Identification of Transient Nonlinear Aeroelastic Phenomena

Christopher C. Chabalko

Dissertation submitted to the faculty of
Virginia Polytechnic Institute and State University in
partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Engineering Mechanics

Muhammad R. Hajj - Committee Chairman
John C. Duke - Committee Member
George A. Hagedorn - Committee Member
Dean T. Mook - Committee Member
Saad A. Ragab - Committee Member

March 5, 2007
Blacksburg, Virginia

Copyright ©2007, Christopher C. Chabalko
Identification of Transient Nonlinear Aeroelastic Phenomena

Christopher C. Chabalko

Abstract

Complex nonlinear aspects of aeroelastic phenomena include unsteady nonlinear aerodynamic loads, structural nonlinearities, as well as nonlinear couplings between the flow and the structural response. Nonlinearities in aerodynamic loads originate from unsteady shocks and/or flow separation. Structural nonlinearities are geometric, or a result of free play. Nonlinear fluid structure couplings result from nonlinear resonance between the aerodynamic load and structural modes. Under different conditions, one or a combination of these aspects could yield flutter or Limit Cycle Oscillations (LCO).

The overall goal of this work is to develop the capabilities to quantify the role that these different nonlinear mechanisms could play in observed flutter and LCO. The realization of such a goal would help in providing a benchmark for the detection of nonlinear aeroelastic instabilities and possibly effective means for obtaining improved performance and reduced uncertainties through operation beyond conventional boundaries that are based on linear analysis. Additionally, this effort will provide a benchmark for the validation of computational methodologies.

In this thesis, wavelet-based higher order spectra are applied to identify different nonlinear aeroelastic phenomena as encountered in two experiments. First, the analysis is applied to a set of experiments involving a flexible semispan model (FSM) of a High Speed Civil Transport (HSCT) wing configuration conducted by Silva et al. (Experimental Steady and Unsteady Aerodynamic and Flutter Results for HSCT Semispan Models AIAA/ASME/ASCE/AHS/ASC 41st Structures, Structural Dynamics, and Materials Conference, 2000). The interest is in the identification of nonlinear aeroelastic phenomena associated with a high dynamic response region which was measured over a large range of dynamic pressures around Mach number 0.98. At the top of this region is a “hard” flutter point that resulted in the loss of the model. The results show that “hard” flutter is related to intermittent nonlinear coupling between the shock motion and large amplitude structural motions. Second, the analysis is applied to identify nonlinear aspects of LCO encountered
during test flights of an F-16 aircraft. The results show quadratic and cubic couplings in the acceleration signals of the under-wing launchers and high quadratic coupling levels between flaperon motions and wing oscillations. The implications of applying these techniques in the capacity of a “flutterometer” are also discussed.
I would like to thank my advisor, Dr. Muhammad R. Hajj, for his dedication and the time he spent passing on the knowledge that formed the basis of this work. I would like to also thank Dr. Walter A. Silva (NASA LaRC) and Drs. Charles M. Denegri and Daniel L. Maxwell (AFRL-Eglin) for providing the data analyzed in this work. My thanks also go to the faculty members who served on my committee for their contributions to my academic development; Dr. Ragab for his patience and encouragement in and outside the classroom, especially when explaining the intricacies of hydrodynamic instability, Dr. Mook for the development of my knowledge in the field of fluid/structure interaction and our many discussions of nonlinear dynamics and aircraft stability, Dr. Duke for involving me in his research on nondestructive evaluation, and Dr. Hagedorn for formalizing my mathematical knowledge. Other professors who influenced my knowledge are Dr. Ali H. Nayfeh in the fields of nonlinear dynamics and perturbation techniques and Dr. Henry W. Tieleman in the field of wind engineering, and for that I am thankful. I should also thank Dr. Edmund G. Henneke, previous ESM department head, for his encouragement and support over the many years I spent in ESM. My thanks also go to Dr. Philip S. Beran for taking the time to advise me on the future applications of the knowledge developed in this work.

I would also like to acknowledge the many students I have taught over the years for adding variety to a somewhat routine schedule, and to Bob Simonds for his support in conducting experiments beyond what was required by the lab course manual.

