List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.</td>
<td>Peak ground acceleration map used by the AASHTO Specifications</td>
</tr>
<tr>
<td>2.2.</td>
<td>0.2-second spectral acceleration map with 2% probability of exceedance in 50 years</td>
</tr>
<tr>
<td>2.3.</td>
<td>1.0-second spectral acceleration map with 2% probability of exceedance in 50 years</td>
</tr>
<tr>
<td>2.4.</td>
<td>Response spectrum curve in the current AASHTO Specifications</td>
</tr>
<tr>
<td>2.5.</td>
<td>Response spectrum curve in the new LRFD Guidelines</td>
</tr>
<tr>
<td>2.6.</td>
<td>Comparison between the response spectrum curves using the old AASHTO Specifications and the new LRFD Guidelines for the Richmond area</td>
</tr>
<tr>
<td>2.7.</td>
<td>Comparison between the response spectrum curves using the old AASHTO Specifications and the new LRFD Guidelines for the Bristol area</td>
</tr>
<tr>
<td>3.1.</td>
<td>Actual cross section of the prestressed concrete girder bridge superstructure</td>
</tr>
<tr>
<td>3.2.</td>
<td>Simplified cross section of the prestressed concrete girder bridge superstructure</td>
</tr>
<tr>
<td>3.3.</td>
<td>Pier elevation of the prestressed concrete girder bridge</td>
</tr>
<tr>
<td>3.4.</td>
<td>Actual pier cap beam cross section of the prestressed concrete girder bridge</td>
</tr>
<tr>
<td>3.5.</td>
<td>Column cross section of the prestressed concrete girder bridge</td>
</tr>
<tr>
<td>3.6.</td>
<td>RISA 3D model of the prestressed concrete girder bridge</td>
</tr>
<tr>
<td>3.7.</td>
<td>Embedment of the prestressed concrete girders on the backwall</td>
</tr>
<tr>
<td>3.8.</td>
<td>Section of the continuity diaphragm used between the prestressed concrete girders</td>
</tr>
<tr>
<td>3.9.</td>
<td>Plan view of the continuity diaphragm used to connect the prestressed concrete girders</td>
</tr>
<tr>
<td>3.10.</td>
<td>Loading on the pier performed to determine more accurate dead load effects on the pier cap beam and columns</td>
</tr>
</tbody>
</table>
3.11. Three moving live load cases and the lane load ...25
3.12. Relationship between axial load P on the column and its effective moment of
 inertia I_e ..32
3.13. Uniform lateral loading on the prestressed concrete girder bridge35
3.15. Design response spectrum curve for the prestressed concrete girder bridge39
3.16. Equivalent earthquake loading using the single mode spectral analysis method
 on the prestressed concrete girder bridge ..41
3.17. Interaction diagram for the columns of the prestressed concrete girder bridge ...43
3.18. Simplified cross section of the pier cap beam of the prestressed concrete girder
 bridge ...44

