td>
<td>4, 9, 21(R), 27</td>
</tr>
<tr>
<td>Persistence</td>
<td>5, 11, 13, 29, 35</td>
</tr>
<tr>
<td>Effort/Importance</td>
<td>10, 12, 19, 25</td>
</tr>
<tr>
<td>Intent</td>
<td>6, 8, 17, 28</td>
</tr>
</tbody>
</table>

PAGE 6: Perspectives on Formative Assessment

Remember that this is anonymous and no one will know how you responded to the questions.

There are a variety of reasons why people might use formative assessment. Please indicate how true each of these reasons is for you.

I use formative assessment...:

<table>
<thead>
<tr>
<th>Not very true (1)</th>
<th>2</th>
<th>3</th>
<th>Somewhat true (4)</th>
<th>5</th>
<th>6</th>
<th>Very true (7)</th>
</tr>
</thead>
</table>
1. because I would feel bad about myself if I did not.
2. because others would be disappointed with me if I did not.
3. because I enjoy assessing my students’ learning.
4. because I would feel like a failure if I did not.
5. because it's important to me to try to better teach topics that students are not learning well.
6. because people might think I’m not a caring person if I didn’t do it.
7. because I feel like I have no choice about doing formative assessment; others make me do it.
8. because I like the challenge of it.
9. because I believe using formative assessment helps me teach better.
10. because it's fun.
11. because I worry that I would get in trouble if I did not.
12. because it feels important to me personally to improve how my students are learning.
13. because I feel guilty if I do not do something to test my students’ learning.
14. because I want others to see I’m doing what I’ve been told to do.
15. because it’s interesting to do.
16. because improving student learning is an important value for me.
Construct Key:

<table>
<thead>
<tr>
<th>Construct</th>
<th>Final construct items; construct score is average</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Regulation</td>
<td>2, 7, 11, 14</td>
</tr>
<tr>
<td>Introjected Regulation</td>
<td>1, 4, 6, 13</td>
</tr>
<tr>
<td>Identified Regulation</td>
<td>5, 9, 12, 16</td>
</tr>
<tr>
<td>Intrinsic Motivation</td>
<td>3, 8, 10, 15</td>
</tr>
</tbody>
</table>

PAGE 7: When I assess my students

Remember that this is anonymous and no one will know how you responded to the questions.

The following questions concern your feelings about your formative assessment efforts or your plans to use formative assessment, as well as your connection with other educators you know who assess their students’ learning. If you are not currently using and do not plan to use formative assessment, please answer the questions the best you can – your answers will still be helpful.

Not very true (1) 2 3 Somewhat true (4) 5 6 Very true (7)

1. I have learned the essential skills needed to assess student learning.
2. I would like to share assessment results with other educators.
3. There is not much opportunity for me to decide for myself how to go about assessing my students.
4. I have reason to believe I do a good job at assessment.
5. I feel formative assessment is valued by my colleagues.
6. I am able to choose assessment methods based on my own goals for teaching and learning.
7. I do not feel very competent when trying to assess my students’ learning.
8. I am free to express my ideas and opinions on how assessment should be done.
9. I feel formative assessment keeps me in touch with my students and their education.
10. Most times, I feel I’m effective at assessing my students’ learning.
11. If it came up, I would be willing to share both positive and negative assessment results with other educators.
12. I feel like I can pretty much be myself when assessing my students.
13. I believe people at work would appreciate me for my assessment efforts.
15. When I think about assessment, I often do not feel very capable.
16. When it comes to assessment, I have to do what I am told.
17. I feel like I have a lot of control in deciding how I assess my students’ learning.