I would like to thank my parents, brother, and sister for their encouragement and support throughout the many years I spent at Virginia Tech.

The support of the U.S. Air Force Office of Scientific Research through Grant F49620-03-1-0206 and of the National Institute of Aerospace through Grant VT-03-01, Subnumber 3044-VT Supplement 7 is also acknowledged.
Contents

List of Figures .. vili
List of Tables .. xv

1 Introduction .. 1

2 Nonlinear Time Series Analysis and Higher Order Spectra 13
 2.1 Frequency and Phase Couplings in Quadratic and Cubic Systems 14
 2.2 Fourier-Based Analysis Tools 16
 2.2.1 Continuous and Discrete Fourier Transform 16
 2.2.2 Moment Functions and Moment Spectra 17
 2.2.3 Fourier-Based Spectral Moments 18
 2.2.4 Numerically Solved Quadratic System 25
 2.2.5 Numerically Solved Cubic System 29
 2.3 Wavelet-Based Analysis Tools 33
 2.3.1 Continuous Wavelet Transform 33
 2.3.2 Some Characteristics of the Morlet Wavelet 34
 2.3.3 Frequency Domain Implementation 37
 2.3.4 Analytical Wavelet Transforms 38
 2.3.5 Time/Frequency Characterization 41
 2.3.6 Wavelet-Based Spectral Moments 41
 2.3.7 Wavelet-Bicoherence of an Intermittently Coupled System 44

3 Nonlinear Aspects of “Hard” Flutter of an HSCT Flexible Semispan Model 48
 3.1 Analysis of High Speed Civil Transport Flexible Semispan Model 48
 3.2 Model Description .. 49
 3.3 Prognosis of Nonlinearity .. 50
 3.4 “Hard Flutter” Test Procedure 57
 3.5 Time/Frequency Analysis .. 60
 3.6 Intermittent Fluid/Structure Coupling 74
 3.7 Flutter Mechanism ... 93

4 F-16 Quadratic LCO Identification 101
 4.1 Historical Context of the F-16 101
 4.2 LCO Testing procedure .. 102
 4.3 Nonlinear Aspects of Maneuver-Induced LCO 103
 4.4 Nonlinear Aspects of Mechanically-Induced LCO 123
 4.5 Quadratic Coupling in Flaperon/Wing-Store System 137
 4.6 Growth and Decay of Quadratically Coupled LCO 148
List of Figures

1.1 Subcritical instability in the NATA model. For this model, LCO can be encountered at speeds below that predicted by linear analysis. Identification and modeling the jump phenomena at the lower speeds require nonlinear analysis. 3

1.2 Anscombe’s quartet with a best fit line. The four data sets have the same linear statistics including best fit line. The obviousness of the differences in the data presents the need for higher-order analysis tools. 5

1.3 Parallel ridge crossing maneuver which requires a wind up turn that is followed by an increase in altitude [37]. The wind up turn can cause LCO. 10

2.1 A portion of a 10Hz sinusoid is shown in the top of the figure. The power spectrum of the time series is shown in the bottom of the figure. Note the strong peak at 10Hz. 19

2.2 A portion of a time series consisting of a 10Hz sinusoid, a 15Hz sinusoid, and additive white Gaussian noise is shown in the top of the figure. The power spectrum is shown in the bottom of the figure. 20

2.3 Linear coherence between a signal containing one 10Hz sinusoid and a signal containing one phase coupled 10Hz sinusoid, 20Hz sinusoid and random noise. 21

2.4 Full domain and range of the auto-bicoherence. A large amplitude (lighter color) indicates phase coupling of f_1, f_2, and $f_1 + f_2$. 22

2.5 Projection of the auto-bicoherence on the f_1-f_2 plane, with the principal domain indicated. 23

2.6 Auto-bicoherence calculated over the principle domain. 23

2.7 The full domain of the cross-bicoherence of a quadratic system with the principle domain indicated (a), and the final form of the cross-bicoherence of the same system (b). 25

