ACKNOWLEDGEMENTS

Five years of study and research at Virginia Tech have been a wonderful experience for me. I would like to take this opportunity to thank the people who helped me to make this happen.

None of the work in this thesis could have been carried out without the remarkable guidance of my advisor, Professor James K. Mitchell. I am grateful for Prof. Mitchell for guiding me into the world of Geoengineering with his wisdom and insight. It was his innovative ideas and persistent encouragement which drove me to face failures and achieve success in research. He is always ready with helpful ideas and suggestions even though his desk is piled high with hundreds of things. I also greatly appreciate my advisory committee members Professor George Filz, Professor Mathew Mauldon, Professor Thomas Brandon and Professor David de Wolf for their review of my dissertation and valuable comments.

In particular, I wish to thank a great scientist, a mentor and a good friend, Professor J. Carlos Santamarina of Georgia Institute of Technology. He helped me to run experiments and answered my questions with patient explanations. He stimulated me to think beyond conventional geotechnical engineering and gave numerous kinds of assistance throughout my Ph.D. research. I also would like to acknowledge Dr. Christopher Meehan for helping me to run the ring shear test, Dr. Binod Tiwari for helping me to prepare soil samples and Dr. Joo Yung Lee for teaching me to use the Impedance Analyzer.

I came to Virginia Tech four years ago from China with my fellow students and friends, Ming Zhang and Jianfeng Wang. They not only helped me and provided ideas for my
research but also were and are very supportive in my life. They are my best friends at Tech.

I would like to thank Xiaohai Wang, Sotirios Vardakos, Jeremy Decker, Morgan Eddy, Tiffany Adams, Andrew Bursey for giving me help in my research.

I would like to take this chance to thank so many friends in my life – Yuan Chen, Genevieve Smith, John Rice, Jessa Corton, Huanyu Yue, Yun Mo, Yizheng Zhu - and so many others. All of you bring joy and happiness to my life. I sense the emotion of being loved and I cherish every day together with you.

Last but most important, I want to express my deep gratitude and love to my parents, Yingping Liu and Zhufeng Liu. They give their love to their only child who is far away from home. I am proud of them for being so strong and brave. I gain strength from the understanding and freedom they give to me to face many difficulties in my life. I dedicate this thesis to my father and mother.
TABLE OF CONTENTS

LIST OF TABLES .. ix
LIST OF FIGURES ... xi
LIST OF SYMBOLS ... xv x

Chapter 1 Introduction

1.1 Statement of the Problem ... 1
1.2 Scope of Research ... 3
1.3 Arrangement of the Thesis ... 4

Chapter 2 Soil Electromagnetic Properties and Applications in Geotechnical Engineering – A Review

2.1 Introduction .. 7
2.2 Soil Electromagnetic Properties ... 7
2.3 Important Polarization Mechanisms ... 10
2.4 Current Applications ... 13
 2.4.1 Water Content and Dry Density .. 17
 2.4.2 Void Ratio and Anisotropy .. 21
 2.4.3 Specific Surface Area .. 37
 2.4.4 Time Dependent Behavior .. 45
2.5 Conclusions ... 46

CHAPTER 3 Modeling Electromagnetic Properties of Soils

3.1 Introduction ... 48
3.2 A New Theoretical Model ... 50
 3.2.1 Maxwell-Garnett mixing formula .. 50
 3.2.2 Equivalent dielectric permittivities of sand particles and bulk pore fluid......
 .. 53
 3.2.3 Equivalent dielectric permittivity of sand-water mixtures 57
 3.2.4 Equivalent dielectric permittivity of clay-water mixtures 63
 3.2.5 Application of the model to clay mixtures ... 91
 3.2.6 Mechanism of dielectric dispersion ... 95
 3.2.7 Discussion .. 98
3.3 Conclusions ... 99
Chapter 4 Influences of Compositional, Structural and Environmental Factors on Soil EM Properties