Construct Key:

<table>
<thead>
<tr>
<th>Construct</th>
<th>Final construct items; construct score is average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonomy</td>
<td>3(R), 6, 8, 12, 14(R), 17, 16(R)</td>
</tr>
<tr>
<td>Competence</td>
<td>1, 4, 7(R), 10, 15(R)</td>
</tr>
<tr>
<td>Relatedness</td>
<td>2, 5, 9, 11, 13</td>
</tr>
</tbody>
</table>

PAGE 8: Demographics

Please tell us a little about your background:

Sex:
Male
Female

Ethnicity:
African-American
Asian-American
Caucasian
Foreign National
Hispanic
Native American
Other (please specify)

My primary college or university is:
[List of schools]

The undergraduate engineering discipline I primarily teach in is:
Aerospace
Architectural
Biological and Agricultural
Biomedical
Chemical
Civil
Civil/Environmental
Computer Science
Electrical/Computer
Engineering (general)
Engineering Management
Environmental
Industrial/Manufacturing
Mechanical
Metallurgical & Materials
Mining
Nuclear
Petroleum
Other (please specify)

Number of classes I have taught (total, graduate and undergraduate):
0 - 5
6 - 10
11 - 15
16+

Academic Rank:
Part-time instructor / adjunct
Full-time, non-tenure track instructor / professor
Research professor
Assistant professor (tenure track)
Associate professor
Full professor
Other (only if very different from above)

PAGE 9: Closing

Thank you for taking the time to fill out our survey. We rely on your feedback to help us improve engineering education. Your input is greatly appreciated.
Please direct any comments or questions to [study PI(s) and email addresses].

In the space that follows, you may provide any feedback you wish to share with the researchers regarding formative assessment, the quality or clarity of the survey, or the study in general:

Appendix F: Additional Data from Analysis of Regression Assumptions

Table F.1: Residuals from regression analyses

| Residuals of regression from autonomy, competence, and relatedness to composite self-determination score (RAI). | Residuals of regression from autonomy, competence, and relatedness to external regulation. |
| Residuals of regression from autonomy, competence, and relatedness to introjected regulation. | Residuals of regression from autonomy, competence, and relatedness to identified regulation. |
| Residuals of regression from autonomy, competence, and relatedness to intrinsic motivation. |
Residuals of regression from composite self-determined motivation score (RAI) to interest/enjoyment.

Residuals of regression from composite self-determined motivation score (RAI) to value/usefulness.

Residuals of regression from composite self-determined motivation score (RAI) to satisfaction.

Residuals of regression from composite self-determined motivation score (RAI) to anxiety.

Residuals of regression from composite self-determined motivation score (RAI) to choice of behavior.

Residuals of regression from composite self-determined motivation score (RAI) to persistence.
Residuals of regression from composite self-determined motivation score (RAI) to effort/importance.

Residuals of regression from composite self-determined motivation score (RAI) to intent.

Residuals of regression from intrinsic motivation to interest/enjoyment.

Residuals of regression from intrinsic motivation to value/usefulness.

Residuals of regression from intrinsic motivation to satisfaction.

Residuals of regression from intrinsic motivation to anxiety.
Residuals of regression from intrinsic motivation to choice of behavior.

Residuals of regression from intrinsic motivation to persistence.

Residuals of regression from intrinsic motivation to effort/importance.

Residuals of regression from intrinsic motivation to intent.

Residuals of regression from identified regulation to interest/enjoyment.

Residuals of regression from identified regulation to value/usefulness.
Residuals of regression from identified regulation to satisfaction.

Residuals of regression from identified regulation to anxiety.

Residuals of regression from identified regulation to choice of behavior.

Residuals of regression from identified regulation to persistence.

Residuals of regression from identified regulation to effort/importance.

Residuals of regression from identified regulation to intent.
Residuals of regression from introjected regulation to interest/enjoyment.

Residuals of regression from introjected regulation to value/usefulness.

Residuals of regression from introjected regulation to satisfaction.

Residuals of regression from introjected regulation to anxiety.

Residuals of regression from introjected regulation to choice of behavior.

Residuals of regression from introjected regulation to persistence.
Residuals of regression from introjected regulation to effort/importance.

Residuals of regression from introjected regulation to intent.

Residuals of regression from external regulation to interest/enjoyment.

Residuals of regression from introjected regulation to value/usefulness.

Residuals of regression from introjected regulation to satisfaction.

Residuals of regression from introjected regulation to anxiety.
Residuals of regression from introjected regulation to choice of behavior.