2.8 Time series (top) and power spectrum (bottom) of the numerically solved quadratic system given in equation 2.35. 28

2.9 Auto-bicoherence of the numerically solved quadratic system given in equation 2.35. 28

2.10 Time series (top) and power spectrum (bottom) of the numerically solved cubic system given in equation 2.43. 31

2.11 Auto-tricoherence of the numerically solved cubic system given in equation 2.43. 32

2.12 The auto-tricoherence plotted in two dimensions using different symbols. 32

2.13 The real part (a), imaginary part (b), magnitude (c), and Fourier domain (d) of a Morlet wavelet with $\tau = 0$. 36

2.14 Time series (top), and wavelet transform magnitude (bottom), of a delta function. 39

2.15 Analytical and numerical wavelet transform (real part) of a delta function, $a = 0.8753$. The numerical method gives the same result as the analytical method. 40

2.16 Analytical and numerical wavelet transform (imaginary part) of a delta function, $a = 0.8753$. The numerical method gives the same result as the analytical method. 41
2.17 Time series (top), and Wavelet Energy Spectrum (bottom), of a chirp.

2.18 Time series of an intermittently coupled system, input $x(t)$ top (a), and output $y(t)$ bottom (a), and Fourier-based cross-bicoherence (b)

2.19 Uncoupled interval; Integration window marked by blue lines (a), and resulting wavelet-based cross-bicoherence (b)

2.20 Partially coupled interval; Integration window marked by blue lines (a), and resulting wavelet-based cross-bicoherence (b)

2.21 Fully coupled interval; Integration window marked by blue lines (a), and resulting wavelet-based cross-bicoherence (b)

3.1 Flexible semi-span model (FSM) with instrumentation [33]

3.2 Test points, predicted instability regions, and actual instability regions of the FSM [33]

3.3 Wavelet transform magnitude of FWD, MID, and AFT wing tip accelerations. The instantaneous forcing frequency is plotted in white, along with half its frequency and double its frequency; Run 911

3.4 Wavelet transform magnitude of FWD, MID, and AFT wing tip accelerations. The instantaneous forcing frequency is plotted in white, along with half its frequency and double its frequency; Run 912

3.5 Wavelet transform magnitude of FWD, MID, and AFT wing tip accelerations; Run 914

3.6 Wavelet transform magnitude of FWD, MID, and AFT wing tip accelerations. The instantaneous forcing frequency is plotted in white, along with half its frequency and double its frequency; Run 980

3.7 Wavelet transform magnitude of FWD, MID, and AFT wing tip accelerations. The instantaneous forcing frequency is plotted in white, along with half its frequency and double its frequency; Run 981

3.8 Wavelet transform magnitude of FWD, MID, and AFT wing tip accelerations. The frequency of the forcing signal is plotted with white, along with half its frequency and double its frequency; Run 966

3.9 Experimentally determined vibrational modes of the FSM [33].

3.10 HSCT-FSM intact and failed during “hard” flutter in Run 1068. The damage initiated near the outer portion of the wing.

3.11 Wavelet transform magnitude of the FWD, MID, AFT bending strain gages, and mid torsion strain gage respectively, for Runs 1062 and 1065.