4.1 Introduction ... 101
4.2 Effects of Various Factors on Soil EM Properties ... 102
 4.2.1 Effects of anisotropy ... 104
 4.2.2 Effects of pore fluid salt concentration ... 107
 4.2.3 Effect of dispersion and flocculation ... 109
 4.2.4 Effects of volumetric water content and clay mineralogy 112
 4.2.5 Effect of clay percentage ... 116
 4.2.6 Effects of temperature .. 119
4.3 Relationship between Clay Mineralogy, Volumetric water content and Real
 Permittivity .. 121
4.4 Relationship between Clay Mineralogy, Volumetric water content and Effective
 Electrical Conductivity .. 126
4.5 Conclusions ... 129

Chapter 5 Instruments for Electromagnetic Property Measurements

5.1 Introduction ... 132
5.2 Network analyzer ... 134
5.3 Time Domain Reflectometry System ... 136
 5.3.1 Apparent dielectric permittivity and its physical meaning 139
 5.3.2 Determination of soil bulk electrical conductivity from TDR waveform ... 141
5.4 Problems in Measuring the EM Properties of Soils .. 142
 5.4.1 Electrode polarization ... 142
 5.4.2 Penetration depth .. 145
5.5 Conclusions ... 147

Chapter 6 Laboratory Testing

6.1 Introduction ... 148
6.2 Soils and Their Physical Properties .. 149
6.3 Specific Surface Area Measurement .. 151
6.4 Electromagnetic and Engineering Property Measurements 157
 6.4.1 Electromagnetic properties .. 157
 6.4.2 Compressibility ... 164
 6.4.3 Coefficient of consolidation .. 166
 6.4.4 Residual shear strength .. 170
6.5 Summary .. 172
Chapter 7 Frequency domain dielectric spectrum from time domain signals

7.1 Introduction .. 173
7.2 Wave Propagation in Coaxial Cables and in TDR System ... 174
7.3 Calibration of TDR Measurement System ... 179
 7.3.1 Fast Fourier Transform of the time domain records .. 182
 7.3.2 Calibration of the front panel .. 185
 7.3.3 Calibration of the coaxial cable and probe ... 185
7.4 Precision of Time-domain to Frequency-domain Conversion 191
7.5 Dielectric Spectra of soils from TDR time-domain signals .. 195
7.6 Summary ... 204

Chapter 8 Relationships between Electromagnetic Properties and Engineering Properties

8.1 Introduction .. 205
8.2 Water Content, Specific Surface Area and Pore Fluid Salt Concentration from Dielectric Spectrum .. 205
 8.1.1 Specific surface area from dielectric dispersion magnitude 209
 8.1.2 Pore fluid salt concentration from dielectric spectrum .. 214
8.3 Relationship between Engineering Properties and Specific Surface Area 217
 8.3.1 Specific surface area from different methods and liquid limit 219
 8.3.2 Specific surface area and compressibility .. 225
 8.3.3 Specific surface area and residual shear strength .. 227
 8.3.4 Specific surface area and hydraulic conductivity .. 230
8.4 Conclusions .. 236

Chapter 9 Summary and Conclusions

9.1 Summary of Accomplished Tasks ... 238
9.2 Conclusions .. 239
9.3 Recommendations for Future Research .. 241
 9.3.1 Applications of the EM measurements for studying soil behavior 241
 9.3.2 From localized measurements to spatial measurements .. 243

References ... 245

Appendix ... 254
LIST OF TABLES

Table 2.1 Description of polarization mechanisms………………………………………12

Table 2.2 Summary of the applications of electromagnetic measurements in geotechnical engineering…………………………………………………………………15

Table 2.3 Determination of the volumetric fractions of the three phases in a soil………17

Table 2.4 Average shape factors at maximum and minimum void ratios for granular soils…………………………………………………………………...……...32

Table 3.1 Estimated surface conductance and intra-aggregate porosity of major clay minerals...76

Table 3.2 Some physical properties of the mixtures being studied.........................92

