ACKNOWLEDGEMENTS

I would like to thank Waste Management Inc., especially Mr. Gary Hater for providing me an opportunity to work on this project apart from extending funding. It’s my pleasure to express my thanks to the committee members, thanks to Dr. John Novak, Dr. Douglas Goldsmith and Dr. Clifford Randall for being supportive and considerate all through my research.

I think with the effort of Ms. Julie Petruska and Ms. Jody Smiley completion of all the experimental work has been fun and a success. I would specially thank Dr. John Novak for providing guidance in academics, research and personal issues which I have come across in the graduate life.

I would like to thank my parents for being brave in a situation like April 16th incident, I would like to thank the entire Virginia Tech community for offering the support to cope up with the mishap.

Lastly, I would like to thank all my seniors, lab mates and friends who have been critical and instrumental in getting the work done in a smooth manner.
TABLE OF CONTENTS

ABSTRACT..............................................................................................................ii

ACKNOWLEDGEMENTS.......................................................................................iii

CHAPTER 1: LITERATURE REVIEW.................................................................1

1.1 Solid waste- need for management.............................................................1

1.2 Landfill technology as an option for solid waste disposal.........................2

1.3 Bioreactor landfill.........................................................................................3

1.3.1 Aerobic.......................................................................................................4

1.3.2 Anaerobic...................................................................................................4

1.3.3 Hybrid.......................................................................................................5

1.4 Microbiological mechanisms in anaerobic landfills.................................5

1.5 Substrates available for degradation..........................................................6

1.5.1 Major organic carbon sources in refuse................................................6

1.5.1.1 Lignin....................................................................................................7

1.5.1.2 Hemicellulose.......................................................................................7

1.5.1.3 Cellulose..............................................................................................7

1.6 Stages of degradation in anaerobic bioreactor landfill..............................8

1.7 Indicators of landfill stability......................................................................10

1.7.1 Lignin.......................................................................................................10

1.7.2 Lignin Monomers....................................................................................11

1.7.3 Cellulose and Hemicelluloses.................................................................11

1.7.4 Cellulose /Lignin (C/L) ratio.................................................................11

1.7.5 Volatile Solids (VS)................................................................................12
1.7.6 Biomethane potential ................................................................. 12
1.8 Effect of liquid waste addition in degradation of landfill constituents ............................. 13
1.8.1 Distillation waste .................................................................................. 13
1.8.2 Surfactant waste .................................................................................. 14
1.8.3 Paint waste ......................................................................................... 15

CHAPTER 2: EFFECT OF LIQUID WASTE ADDITION ON THE OVERALL PERFORMANCE OF ANAEROBIC BIOREACTOR LANDFILL ......................... 16
2.1 Introduction .......................................................................................... 16
2.2 Materials and Methods ......................................................................... 17
2.2.1 Experimental Design ......................................................................... 17
2.3 Materials .............................................................................................. 19
2.3.1 Reactor ............................................................................................... 19
2.3.2 Synthetic Landfill ............................................................................... 19
2.3.3 Innoculum or seed ............................................................................. 19
2.3.4 Wastes .............................................................................................. 19
2.3.5 Sample collection ............................................................................... 20
2.3.6 Analytical Methods ........................................................................... 20
2.3.6.1 pH .................................................................................................. 20
2.3.6.2 Total Solids and Water content ..................................................... 20
2.3.6.3 Volatile Solids (VS) ...................................................................... 21
2.3.6.4 Gas emissions, methane and carbon dioxide generation .............. 21
2.3.6.5 Lignin, Cellulose and Hemicelluloses .......................................... 21
2.3.6.6 Volatile fatty acids ...................................................................... 22
2.4 Results and Discussions........................................................................................................22

2.4.1 Paint waste.........................................................................................................................22

2.4.2 Distillation Waste...............................................................................................................25

2.4.3 Surfactant waste................................................................................................................27

2.4.4 Statistical Analysis............................................................................................................29

2.5 Conclusions.........................................................................................................................30

2.5.1 Paint waste.........................................................................................................................30

2.5.2 Distillation waste...............................................................................................................30

2.5.3 Surfactant waste................................................................................................................31

2.6 References ..........................................................................................................................33

LIST OF FIGURES

Figure 1.1 Constituents of municipal solid waste.................................................................2

Figure 1.2 Comparison between bioreactor and conventional landfill settlement .........4

Figure 1.3 Different phases of an anaerobic landfill .........................................................10

Figure 2.1: Volatile solids in control and paint waste reactors..........................................37

Figure 2.2: Rate of volatile solids reduction in control and paint waste reactors............37

Figure 2.3: Cumulative total gas in control and paint waste.............................................38

Figure 2.4: Rate of total gas generation in control and paint waste...............................38

Figure 2.5: Cumulative methane in control and paint waste reactors.............................39

Figure 2.6: Rate of methane generation in control and paint waste...............................39

Figure 2.7: Cumulative carbon dioxide in control and paint waste reactors..................40

Figure 2.8: Rate of carbon dioxide generation in control and paint waste.....................40