3.12 Wavelet transform magnitude of the pressure at $\eta = 95\%$, upper surface; leading edge to $x/c = 90\%$; Run 1062

3.13 Wavelet transform magnitude of the pressure at $\eta = 95\%$, lower surface; $x/c = 10\%$ to $x/c = 90\%$; Run 1062

3.14 Wavelet transform magnitude of the pressure at $\eta = 95\%$, lower surface; leading edge to $x/c = 90\%$; Run 1065

3.15 Wavelet transform magnitude of the pressure at $\eta = 95\%$, lower surface; $x/c = 10\%$ to $x/c = 90\%$; Run 1065

3.16 Wavelet transform magnitude of the pressure at $\eta = 95\%$, upper surface; leading edge to $x/c = 90\%$; Run 1066
3.17 Wavelet transform magnitude of the pressure at $\eta = 95\%$, lower surface; $x/c = 10\%$ to $x/c = 90\%$; Run 1066 .. 71
3.18 Wavelet transform magnitude of the pressure at $\eta = 95\%$, upper surface; leading edge to $x/c = 90\%$; Run 1067 .. 72
3.19 Wavelet transform magnitude of the pressure at $\eta = 95\%$, lower surface; $x/c = 10\%$ to $x/c = 90\%$; Run 1067 .. 73
3.20 Partial pressure record, $\eta = 95\%$, $x/c=20\%$; Run 1065 .. 75
3.21 Partial pressure record, $\eta = 95\%$, $x/c=40\%$; Run 1065 .. 75
3.22 Partial pressure record, $\eta = 95\%$, $x/c=60\%$; Run 1065 .. 76
3.23 Partial pressure record, $\eta = 95\%$, $x/c=80\%$; Run 1065 .. 76
3.24 Acceleration of the leading edge wing tip; Run 1065 .. 77
3.25 Acceleration of the wing tip at mid chord; Run 1065 .. 77
3.26 Acceleration of the trailing edge wing tip; Run 1065 .. 78
3.27 Power spectra of the pressure fluctuations at $x/c = 20\%$, 40\%, 60\%, and 80\%; $\eta = 95\%$; Run 1062 .. 79
3.28 Power spectra of the pressure fluctuations at $x/c = 20\%$, 40\%, 60\%, and 80\%; $\eta = 95\%$; Run 1065 .. 80
3.29 Power spectra of the pressure fluctuations at $x/c = 20\%$, 40\%, 60\%, and 80\%; $\eta = 95\%$; Run 1066 .. 81
3.30 Power spectra of the pressure fluctuations at $x/c = 20\%$, 40\%, 60\%, and 80\%; $\eta = 95\%$; Run 1067 .. 82
3.31 Power spectra of the leading edge, mid chord, and trailing edge wing tip accelerations; Run 1062 .. 83
3.32 Power spectra of the leading edge, mid chord, and trailing edge wing tip accelerations; Run 1065 .. 84
3.33 Power spectra of the leading edge, mid chord, and trailing edge wing tip accelerations; Run 1066 .. 85
3.34 Power spectra of the leading edge, mid chord, and trailing edge wing tip acceleration; Run 1067 .. 86
3.35 Fourier-based cross bicoherence between the pressure at $x/c = 60\%$ and the leading edge, mid chord and trailing edge wing tip accelerometers (top) and $x/c = 80\%$ and the leading edge, mid chord, and trailing edge wing tip accelerometers (bottom); Run 1065 .. 87
3.36 Time series of the pressure fluctuations at $\eta = 95\%$, $x/c=80\%$ and the trailing edge tip acceleration. Notice the periodic aspects in both signals near $t = 16$ seconds and again near $t = 17.5$ seconds; Run 1065 .. 88
3.37 Pressure signal at $\eta = 95\%$, $x/c=80\%$ and its wavelet transform magnitude. There is intermittent harmonic motion near 7 Hz around $t = 17.5$ seconds; Run 1065 .. 89
3.38 Trailing edge wing tip acceleration and its wavelet transform magnitude. There is intermittent harmonic energy near 14 Hz around $t = 17.5$ seconds; Run 1065 .. 90
3.39 Wavelet cross-bicoherence between the pressure fluctuations at $\eta = 95\%$, $x/c=80\%$ and trailing edge wing tip acceleration during $t = [16.1−16.4]$ seconds and $t = [17.4−17.7]$ seconds. The cross-bicoherence shows intermittent coupling at $(7Hz,7Hz,14Hz)$ between the pressure and the acceleration; Run 1065 .. 91
3.40 Wavelet cross-bicoherence between the pressure at $\eta = 95\%$, $x/c=80\%$ and trailing edge wing tip acceleration during $t = 16.5 − 17.5s$. The cross-bicoherence shows no coupling over this interval; Run 1065 .. 92
3.41 The pressure at \(\eta = 95\% \), \(x/c=80\% \) (top) and the trailing edge wing tip acceleration (bottom) during coupled motion. The accelerometer goes through four cycles while the pressure fluctuations go through two cycles. .. 93

3.42 Pressure distribution over the wing at \(\eta = 95\% \) at \(t = 17.485 \) seconds. The acceleration of the wing tip is marked with a “\(\bullet \)” .. 94

3.43 Pressure distribution over the wing at \(\eta = 95\% \) at \(t = 17.556 \) seconds. The acceleration of the wing tip is marked with a “\(c \)” .. 95