Residuals of regression from introjected regulation to persistence.

Residuals of regression from introjected regulation to effort/importance.

Residuals of regression from introjected regulation to intent.
Appendix G: Individual Survey Item Average Scores

In the item reference column, the question number and section that it came from is given. For example, “Needs #1” is the first question in the section of the survey that asked about satisfaction of motivational needs. In the same manner, “motivation” refers to questions about the motivation type, and “engagement” about engagement in formative assessment.

<table>
<thead>
<tr>
<th>Item Reference:</th>
<th>Item Content:</th>
<th>Mean:</th>
<th>Std Dev:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Needs #1</td>
<td>I have learned the essential skills needed to assess student learning.</td>
<td>4.11</td>
<td>1.52</td>
</tr>
<tr>
<td>Needs #2</td>
<td>I would like to share assessment results with other educators.</td>
<td>3.93</td>
<td>1.75</td>
</tr>
<tr>
<td>Needs #3</td>
<td>There is not much opportunity for me to decide for myself how to go about assessing my students.</td>
<td>2.27</td>
<td>1.49</td>
</tr>
<tr>
<td>Needs #4</td>
<td>I have reason to believe I do a good job at assessment.</td>
<td>4.49</td>
<td>1.27</td>
</tr>
<tr>
<td>Needs #5</td>
<td>I feel formative assessment is valued by my colleagues.</td>
<td>3.68</td>
<td>1.70</td>
</tr>
<tr>
<td>Needs #6</td>
<td>I am able to choose assessment methods based on my own goals for teaching and learning.</td>
<td>5.64</td>
<td>1.33</td>
</tr>
<tr>
<td>Needs #7</td>
<td>I do not feel very competent when trying to assess my students’ learning.</td>
<td>3.00</td>
<td>1.61</td>
</tr>
<tr>
<td>Needs #8</td>
<td>I am free to express my ideas and opinions on how assessment should be done.</td>
<td>5.66</td>
<td>1.34</td>
</tr>
<tr>
<td>Needs #9</td>
<td>I feel formative assessment keeps me in touch with my students and their education.</td>
<td>5.56</td>
<td>1.16</td>
</tr>
<tr>
<td>Needs #10</td>
<td>Most times, I feel I’m effective at assessing my students’ learning.</td>
<td>4.95</td>
<td>1.21</td>
</tr>
<tr>
<td>Needs #11</td>
<td>If it came up, I would be willing to share both positive and negative assessment results with other educators.</td>
<td>5.50</td>
<td>1.39</td>
</tr>
<tr>
<td>Needs #12</td>
<td>When it comes to assessment, I get opportunities to show how capable I am.</td>
<td>3.48</td>
<td>1.71</td>
</tr>
<tr>
<td>Needs #13</td>
<td>I believe people at work would appreciate me for my assessment efforts.</td>
<td>3.27</td>
<td>1.69</td>
</tr>
<tr>
<td>Needs #14</td>
<td>I feel pressured to do assessment.</td>
<td>2.16</td>
<td>1.51</td>
</tr>
<tr>
<td>Needs #15</td>
<td>When I think about assessment, I often do not feel very capable.</td>
<td>2.67</td>
<td>1.56</td>
</tr>
<tr>
<td>Needs #16</td>
<td>Amongst other educators, I feel like doing assessment is important to fit in.</td>
<td>2.50</td>
<td>1.61</td>
</tr>
<tr>
<td>Needs #17</td>
<td>I feel like I have a lot of control in deciding how I assess my students’ learning.</td>
<td>5.96</td>
<td>1.12</td>
</tr>
<tr>
<td>Needs #18</td>
<td>I feel that my assessment efforts alienate me from other educators.</td>
<td>1.73</td>
<td>1.28</td>
</tr>
<tr>
<td>Needs #19</td>
<td>When it comes to assessment, I have to do what I am told.</td>
<td>2.01</td>
<td>1.53</td>
</tr>
<tr>
<td>Needs #20</td>
<td>I feel like I can pretty much be myself when assessing my students.</td>
<td>5.69</td>
<td>1.28</td>
</tr>
<tr>
<td>Motivation #1</td>
<td>because I would feel bad about myself if I did not.</td>
<td>2.32</td>
<td>1.55</td>
</tr>
<tr>
<td>Item Reference:</td>
<td>Item Content:</td>
<td>Mean:</td>
<td>Std Dev:</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>Motivation #2</td>
<td>because others would be disappointed with me if I did not.</td>
<td>2.05</td>
<td>1.25</td>
</tr>
<tr>