Table 3.3 Predetermined and optimized parameters for three clay-water mixtures……94

Table 4.1 Some physical properties and optimized compositional parameters of the mixtures being studied……………………………………………………...103

Table 5.1 Commonly used electromagnetic property measurement system……………134

Table 6.1 Engineering indexes of the eight soils being tested…………………………..150

Table 6.2 Mineralogical compositions of the four natural soils being tested……………151

Table 6.3 Summary of the currently available techniques to measure the specific surface area of clay ...151

Table 6.4 Specific surface areas of eight clays from the EGME adsorption method…..156

Table 6.5 Compression index, initial void ratio and compression ratio of six clays……166

Table 6.6 Coefficient of consolidation, compressibility, hydraulic conductivity and void ratios of six clays at the end of each consolidation pressure……………169
Table 6.7 Residual friction angles at different normal stresses…………………………………171

Table 7.1 Optimized transmission line parameters………………………………………………187

Table 7.2 Frequency domain parameters in Equation [7.16] that give best fit for the time domain recordings …………………………………………………………………………………200

Table 7.3 Real permittivities at 1 GHz and dielectric dispersion magnitudes from 50 MHz to 1 GHz for seven clays……………………………………………………….202

Table 8.1 Empirical correlations between the specific surface area and engineering properties ……………………………………………………………………………………..224
LIST OF FIGURES

Figure 2.1 Typical dielectric dispersion curves of sand-water and clay water mixtures…10

Figure 2.2 Effective frequency ranges of major polarization mechanisms………………11

Figure 2.3 (a) Comparison of TDR-measured water contents with oven-dry water contents on 14 different sands, two silts, seven different clays, one lime-stabilized soil and one low-density mixed waste; (b) Comparison of TDR-measured dry density with directly measured dry density on the above soils……………………………………….21

Figure 2.4 Correlation between porosity and average formation factor calculated from DC electrical conductivity…………………………………………………………………25

Figure 2.5 Correlation between porosity and the reciprocal of the formation factor calculated from the real permittivity at 50 MHz……………………………………26

Figure 2.6 Correlation between the stiffness parameter and a combination of electrical indexes………………………………………………………………………………31

Figure 2.7 Laboratory correlation between cyclic stress ratio required to cause initial liquefaction in 10 cycles and a combination of electrical indexes……………….34

Figure 2.8 Correlation between the hydraulic permeability and electrical indexes……36

Figure 2.9 Comparison between the specific surface areas determined by the thermal disturbance method and those measured by using the EGME adsorption method…………………………………………………………………………39

Figure 2.10 Dielectric dispersion magnitude from 1 MHz to 100 MHz and specific surface area from the ethylene glycol monoethyl ether adsorption method ………………………………………………………………………………….40

Figure 2.11 Slope of the critical state line in p’-q space, M, versus the dielectric dispersion magnitude from 1 MHz to 100 MHz……………………………………….42
Figure 2.12 Slope of virgin consolidation, \(\lambda \), versus dielectric dispersion magnitude over the 1 MHz to 100 MHz frequency range ..43

Figure 2.13 Total swelling potential versus dielectric dispersion magnitude from 1 MHz to 100 MHz ...44

Figure 3.1 Spherical inclusions (particles) randomly distributed in a medium (pore fluid) ..51

Figure 3.2 Dielectric permittivities of bulk pore fluid at different temperature and salinity according to equations [3.4] and [3.10] ...56

Figure 3.3 Dielectric spectrum of a sand-water mixture at different porosity and pore fluid DC electrical conductivities ..58

Figure 3.4 Equivalent dielectric permittivity of sand-water mixtures as a function of porosity ..61

Figure 3.5 Schematic representations of the structures of important clay minerals 66

Figure 3.6 Modeling of clay inclusions: (a) a spheroidal clay aggregate composed of alternate distribution of clay particles and intra-aggregate water layers; (b) a clay particle coated by the external bound water layer ..68