3.44 Pressure distribution over the wing at \(\eta = 95\% \) at \(t = 17.620 \) seconds. The acceleration of the wing tip is marked with an “\(x \)” 96

3.45 Unsteady shock motion can be seen on the wing at several different times. The shock goes through one cycle while the accelerometer goes through two cycles. 97

3.46 Pressure and acceleration records. The trailing edge wing tip acceleration goes through two cycles while the shock on the upper surface at \(\eta = 95\% \) goes through one cycle, continued on the next page; Run 1065 .. 99

3.46 Pressure and acceleration records. The trailing edge wing tip acceleration goes through two cycles while the shock on the upper surface at \(\eta = 95\% \) goes through one cycle, continued from the previous page; Run 1065 100

3.47 Mach number, altitude, angle of attack, and vertical wing-tip acceleration for Run 5 [42] ... 104

3.48 Expanded view of the vertical accelerations and wavelet transform magnitudes of ID 1 (a), 4 (b), 6 (c), and 8 (d) during LCO. ... 109

3.49 Wavelet-based auto-bicoherence of the vertical accelerations at ID 1, 4, 6, and 8 during the interval \(t = [52.0 - 53.5] \) seconds. Contour levels are set at \((0.3 : 0.1 : 0.9)\). 110

3.50 Wavelet-based auto-bicoherence of the vertical acceleration of ID 1, 4, 6, and 8 during the interval \(t = [55.0 - 56.5] \) seconds. Contour levels are set at \((0.3 : 0.1 : 0.9)\) 111

3.51 Wavelet-based auto-bicoherence of the vertical acceleration of ID 1, 4, 6, and 8 during the interval \(t = [58.0 - 59.5] \) seconds. Contour levels are set at \((0.3 : 0.1 : 0.9)\). 111

3.52 Lateral accelerations of ID 1, 4, 6, and 8 .. 112

3.53 Power spectra of lateral accelerations at ID 1 (a), 4 (b), 6 (c), and 8 (d) 113

3.54 Expanded view of the lateral accelerations and wavelet transform magnitudes of ID 1 (a), 4 (b), 6 (c), and 8 (d) during LCO. ... 114

3.55 Wavelet-based auto-bicoherence of the lateral acceleration of ID 1, 4, 6, and 8 during the interval \(t = [52.0 - 53.5] \) seconds. Contour levels are set at \((0.3 : 0.1 : 0.9)\) 115

3.56 Wavelet-based auto-bicoherence of the lateral acceleration of ID 1, 4, 6, and 8 during the interval \(t = [55.0 - 56.5] \) seconds. Contour levels are set at \((0.3 : 0.1 : 0.9)\) 116