<td>Motivation #3</td>
<td>because I enjoy assessing my students’ learning.</td>
<td>4.23</td>
<td>1.70</td>
</tr>
<tr>
<td>Motivation #4</td>
<td>because I would feel like a failure if I did not.</td>
<td>2.23</td>
<td>1.44</td>
</tr>
<tr>
<td>Motivation #5</td>
<td>because it's important to me to try to better teach topics that students are not learning well.</td>
<td>5.92</td>
<td>0.99</td>
</tr>
<tr>
<td>Motivation #6</td>
<td>because people might think I’m not a caring person if I didn’t do it.</td>
<td>2.01</td>
<td>1.30</td>
</tr>
<tr>
<td>Motivation #7</td>
<td>because I feel like I have no choice about doing formative assessment; others make me do it.</td>
<td>1.82</td>
<td>1.39</td>
</tr>
<tr>
<td>Motivation #8</td>
<td>because I like the challenge of it.</td>
<td>3.50</td>
<td>1.91</td>
</tr>
<tr>
<td>Motivation #9</td>
<td>because I believe using formative assessment helps me teach better.</td>
<td>5.56</td>
<td>1.43</td>
</tr>
<tr>
<td>Motivation #10</td>
<td>because it's fun.</td>
<td>3.06</td>
<td>1.71</td>
</tr>
<tr>
<td>Motivation #11</td>
<td>because I worry that I would get in trouble if I did not.</td>
<td>1.69</td>
<td>1.11</td>
</tr>
<tr>
<td>Motivation #12</td>
<td>because it feels important to me personally to improve how my students are learning.</td>
<td>5.75</td>
<td>1.28</td>
</tr>
<tr>
<td>Motivation #13</td>
<td>because I feel guilty if I do not do something to test my students’ learning.</td>
<td>2.51</td>
<td>1.45</td>
</tr>
<tr>
<td>Motivation #14</td>
<td>because I want others to see I’m doing what I’ve been told to do.</td>
<td>1.69</td>
<td>1.22</td>
</tr>
<tr>
<td>Motivation #15</td>
<td>because it’s interesting to do.</td>
<td>3.81</td>
<td>1.78</td>
</tr>
<tr>
<td>Motivation #16</td>
<td>because improving student learning is an important value for me.</td>
<td>6.06</td>
<td>1.00</td>
</tr>
<tr>
<td>Engagement #1</td>
<td>I enjoy doing formative assessment very much.</td>
<td>4.76</td>
<td>1.52</td>
</tr>
<tr>
<td>Engagement #2</td>
<td>I think that doing formative assessment is useful for improving my teaching.</td>
<td>5.79</td>
<td>1.11</td>
</tr>
<tr>
<td>Engagement #3</td>
<td>I am sometimes anxious while reviewing assessment results.</td>
<td>3.70</td>
<td>1.81</td>
</tr>
<tr>
<td>Engagement #4</td>
<td>I make efforts to find other ways to assess my students.</td>
<td>4.73</td>
<td>1.47</td>
</tr>
<tr>
<td>Engagement #5</td>
<td>I pay attention and respond when assessment results show concern for student learning.</td>
<td>5.99</td>
<td>0.91</td>
</tr>
<tr>
<td>Engagement #6</td>
<td>When I'm evaluating student assessments, I find time goes by really slowly</td>
<td>4.89</td>
<td>1.76</td>
</tr>
<tr>
<td>Engagement #7</td>
<td>I get a sense of fulfillment from applying assessment results to improve my teaching.</td>
<td>5.32</td>
<td>1.20</td>
</tr>
<tr>
<td>Engagement #8</td>
<td>I intend to learn better ways to apply assessment results to improve my teaching.</td>
<td>5.03</td>
<td>1.43</td>
</tr>
<tr>
<td>Engagement #9</td>
<td>When balancing my teaching duties, formative assessment is an important priority.</td>
<td>4.56</td>
<td>1.54</td>
</tr>
<tr>
<td>Engagement #10</td>
<td>When I come to an assessment issue I can't solve right away, I tend to concentrate on solving it.</td>
<td>3.59</td>
<td>1.52</td>
</tr>
<tr>
<td>Engagement #11</td>
<td>If I can't get students to get a problem right, I just keep trying different things.</td>
<td>5.18</td>
<td>1.16</td>
</tr>
<tr>
<td>Engagement #12</td>
<td>It is important to me that I do a good job assessing my students’ learning.</td>
<td>5.59</td>
<td>1.07</td>
</tr>
<tr>
<td>Engagement #13</td>
<td>When students don’t get what I’m teaching right away, I just move on.</td>
<td>2.14</td>
<td>1.04</td>
</tr>
<tr>
<td>Engagement #14</td>
<td>I feel very tense while giving my students assessments.</td>
<td>2.24</td>
<td>1.31</td>
</tr>
<tr>
<td>Engagement #15</td>