Figure 2.9: pH in control and paint waste reactors.........................................................41
Figure 2.10: Total volatile fatty acids in control and paint waste reactors.................41
Figure 2.11: Acetic acid in control and paint waste reactors..................................42
Figure 2.12: Propionic acid in control and paint waste reactors..............................42
Figure 2.13: Butyric acid in control and paint waste reactors.................................43
Figure 2.14: Valeric acid in control and paint waste reactors.................................43
Figure 2.15: Percentage moisture content in control and paint waste reactors...........44
Figure 2.16: Percentage cellulose in control and paint waste reactors.......................44
Figure 2.17: Percentage lignin in control and paint waste reactors.............................45
Figure 2.18: Percentage hemicellulose in control and paint waste reactors..................45
Figure 2.19: Cellulose to Lignin ratio in control and paint waste reactors....................46
Figure 2.20: Cellulose to Plastic ratio in control and paint waste reactors......................46
Figure 2.21: Dry weight to Plastic ratio in control and paint waste reactors...................47
Figure 2.22: Volatile solids distillation waste reactors..............................................47
Figure 2.23: Rate of volatile solids reduction in control and distillation waste............48
Figure 2.24: Total volatile fatty acids in control and distillation waste reactors...........48
Figure 2.25: pH in control and distillation waste reactors........................................49
Figure 2.26: Cumulative total gas in control and distillation waste reactors.............49
Figure 2.27: Rate of total gas generation in control and distillation waste..................50
Figure 2.28: Cumulative methane in control and distillation waste reactors...............50
Figure 2.29: Rate of methane generation in control and distillation waste ......................51
Figure 2.30: Cumulative carbon dioxide in control and distillation waste reactors.......51
Figure 2.31: Rate of carbon dioxide generation in control and distillation waste...........52
Figure 2.32: Acetic acid concentration in control and distillation waste reactors...........52
Figure 2.33: Propionic acid concentration in control and distillation waste reactors...53
Figure 2.34: Butyric acid concentration in control and distillation waste reactors......53
Figure 2.35: Valeric acid concentration in control and distillation waste reactors.......54
Figure 2.36: Percentage moisture content in control and distillation waste reactors...54
Figure 2.37: Percentage cellulose content in control and distillation waste reactors...55
Figure 2.38: Percentage lignin content in control and distillation waste reactors......55
Figure 2.39: Percentage hemicellulose content in control and distillation waste reactors.............................................................................................................................56
Figure 2.40: Cellulose to lignin ratio in control and distillation waste reactors........56
Figure 2.41: Cellulose to plastic ratio in control and distillation waste reactors........57
Figure 2.42: Dry weight to plastic ratio in control and distillation waste reactors......57
Figure 2.43: Volatile solids in control and surfactant waste reactors.....................58
Figure 2.44: Rate of volatile solids reduction in control and surfactant waste ...........58
Figure 2.45: Cumulative total gas in control and surfactant waste reactors.............59
Figure 2.46: Rate of total gas generation in control and surfactant waste...............59
Figure 2.47: Cumulative methane in control and surfactant waste reactors...............60
Figure 2.48: Rate of methane generation in control and surfactant waste.................60
Figure 2.49: Cumulative carbon dioxide in control and surfactant waste reactors.....61
Figure 2.50: Rate of carbon dioxide generation in control and surfactant waste........61
Figure 2.51: pH in control and surfactant waste reactors.......................................62
Figure 2.52: Total volatile fatty acids concentration in control and surfactant waste reactors.............................................................................................................................62
Figure 2.53: Acetic acid concentration in control and surfactant waste reactors.......63
Figure 2.54: Propionic acid in control and surfactant waste reactors..............................63
Figure 2.55: Butyric acid in control and surfactant waste reactors.................................64
Figure 2.56: Valeric acid in control and surfactant waste reactors.................................64
Figure 2.57: Percentage moisture content in control and surfactant waste reactors....65
Figure 2.58: Percentage cellulose in control and surfactant waste reactors...............65
Figure 2.59: Percentage hemicellulose in control and surfactant waste reactors........66
Figure 2.60: Percentage lignin in control and surfactant waste reactors.......................66
Figure 2.61: Cellulose to lignin ratio in control and surfactant waste reactors..............67
Figure 2.62: Cellulose to plastic ratio in control and surfactant waste reactors............67
Figure 2.63: Dry weight to plastic ratio in control and surfactant waste reactors........68
Figure 2.64: Lignin to plastic ratio in control and paint waste reactors.......................68
Figure 2.65: Lignin to plastic ratio in control and distillation waste reactors..............69
Figure 2.66: Lignin to plastic ratio in control and surfactant waste reactors...............69
Figure 2.67: Hemicellulose to plastic ratio in control and paint waste reactors.........70
Figure 2.68: Hemicellulose to plastic ratio in control and distillation waste reactors..70
Figure 2.69: Hemicellulose to plastic ratio in control and surfactant waste reactors...71

LIST OF TABLES

Table 1.1 Biochemical Methane potential of different constituents of Municipal Solid Waste..................................................................................................................................8
Table 2.1 Experimental matrix .......................................................................................18
Table 2.2 R-squared values for different plots..............................................................29