Figure 3.7 Dielectric permittivities of bound water layers, free water and intra-aggregate pore fluid ...72

Figure 3.8 Illustration of the electrical conductance of intra-aggregate pore fluid73

Figure 3.9 DC electrical conductivity of clay aggregates as a function of specific surface area in the direction parallel to clay faces ...76

Figure 3.10 Orientation of an oblate spheroidal particle (inclusions) in the medium uniquely determined by two angles ...78
Figure 3.11 Two special orientations of a clay aggregate with respect to the external EM field

Figure 3.12 Dielectric spectra of aligned clay aggregates

Figure 3.13 Equivalent current caused by the external field

Figure 3.14 Equivalent dielectric permittivity of an anisotropic mixture in the vertical and horizontal directions

Figure 3.15 Theoretical and measured dielectric spectra of the saturated bentonite and kaolinite

Figure 3.16 Importance of interfacial polarization and bound water polarization for dielectric dispersion behavior

Figure 4.1 Factors that determine the measured soil electromagnetic properties

Figure 4.2 Vertically oriented aggregates tend to rotate under vertical pressure

Figure 4.3 Effects of anisotropy on the dielectric spectrum of the saturated bentonite

Figure 4.4 Effects of pore fluid electrical conductivity on the dielectric spectrum of the Ca-bentonite-water mixture

Figure 4.5 Effects of dispersion and flocculation on the dielectric spectrum of bentonite-water mixture

Figure 4.6 Effects of volumetric water content on the dielectric spectrum of the saturated Na-bentonite

Figure 4.7 Effects of volumetric water content on dielectric spectrum of the saturated kaolinite

Figure 4.8 Measured and theoretical dielectric spectra of sand-clay-water mixtures

Figure 4.9 Effects of temperature on the dielectric spectra of Canisteo clay loam and an
imaginary mixture of illite and sand…………………………………………….120

Figure 4.10 Theoretical correlations between the volumetric water content, real permittivity at 1 GHz and dielectric dispersion from 50 MHz to 1 GHz………124

Figure 4.11 A simple method to determine the volumetric water content and total specific surface area……………………………………………………………126

Figure 4.12 Relationship between effective electrical conductivity and volumetric water content of bentonite-silicon flour mixtures……………………………………129

Figure 5.1 Network Analyzer HP8752A in conjunction with coaxial cable HP85070A..135

Figure 5.2 TDR100 system (including a three-rod probe and battery)………………137

Figure 5.3 Schematic diagram of the time domain reflectometry system (left), idealized trace (upper right), and voltage reflection pattern (lower right) ………………………………………………………………………………138

Figure 5.4 TDR waveform of the saturated sand………………………………………..140

Figure 5.5 Limiting frequencies for the open-end coaxial probe and the two-terminal electrode system corresponding to an error of 10% …………………..………..145

Figure 5.6 Maximum electrical conductivity of a soil for the required penetration depth………………………………………………………………………………147

Figure 6.1 The Atterberg limits of the tested clay superimposed on the USCS plasticity chart…………………………………………………………………………149

Figure 6.2 Dishes containing soil specimens placed in a dessicator for surface area measurement………………………………………………………………………154

Figure 6.3 Specific surface areas of eight clays from the EGME adsorption method versus liquid limit……………………………………………………………………..156
Figure 6.4 Illustration of a TDR probe inserted into the soil specimen in a batch consolidometer

Figure 6.5 TDR waveforms of Staunton clay

Figure 6.6 TDR waveforms of Northern Virginia clay

Figure 6.7 TDR waveforms of Vicksburg Buckshot clay

Figure 6.8 TDR waveforms of Rome clay

Figure 6.9 TDR waveforms of San Francisco Bay mud Figure

Figure 6.10 TDR waveforms of Rancho Solano clay

Figure 6.11 TDR waveforms of Kaolinite

Figure 6.12 A comparison between the pressure applied on the soil sample and that read directly from the pressuremeter