<td>I think that doing formative assessment helps me improve the way I teach engineering.</td>
<td>5.39</td>
<td>1.24</td>
</tr>
<tr>
<td>Item Reference:</td>
<td>Item Content:</td>
<td>Mean:</td>
<td>Std Dev:</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Engagement #16</td>
<td>I would describe formative assessment as very interesting.</td>
<td>4.35</td>
<td>1.58</td>
</tr>
<tr>
<td>Engagement #17</td>
<td>I intend to continue using formative assessment in my teaching.</td>
<td>5.67</td>
<td>1.21</td>
</tr>
<tr>
<td>Engagement #18</td>
<td>I would do more assessment in my classes, but time doesn’t permit it.</td>
<td>4.37</td>
<td>1.73</td>
</tr>
<tr>
<td>Engagement #19</td>
<td>If I can’t find the right technique to use, I just skip the assessment.</td>
<td>4.91</td>
<td>1.59</td>
</tr>
<tr>
<td>Engagement #20</td>
<td>I would be willing to increase my use of formative assessment because it has value to me.</td>
<td>4.86</td>
<td>1.30</td>
</tr>
<tr>
<td>Engagement #21</td>
<td>I rarely prioritize assessment when planning my time.</td>
<td>3.60</td>
<td>1.70</td>
</tr>
<tr>
<td>Engagement #22</td>
<td>I do not feel nervous at all while assessing my students.</td>
<td>4.80</td>
<td>1.87</td>
</tr>
<tr>
<td>Engagement #23</td>
<td>I think formative assessment is a boring activity.</td>
<td>2.53</td>
<td>1.28</td>
</tr>
<tr>
<td>Engagement #24</td>
<td>I think measuring student learning is an important activity.</td>
<td>6.02</td>
<td>0.99</td>
</tr>
<tr>
<td>Engagement #25</td>
<td>I try hard to make my assessments effective.</td>
<td>5.54</td>
<td>1.18</td>
</tr>
<tr>
<td>Engagement #26</td>
<td>It is satisfying to use formative assessment to improve my teaching.</td>
<td>5.16</td>
<td>1.32</td>
</tr>
<tr>
<td>Engagement #27</td>
<td>I make time to review formative assessment data from my students.</td>
<td>5.14</td>
<td>1.40</td>
</tr>
<tr>
<td>Engagement #28</td>
<td>It is my intent to collect data from formative assessments in the future.</td>
<td>5.39</td>
<td>1.44</td>
</tr>
<tr>
<td>Engagement #29</td>
<td>When I have a hard time getting my class to learn something, I try other approaches.</td>
<td>5.90</td>
<td>0.92</td>
</tr>
<tr>
<td>Engagement #30</td>
<td>I think formative assessment is important to do because it can help students learn better.</td>
<td>5.57</td>
<td>1.23</td>
</tr>
<tr>
<td>Engagement #31</td>
<td>While I am doing formative assessment, I think about how much I enjoy it.</td>
<td>2.62</td>
<td>1.52</td>
</tr>
<tr>
<td>Engagement #32</td>
<td>I am very relaxed when it comes to assessing student learning.</td>
<td>4.72</td>
<td>1.60</td>
</tr>
<tr>
<td>Engagement #33</td>
<td>I believe doing formative assessment is beneficial to me and my goals.</td>
<td>5.41</td>
<td>1.12</td>
</tr>
<tr>
<td>Engagement #34</td>
<td>I get a feeling of satisfaction just from trying to assess and improve my students’ learning.</td>
<td>4.92</td>
<td>1.41</td>
</tr>
<tr>
<td>Engagement #35</td>
<td>Doing formative assessment does not hold my attention at all.</td>
<td>5.53</td>
<td>1.26</td>
</tr>
<tr>
<td>Engagement #36</td>
<td>If assessments show students aren’t learning, I keep working at it.</td>
<td>5.72</td>
<td>0.96</td>
</tr>
<tr>
<td>Engagement #37</td>
<td>I try very hard to use assessments whenever possible.</td>
<td>4.59</td>
<td>1.45</td>
</tr>
<tr>
<td>Engagement #38</td>
<td>I believe formative assessment could be of some value to me.</td>
<td>5.64</td>
<td>1.16</td>
</tr>
<tr>
<td>Engagement #39</td>
<td>I put a lot of effort into assessing my students.</td>
<td>4.73</td>
<td>1.33</td>
</tr>
<tr>
<td>Engagement #40</td>
<td>I intend to learn more ways to assess my students’ learning.</td>
<td>4.89</td>
<td>1.46</td>
</tr>
<tr>
<td>Engagement #41</td>
<td>I find myself choosing to do assessment over other teaching tasks.</td>
<td>2.59</td>
<td>1.31</td>
</tr>
</tbody>
</table>
Appendix H: IRB Permission Letter