3.57 Wavelet-based auto-bicoherence of the lateral acceleration of ID 1, 4, 6, and 8 during the interval \(t = [58.0 - 59.5] \) seconds. Contour levels are set at \((0.3 : 0.1 : 0.9)\) 116
4.18 Cross-bicoherence between the lateral and vertical accelerations at ID 1, 4, 6, and 8 during the interval $[52.0 - 53.5]$ seconds. Contour levels are set at $([0.3 : 0.1 : 0.9])$. 118
4.19 Cross-bicoherence between the lateral and vertical accelerations at ID 1, 4, 6, and 8 during the interval $[55.0 - 56.5]$ seconds. Contour levels are set at $([0.3 : 0.1 : 0.9])$. 119
4.20 Cross-bicoherence between the lateral and vertical accelerations at ID 1, 4, 6, and 8 during the interval $[58.0 - 59.5]$ seconds. Contour levels are set at $([0.3 : 0.1 : 0.9])$. 120
4.21 Lateral (blue) and vertical (green) accelerations of the wing-tip launcher ID 1 during an interval of LCO. 121
4.22 A cubic nonlinearity is identified in the wing-tip launcher's lateral acceleration ID 1, as indicated by the high auto-tricoherence value at $(8.2Hz, 8.2Hz, 8.2Hz, 24.6Hz)$. 122
4.23 The auto-tricoherence is repeated using a novel plotting technique. A high value of auto-tricoherence is indicated at $(8.2Hz, 8.2Hz, 8.2Hz, 24.6Hz)$. 122
4.24 Mach number, Altitude, angle of attack, and vertical acceleration of the wing-tip launcher ID 1 for Run 2 [42] 123
4.25 Right flaperon motion and wavelet transform magnitude, notice the harmonic content around 27 seconds. 124
4.26 Right (blue) and left (black) flaperon motion during mechanically forced event (top), and right flaperon (blue) and vertical wing-tip acceleration, ID 1 instrument 6, (green) during the mechanically forced event (bottom). 124
4.27 Vertical accelerations of the wing-tip launcher ID 1 (B. L. 183 in), the underwing launcher ID 4 (B. L. 157 in), the pylon-wing interface ID 6 (B. L. 156.3), and the pylon-wing interface ID 8 (B. L. 117.6 in) during Run 2. 125
4.28 Expanded view of the vertical accelerations of the wing-tip launcher ID 1, the underwing launcher ID 4, the pylon-wing interface ID 6, and the pylon-wing interface 8 and their wavelet transform magnitudes during the forcing event. 126
4.29 Wavelet-based auto-bicoherence of the vertical acceleration of ID 1, 4, 6, and 8 over the interval $t = [26.0 - 27.5]$ second. Contour levels are set at $([0.5 : 0.1 : 0.9])$. 127
4.30 Wavelet-based auto-bicoherence of the vertical acceleration of ID 1, 4, 6, and 8 over the interval $t = [27.0 - 28.5]$ second. Contour levels are set at $([0.5 : 0.1 : 0.9])$. 128
4.31 Lateral accelerations of the wing-tip launcher ID 1 (B. L. 183 in), the underwing launcher ID 4 (B. L. 157 in), the pylon-wing interface ID 6 (B. L. 156.3), and the pylon-wing interface ID 8 (B. L. 117.6 in) during Run 2. 129
4.32 Expanded view of the lateral accelerations of the wing-tip launcher ID 1, the underwing launcher ID 4, the pylon-wing interface ID 6, and the pylon-wing interface 8 and their wavelet transform magnitudes during the forcing event. 130
4.33 Wavelet-based auto-bicoherence of the lateral acceleration of ID 1, 4, 6, and 8 over the interval of $[26.0 - 27.5]$ seconds. Contour levels are set at $([0.5 : 0.1 : 0.9])$. 131
4.34 Wavelet-based auto-bicoherence of the lateral acceleration of ID 1, 4, 6, and 8 over the interval of $[27.0 - 28.5]$ seconds. Contour levels are set at $([0.5 : 0.1 : 0.9])$. 132
4.35 Cross-bicoherence between the lateral and vertical acceleration at ID 1, 4, 6, and 8 over the interval of $[26.0 - 27.5]$ seconds. Contour levels are set at $([0.5 : 0.1 : 0.9])$. 134
4.36 Cross-bicoherence between the lateral and vertical acceleration at ID 1, 4, 6, and 8 over the interval of $[27.0 - 28.5]$ seconds. Contour levels are set at $([0.5 : 0.1 : 0.9])$. 135
4.37 The instrument location is indicated in the top right illustration. The other plots are: the vertical acceleration of the wing-tip launcher ID 1, (top), flaperon motion (second), wavelet transform magnitude of the vertical acceleration of the wing-tip launcher (third), wavelet transform magnitude of the flaperon motion (fourth), wavelet-based linear coherence between the flaperon and the vertical acceleration of the wing-tip launcher ID 1 (bottom), and wavelet-based cross-bicoherence treating the flaperon as an input and the wing-tip launcher’s vertical acceleration as an output.

4.38 The instrument location is indicated in the top right illustration. The other plots are: vertical acceleration of the underwing launcher ID 4, (top), flaperon motion (second), wavelet transform magnitude of the vertical acceleration of the underwing launcher (third), wavelet transform magnitude of the flaperon motion (fourth), wavelet-based linear coherence between the flaperon and the vertical acceleration of the underwing launcher ID 4 (bottom), and wavelet-based cross-bicoherence between the flaperon and the underwing launcher’s vertical acceleration.