4.1. Actual cross section of the West Bound steel girder bridge superstructure50
4.2. Actual cross section of the East Bound steel girder bridge superstructure51
4.3. Simplified cross section of the West Bound steel girder bridge superstructure ..52
4.4. Simplified cross section of the East Bound steel girder bridge superstructure52
4.5. Pier elevation of the West Bound steel girder bridge54
4.6. Pier elevation of the East Bound steel girder bridge55
4.7. RISA 3D model of the West Bound and East Bound steel girder bridges56
4.8. Fixed supports at the ends of the superstructure of the steel girder bridges57
4.9. Elevations of the West Bound and East Bound steel girders58
4.10. Loading on the pier performed to get more accurate dead load effects on the
 pier cap beam and columns of the steel girder bridges59
4.11. Three moving live load cases and the lane load ..60
4.12. Uniform lateral loading on the steel girder bridges66
4.13. Design response spectrum curve for the steel girder bridges69
4.14. Equivalent earthquake loading using the single mode spectral analysis method
 on the West Bound steel girder bridge ..71
4.15. Equivalent earthquake loading using the single mode spectral analysis method
 on the East Bound steel girder bridge ..72
4.16. Interaction diagram of the West Bound steel girder bridge columns74
II-6. Cross section of the columns of the prestressed concrete girder bridge107
III-1. RISA 3D model of the prestressed concrete girder bridge108
V-1. Actual cross section of the pier cap beam of the prestressed concrete girder
bridge ...111
V-2. Simplified cross section of the pier cap beam of the prestressed concrete
girder bridge ..112
IX-1. Cross section of the columns of the prestressed concrete girder bridge121
IX-2. Column interaction diagram for the prestressed concrete girder bridge126
X-1. Actual cross section of the pier cap beam of the prestressed concrete girder
bridge ...127
X-2. Simplified cross section of the pier cap beam of the prestressed concrete
girder bridge ..127
XIII-1. Actual cross section of the parapet of the steel girder bridge142
XIII-2. Simplified cross section of the parapet of the steel girder bridge142
XIII-3. Simplified cross section of the West Bound plate girders144
XIII-4. Actual cross section of the West Bound superstructure of the steel girder
bridge ...145
XIII-5. Simplified cross section of the West Bound superstructure of the steel girder
bridge ...146
XIII-6. Simplified cross section of the East Bound plate girder148
XIII-7. Actual cross section of the East Bound superstructure of the steel girder
bridge ...150
XIII-8. Simplified cross section of the East Bound superstructure of the steel girder
bridge ...151
XIII-9. Actual cross section of the pier cap beam of the West Bound steel girder
bridge ...153
XIII-10. Simplified cross section of the pier cap beam of the West Bound steel girder
bridge ...153
XIII-11. Actual cross section of the pier cap beam of the East Bound steel girder
bridge ...154
XIII-12. Simplified cross section of the pier cap beam of the East Bound steel girder bridge ..154
XIII-13. Cross section of the columns of the West Bound steel girder bridge155
XIII-14. Cross section of the columns of the East Bound steel girder bridge155
XIV-1. RISA 3D model of the steel girder bridge ..156
XVI-1. Actual cross section of the pier cap beam of the West Bound steel girder bridge ..160
XVI-2. Simplified cross section of the pier cap beam of the West Bound steel girder bridge ..160
XVI-3. Actual cross section of the pier cap beam of the East Bound steel girder bridge ..165
XVI-4. Simplified cross section of the pier cap beam of the East Bound steel girder bridge ..166
XX-1. Cross section of the West Bound steel girder bridge columns176
XX-2. Column interaction diagram for the West Bound steel girder bridge columns ..182
XX-3. Cross section of the East Bound steel girder bridge columns182
XX-4. Column interaction diagram for the West Bound steel girder bridge columns ..189
XXI-1. Actual cross section of the pier cap beam of the West Bound steel girder bridge ..190
XXI-2. Simplified cross section of the pier cap beam of the West Bound steel girder bridge ..190
XXI-3. Actual cross section of the pier cap beam of the East Bound steel girder bridge ..193
XXI-4. Simplified cross section of the pier cap beam of the East Bound steel girder bridge ..193
XXII-1. Lap splices used at the bottom of the columns of the West Bound bridge202
XXII-2. Lap splices used at the bottom of the columns of the East Bound bridge209
XXIII-1. Design response spectrum curve for Vienna, VA246
XXIII-2. Design response spectrum curve for Richmond, VA247
XXIII-3. Design response spectrum curve for Bristol, VA248
XXIII-4. Comparison between the column interaction diagram and the axial loads and moments of the column for Vienna, VA ...255

XXIII-5. Comparison between the column interaction diagram and the axial loads and moments of the column for Richmond, VA ...255

XXIII-6. Comparison between the column interaction diagram and the axial loads and moments of the column for Bristol, VA ...256

XXIII-7. Interaction diagram for the columns with 1.5% reinforcement ratio for the parametric study ..261

XXIII-8. Interaction diagram for the columns with 2.0% reinforcement ratio for the parametric study ..266