MEMORANDUM

DATE: May 25, 2010

TO: Richard M. Goff, Kenneth Stanton

FROM: Virginia Tech Institutional Review Board (FWA00000572, expires June 13, 2011)

PROTOCOL TITLE: Motivation for Assessment in Engineering

IRB NUMBER: 10-471

Effective May 25, 2010, the Virginia Tech IRB Chair, Dr. David M. Moore, approved the new protocol for the above-mentioned research protocol.

This approval provides permission to begin the human subject activities outlined in the IRB-approved protocol and supporting documents.

Plans to deviate from the approved protocol and/or supporting documents must be submitted to the IRB as an amendment request and approved by the IRB prior to the implementation of any changes, regardless of how minor, except where necessary to eliminate apparent immediate hazards to the subjects. Report promptly to the IRB any injuries or other unanticipated or adverse events involving risks or harms to human research subjects or others.

All investigators (listed above) are required to comply with the researcher requirements outlined at http://www.irb.vt.edu/pages/responsibilities.htm (please review before the commencement of your research).

PROTOCOL INFORMATION:
Approved as: Expedited, under 45 CFR 46.110 category(ies) 6, 7
Protocol Approval Date: 5/25/2010
Protocol Expiration Date: 5/24/2011
Continuing Review Due Date*: 5/10/2011

*Date a Continuing Review application is due to the IRB office if human subject activities covered under this protocol, including data analysis, are to continue beyond the Protocol Expiration Date.

FEDERALLY FUNDED RESEARCH REQUIREMENTS:
Per federally regulations, 45 CFR 46.103(f), the IRB is required to compare all federally funded grant proposals / work statements to the IRB protocol(s) which cover the human research activities included in the proposal / work statement before funds are released. Note that this requirement does not apply to Exempt and Interim IRB protocols, or grants for which VT is not the primary awardee.

The table on the following page indicates whether grant proposals are related to this IRB protocol, and which of the listed proposals, if any, have been compared to this IRB protocol, if required.