4.39 The instrument location is indicated in the top right illustration. The other plots are: vertical acceleration of the pylon-wing interface ID 6, (top), flaperon motion (second), wavelet transform magnitude of the vertical acceleration of the pylon-wing interface (third), wavelet transform magnitude of the flaperon motion (fourth), wavelet-based linear coherence between the flaperon and the vertical acceleration of the pylon-wing interface (bottom), and wavelet-based cross-bicoherence between the flaperon and the pylon-wing interface’s vertical acceleration.

4.40 The instrument location is indicated in the top right illustration. The other plots are: vertical acceleration of the pylon-wing interface ID 8, (top), flaperon motion (second), wavelet transform magnitude of the vertical acceleration of the pylon-wing interface (third), wavelet transform magnitude of the flaperon motion (fourth), wavelet-based linear coherence between the flaperon and the vertical acceleration of the pylon-wing interface (bottom), and wavelet-based cross-bicoherence between the flaperon and the pylon-wing interface’s vertical acceleration.

4.41 The instrument location is indicated in the top right illustration. The other plots are: lateral acceleration of the wing-tip launcher ID 1, (top), flaperon motion (second), wavelet transform magnitude of the lateral acceleration of the wing-tip launcher (third), wavelet transform magnitude of the flaperon motion (fourth), wavelet-based linear coherence between the flaperon and the lateral acceleration of the wing-tip launcher (bottom), and wavelet-based cross-bicoherence between the flaperon and the wing-tip launcher’s lateral acceleration.

4.42 The instrument location is indicated in the top right illustration. The other plots are: lateral acceleration of the underwing launcher ID 4, (top), flaperon motion (second), wavelet transform magnitude of the lateral acceleration of the underwing launcher (third), wavelet transform magnitude of the flaperon motion (fourth), wavelet-based linear coherence between the flaperon and the lateral acceleration of the underwing launcher (bottom), and wavelet-based cross-bicoherence between the flaperon and the underwing launcher’s lateral acceleration.
4.43 The instrument location is indicated in the top right illustration. The other plots are:
lateral acceleration of the pylon-wing interface ID 6, (top), flaperon motion (second),
wavelet transform magnitude of the lateral acceleration of the pylon-wing interface
(third), wavelet transform magnitude of the flaperon motion (fourth), wavelet-based
linear coherence between the flaperon and the lateral acceleration of the pylon-wing
interface (bottom), and wavelet-based cross-bicoherence between the flaperon and
the pylon-wing interface’s lateral acceleration.

4.44 The instrument location is indicated in the top right illustration. The other plots are:
lateral acceleration of the pylon-wing interface ID 8, (top), flaperon motion (second),
wavelet transform magnitude of the lateral acceleration of the pylon-wing interface
(third), wavelet transform magnitude of the flaperon motion (fourth), wavelet-based
linear coherence between the flaperon and the lateral acceleration of the pylon-wing
interface (bottom), and wavelet-based cross-bicoherence between the flaperon and
the pylon-wing interface’s lateral acceleration.

4.45 Vertical acceleration of the wing-tip launcher, ID 6 (top), and its wavelet transform
magnitude (bottom), during an interval of flaperon induced LCO.

4.46 Auto-bicoherence levels over eight intervals track the quadratic coupling of the wing-
tip launcher’s vertical acceleration in Run 2.

4.47 Level of quadratic coupling as a function of time, using the end of the calculation
interval as a reference.
List of Tables

1.1 Anscombe’s quartet [16] and statistics. ... 4

3.1 Mach number, dynamic pressure, and forcing signal for several forced excitation runs
of the HSCT-FSM ... 52
3.2 Mach number and dynamic pressure for several runs of the HSCT-FSM 57

4.1 Nominal flight conditions and LCO description for the two runs analyzed. 103
4.2 Accelerometer locations and instrumentation numbers for vertical and lateral ac-
celerometers. ... 104
4.3 Summary of the primary coupling at all eight vertical and lateral instrumenta-
tion locations for maneuver induced LCO (Run 5) and mechanically forced LCO (Run 2). 136
4.4 Starting and ending times of the eight intervals used to track the strength of quadratic
coupling in LCO. .. 149