Figure 6.13 Compression curves of six clays

Figure 6.14 Consolidation of Northern Virginia clay at 4 Psi and the methods to determine the times corresponding to 50 percent and 90 percent of consolidation

Figure 6.15 Coefficients of consolidation of six clays from two procedures

Figure 6.16 Shear stress versus normal stress from ring shear tests on seven clays

Figure 7.1 Configuration of TDR system and its modeling

Figure 7.2 Cross section of the coaxial cable and three-rod probe and the direction of the electrical field and magnetic field

Figure 7.3 Procedures to calibrate the TDR system
Figure 7.4 TDR-generated voltage and recorded voltage by connecting the TDR to a 50-ohm standard impedance…………………………………………………………181

Figure 7.5 Modified TDR voltages using the Nicolson’s ramp method (upper right figure shows the measured and modeled waves for the front panel section)…………184

Figure 7.6 Recorded TDR waveforms when the probe was immersed in the distilled water at different depths……………………………………………………………..186

Figure 7.7 Reference characteristic impedance of the three-rod probe versus penetration depth……………………………………………………………………189

Figure 7.8 Measured and modeled waveforms when the three-rods are fully immersed in the distilled water……………………………………………………………..190

Figure 7.9 Process of determining soil electromagnetic properties from TDR waveform………………………………………………………………………193

Figure 7.10 TDR measured and modeled waveforms of three clays…………………194

Figure 7.11 Comparison between the TDR-converted and directly measured dielectric spectra of three clayey soils………………………………………………195

Figure 7.12 Dielectric spectra of Staunton clay converted from the TDR waveforms….196

Figure 7.13 Dielectric spectra of Northern Virginia clay converted from the TDR waveforms……………………………………………………………………197

Figure 7.14 Dielectric spectra of Vicksburg Buckshot clay converted from the TDR waveforms……………………………………………………………………197

Figure 7.15 Dielectric spectra of Rome clay converted from the TDR waveforms……198
Figure 7.16 Dielectric spectra of the San Francisco Bay mud converted from the TDR waveforms...198

Figure 7.17 Dielectric spectra of Rancho Solano clay converted from the TDR waveforms...199

Figure 7.18 Dielectric spectra of Kaolinite converted from the TDR waveforms........199

Figure 8.1 Four empirical correlations relating the high frequency real permittivity to volumetric water content and experimental data from literature......................207

Figure 8.2 Experimental data from literature and theoretical correlations between volumetric water content and real permittivity at 1 GHz..208

Figure 8.3 Theoretical correlations between volumetric water content and real permittivity at 1 GHz and the experimental data of the silicon sand and seven clays from TDR measurements ...211

Figure 8.4 Dielectric dispersion magnitude over the 50 MHz to 1 GHz frequency range versus the EGME specific surface area for natural soils.................................212

Figure 8.5 Comparison between the volumetric water contents from TDR measurements and those converted from oven-dry gravimetric water contents.................214

Figure 8.6 Determination of pore fluid electrical conductivity from the bulk electrical conductivity of sand, low specific surface area soils and high specific surface area soils...217

Figure 8.7 Liquid limit and specific surface area from four different methods.........220

Figure 8.8 Total specific surface areas of seven soils from EGME adsorption method versus liquid limit...223
Figure 8.9 Measured and estimated compression index versus total specific surface area for six clays……………………………………………………………………………….226

Figure 8.10 Comparison between the measured compression index and that calculated from the dielectric dispersion magnitude over the 50 MHz to 1 GHz frequency range ……………………………………………………………………………….228

Figure 8.11 Relationship between residual friction angle and total specific surface area of clays……………………………………………………………………………….230

Figure 8.12 Comparison between the measured residual friction angle and that calculated from the dielectric dispersion magnitude over the 50 MHz to 1 GHz frequency range…………………………………………………………………………….231

