PERFORMANCE EVALUATION AND YIELD DETERMINATION OF A FULL-SCALE BIOLOGICAL AERATED FILTER

Scott D. Phipps

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University In Partial fulfillment of the requirements for the degree of

Master of Science In Environmental Engineering

Nancy G. Love, Chair
Mark A. Edwards
John T. Novak

March 16, 2001 Blacksburg, Virginia

Keywords: Biological Aerated Filter, Yield, Particle Hydrolysis, Biochemical Oxygen Demand
Copyright 2001, Scott D. Phipps
ACKNOWLEDGEMENT

The author would like to acknowledge and thank the following people for their contributions and support during this research project. The author would like to recognize Infilco Degremont, Inc. and Edna Bailey Sussman Foundation for partial funding of this research project. The author would like to thank the Roanoke Water Pollution Control Facility and their personnel for their cooperation, specifically Scott Shirley, Barry Montgomery, and Carson Kelly. The author would like to thank Dr. Nancy Love for her guidance throughout this project and during required academic course work. Additionally, Dr. Mark Edwards and Dr. John Novak for their contributions and service as graduate research committee members. Julie Petruska and Jody Smiley for their assistance and support during laboratory work and sample analysis. Charles Bott for his research knowledge and laboratory contributions to this research project. Stephen Cox and Stephen Carpenter for their personal support of the author. The author would like to thank the author’s family whose encouragement provided the necessary support to complete this research project. Additionally, the author would like to acknowledge the many friends who provided contributions and support. Special thanks to Carrie Adam for her patience, understanding, and support.
TABLE OF CONTENTS

I. TABLE OF CONTENTS

II. LIST OF TABLES

III. LIST OF FIGURES

IV. ABSTRACT

V. MANUSCRIPT 1:

Proposed Screening Protocol for Selection of Microbial Seeding Material for Biochemical Oxygen Demand Quantification

- Abstract
- Introduction
- Materials and Methods
 - System Description
 - Seed Sources
 - Analyzed Effluent Samples
 - Analyses Performed
- Results and Discussion
 - Initial Observations
 - Screening of Potential Seeds
 - Protocol for Seed Selection
- Conclusions
- References

VI. MANUSCRIPT 2:

Quantifying Particle Hydrolysis and Observed Yield for a Full-Scale Biological Aerated Filter

- Abstract
- Introduction
- Materials and Methods
 - Full-Scale System Description
 - Mass Balance Sample Collection
 - Influent and Effluent Samples
 - Backwash Samples
 - Bench-Scale BAF Reactor
- References
<table>
<thead>
<tr>
<th>Dissolved Oxygen (DO) Measurement</th>
<th>43</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Acquisition</td>
<td>43</td>
</tr>
<tr>
<td>Bench-Scale Reactor Sample Collection</td>
<td>43</td>
</tr>
<tr>
<td>Sample collection and Analyses for Bench-Scale Hydrolysis Experiments</td>
<td>44</td>
</tr>
<tr>
<td>Growth on Primary Effluent</td>
<td>46</td>
</tr>
<tr>
<td>Particle Solution</td>
<td>46</td>
</tr>
<tr>
<td>Mineral salts</td>
<td>47</td>
</tr>
<tr>
<td>Bench-Scale Reactor System Operation</td>
<td>47</td>
</tr>
</tbody>
</table>

Results and Discussion

Full-Scale BAF Mass Balances	50
Bench-Scale BAF Hydrolysis Experiments	54
Full-Scale Biomass Yield Calculations	63
Cell-Free Extracellular Enzyme Quantification	66

Conclusions

References

VII. APPENDIX
II. LIST OF TABLES

MANUSCRIPT 1: Proposed Screening Protocol for Selection of Microbial Seeding Material for Biochemical Oxygen Demand Quantification

Table 1: Summary of Potential Seeding Material for BAF Effluent BOD$_5$ Determination 18

Table 2: Summary of Two-Tailed t-Test Analysis on Seeded BOD$_5$ and cBOD$_5$ Values During the Wintertime 18

Table 3: Unseeded Effluent BOD$_5$ Concentrations and Proposed Standard Ratio Calculations during the Wintertime BAF Operation 23

Table 4: Primary Effluent Seeded BAF Effluent BOD$_5$ Concentrations and Proposed Standard Ratio Calculations during the Wintertime BAF Operation 25

Table 5: Secondary:Final Effluent Mixture Seeded BAF Effluent BOD$_5$ Concentrations and Proposed Standard Ratio Calculations during the Wintertime BAF Operation 26

Table 6: PolySeed Seeded BAF Effluent BOD$_5$ Concentrations and Proposed Standard Ratio Calculations during the Wintertime BAF Operation 27

MANUSCRIPT 2: Quantifying Particle Hydrolysis and Observed Yield for a Full-Scale Biological Aerated Filter

Table 1: Sampling Regime for Endogenous and Hydrolysis Phase of Bench-Scale Reactor Operation 45

Table 2: Mineral Salt Solution Used during Endogenous Respiration and Hydrolysis Phases 47

Table 3: Mass Balance Data from the Full-Scale Biological Aerated Filter 51

Table 4: Bench-Scale Reactor Data and Hydrolysis Calculation 59

Table 5: Biomass Yield Calculation for the Full-Scale BAF Using an Average Percent Hydrolysis of 43% 65
III. LIST OF FIGURES

MANUSCRIPT 1:
Proposed Screening Protocol for Selection of Microbial Seeding Material for Biochemical Oxygen Demand Quantification

Figure 1: Roanoke Regional Water Pollution Control Plant Process Diagram

Figure 2: Primary Effluent-Seeded and Unseeded BAF Effluent BOD_5 Between June 5, 2000 and July 24, 2000

Figure 3: Primary Effluent-Seeded and Unseeded BAF Effluent $cBOD_5$ Between June 5, 2000 and July 24, 2000

Figure 4: Primary Effluent Seed Volume Selection

Figure 5: Activated Sludge Seed Volume Selection

Figure 6: Secondary Effluent Seed Volume Selection

Figure 7: Secondary Effluent Mixture Seed Volume Selection

Figure 8: PolySeed Seed Volume Selection

VIII. MANUSCRIPT 2:
Quantifying Particle Hydrolysis and Observed Yield for a Full-Scale Biological Aerated Filter

Figure 1: Schematic of Bench-Scale Reactor Utilized During Particle Hydrolysis Experiments

Figure 2: Schematic of Bench-Scale System Utilized During Particle Hydrolysis Experiments

Figure 3: Schematic of Bench-Scale Reactor and Applied Feeds During Different Phases

Figure 4: Schematic of Particle Introduction into the Column Prior To Both Hydrolysis Phases

Figure 5: Typical TSS Concentration During and Following a Backwash Sequence on the Full-Scale System
Figure 6: Bench-Scale Reactor DO During the First Hydrolysis Experiment 55

Figure 7: Bench-Scale Reactor DO During the Second Hydrolysis Experiment 56

Figure 8: COD and Soluble COD Profiles for the First Hydrolysis Experiment 61

Figure 9: COD and Soluble COD Profiles for the Second Hydrolysis Experiment 62

Figure 10: Bulk-Liquid Hydrolysis Estimation using FDA 68