Figure 8.13 Hydraulic conductivity of six clays in the vertical direction …….232

Figure 8.14 Comparison between the measured and estimated hydraulic conductivity for twelve clays…………………………………………………………………………….236
LIST OF SYMBOLS

ASTM = American Society of Testing and Materials
BET = Brunauer, Emmett and Teller (1938)
EG = Ethylene Glycol
EGME = Ethylene Glycol Monoethyl Ether
erf = Error Function
CEC = Cation Exchange Capacity (meq/100g)
CPT = Cone Penetration Test
LL = Liquid Limit (%)
PL = Plastic Limit (%)
PI = Plasticity Index
MB = Methylene Blue
SA = Surface Area (m2)
SPT = Standard Penetration Test
TDR = Time Domain Reflectometry
USCS = Unified Soil Classification System

C_c = Compressibility Index (m2/kN)
C_{cc} = Compressibility Ratio
c_v = Coefficient of Consolidation (m/s)
f = Frequency (Hz)
$ar{f}$ = Averaging Shape Factor
F = Formation Factor
G_s = Specific Gravity
G_{max} = Small Strain Shear Modulus
k_h = Hydraulic Conductivity (m/s);
k = Boltzmann’s constant
k_h = Hydraulic Conductivity (m/s)
K = Hydraulic Permeability (m2)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Porosity</td>
</tr>
<tr>
<td>m_v</td>
<td>Compressibility (m2/kN)</td>
</tr>
<tr>
<td>R</td>
<td>Axial Ratio of Spheroid</td>
</tr>
<tr>
<td>S_a</td>
<td>Specific Surface Area (m2/g)</td>
</tr>
<tr>
<td>S_r</td>
<td>Degree of Saturation</td>
</tr>
<tr>
<td>V_s</td>
<td>Shear Wave Velocity (m/s)</td>
</tr>
<tr>
<td>w</td>
<td>Gravimetric Water Content</td>
</tr>
<tr>
<td>Z_s</td>
<td>Source Impedance of TDR (Ω)</td>
</tr>
<tr>
<td>Z_{in}</td>
<td>Input Impedance (Ω)</td>
</tr>
<tr>
<td>Z_L</td>
<td>Terminal Impedance (Ω)</td>
</tr>
<tr>
<td>ε_0</td>
<td>Permittivity of Free Space (8.854 × 10$^{-12}$ F/m)</td>
</tr>
<tr>
<td>ε</td>
<td>Complex Permittivity (F/m)</td>
</tr>
<tr>
<td>ϕ_r</td>
<td>Residual Friction Angle</td>
</tr>
<tr>
<td>ϕ_c</td>
<td>Critical State Friction Angle</td>
</tr>
<tr>
<td>κ'</td>
<td>Real Permittivity (Dielectric Constant)</td>
</tr>
<tr>
<td>κ''</td>
<td>Polarization Loss</td>
</tr>
<tr>
<td>κ^*</td>
<td>Equivalent Dielectric Permittivity</td>
</tr>
<tr>
<td>κ_a</td>
<td>Apparent Dielectric Permittivity</td>
</tr>
<tr>
<td>θ</td>
<td>Volumetric Water Content</td>
</tr>
<tr>
<td>γ</td>
<td>Propagation Constant</td>
</tr>
<tr>
<td>σ_{eff}</td>
<td>Effective Electrical Conductivity (S/m)</td>
</tr>
<tr>
<td>σ_{el}</td>
<td>Direct Current Electrical Conductivity of the Pore Fluid (S/m)</td>
</tr>
<tr>
<td>σ_{mx}</td>
<td>Direct Current Electrical Conductivity of a Mixture (S/m)</td>
</tr>
<tr>
<td>σ_n</td>
<td>Normal Stress (Psi or kPa)</td>
</tr>
<tr>
<td>τ</td>
<td>Shear Resistance (Psi or kPa)</td>
</tr>
<tr>
<td>ω</td>
<td>Angular Frequency</td>
</tr>
</tbody>
</table>