Three-Dimensional Nonlinear Dynamics of a Moored Cylinder to be Used as a Breakwater

By

Juan Carlos Archilla

Thesis submitted to the Faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN CIVIL ENGINEERING

Approved by:

Raymond H. Plaut, Chairman

______________________________ ______________________________
Richard M. Barker Siegfried M. Holzer

April 1999
Blacksburg, Virginia

Keywords: nonlinear dynamics, chaos, vibration, breakwater, cylinder, mooring, snap load
Three-Dimensional Nonlinear Dynamics of a Moored Cylinder to be Used as a Breakwater

By
Juan Carlos Archilla
Raymond H. Plaut, Chairman
Civil Engineering
(ABSTRACT)

A three-dimensional, nonlinear dynamic analysis is conducted on a fully submerged, rigid, solid cylinder to be used as a breakwater. The breakwater could potentially be used as a single cylinder to protect small structures. Alternatively, multiple cylinders could be positioned in series to protect shorelines, harbors, or moored vessels from destructive incident water waves. The cylinder is positioned with its axis horizontal and is moored to the seafloor with four symmetrically placed massless mooring lines connected at the ends of the cylinder. The mooring lines are modeled as both linearly elastic (“regular”) springs and compressionless springs. All six degrees of freedom of the structure are considered. The breakwater is modeled in air with a net buoyant force acting through the cylinder’s center of gravity. The six “dry” natural frequencies of the structure are computed. Both linear and nonlinear free vibrations of the structure are considered. Linear damping is used to model the fluid and mooring damping effects. Normal and oblique harmonic wave forces at various frequencies and amplitudes are applied to the cylinder. The effects of the forcing amplitude and frequency, and the coefficient of damping, on the motion of the breakwater are studied. The results show that more erratic behavior occurs for the breakwater with compressionless springs, mainly due to the development of snap loads in the mooring lines.
Acknowledgements

First, I would like to thank my advisor, Dr. Raymond H. Plaut, for all of his time and support throughout the completion of this thesis. His dedication towards assisting me at all stages of the project was above and beyond what I expected. I would also like to thank Dr. Richard M. Barker and Dr. Siegfried M. Holzer for all of their time and input, and for being members on my graduate committee. I also appreciate the assistance in FORTRAN given to me by Dr. Raul Andruet.

This research project was partially funded by the National Science Foundation under Grant No. BES-9521425. I would also like to thank The Center for Naval Analyses Corporation for selecting me as a GEM M.S. Engineering Fellow and for employing me during two summer internships. I am also grateful for the GEM fellowship stipend granted by the National Consortium for Graduate Degrees for Minorities in Engineering and Science, Inc. Finally, I appreciate the supplemental GEM funding from both the College of Engineering and the Graduate School in the form of a Graduate Teaching Assistantship and a Graduate Research Assistantship, respectively.

I thank my family and friends for all of their support and friendship over the past couple of years. I also would like to thank my fiancée, Daphne, for all of her love and encouragement. Finally, I would like to thank the God for all of the blessings he has provided me with.
Table of Contents

1. **Introduction** ... 1
 1.1. Overview .. 1
 1.2. Literature Review .. 1
 1.2.1. Floating Breakwaters ... 1
 1.2.2. Moored Structures Used as Breakwaters ... 3
 1.2.2.1. Williams and McDougal Breakwater .. 4
 1.2.2.2. Yamamoto and Yoshida Breakwater ... 4
 1.2.3. Moored Cylindrical Breakwaters ... 5
 1.2.3.1. Evans’ Cylinder ... 5
 1.2.3.2. Bristol Cylinder ... 6
 1.2.3.3. Mays’ Cylinder .. 6
 1.2.4. Mooring Systems .. 7
 1.2.4.1. Materials ... 7
 1.2.4.2. Slack/Taut Behavior .. 8
 1.2.5. Need For Further Research .. 9
 1.2.6. Scope of Work ... 9

2. **Formulation** ... 11
 2.1. Assumptions ... 11
 2.2. Equilibrium Configuration of Breakwater .. 11
 2.3. Model of the Mooring Lines .. 12
 2.4. Equations of Motion .. 12
 2.4.1. General Breakwater Configuration .. 12
 2.4.2. Lagrange’s Equations ... 13
 2.5. Nondimensionalization .. 18
 2.5.1. Nondimensional Equations of Motion ... 19
 2.6. Calculation of Equilibrium Height .. 23
3. Free Vibration of the Breakwater ... 27
 3.1. Introduction ... 27
 3.2. Linearized Equations of Motion .. 27
 3.3. Natural Vibration Frequencies and Modes of the Breakwater ... 28
 3.3.1. Standard Case ... 28
 3.3.2. Special Case ... 34
 3.3.3. Effect of Stiffness on the Natural Frequencies ... 37
 3.4. Verification of Modes with the Computer Model .. 39
 3.4.1. Computer Analysis ... 39
 3.4.2. Time Histories .. 40
 3.5. Initial Large Displacements from Equilibrium .. 44
 3.5.1. Transition from Small to Large Displacements ... 45
 3.6. Damped Free Vibration .. 69

4. Analysis of the Breakwater Using Regular Springs .. 73
 4.1. Wave Forcing ... 73
 4.1.1. Forcing Equations ... 73
 4.1.2. Standard Case .. 75
 4.2. Computer Analysis Procedure ... 79
 4.3. Effects of Varying the Force Amplitude .. 79
 4.3.1. Normal Waves, $\varepsilon = 0^\circ$... 79
 4.3.2. Oblique Waves, $\varepsilon = 30^\circ$... 86
 4.3.3. Oblique Waves, $\varepsilon = 60^\circ$... 88
 4.3.4. Longitudinal Waves, $\varepsilon = 90^\circ$... 90
 4.3.5. Poincaré Plots .. 92
 4.3.5.1. Poincaré Plots for Normal Waves ... 93
 4.3.5.2. Poincaré Plots for Longitudinal Waves ... 101
 4.4. Effects of Varying the Forcing Frequency ... 107
 4.4.1. Normal Waves, $\varepsilon = 0^\circ$... 107
 4.4.2. Oblique Waves, $\varepsilon = 30^\circ$... 108
4.4.3. Oblique Waves, \(\varepsilon = 60^\circ \)...119

4.4.4. Longitudinal Waves, \(\varepsilon = 90^\circ \) ...119

4.5. Effects of Varying the Damping Coefficient...128

5. Analysis of the Breakwater Using Compressionless Springs...............133

5.1. Stretched Length of Springs..133

5.2. Effects of Varying the Force Amplitude..134

5.2.1. Normal Waves, \(\varepsilon = 0^\circ \) ...135

5.2.2. Oblique Waves, \(\varepsilon = 30^\circ \) ..136

5.2.3. Oblique Waves, \(\varepsilon = 60^\circ \) ..146

5.2.4. Longitudinal Waves, \(\varepsilon = 90^\circ \) ...162

5.2.5. Poincaré Plots..174

5.2.5.1. Poincaré Plots for Normal Waves..182

5.2.5.2. Poincaré Plots for Longitudinal Waves..182

5.3. Effects of Varying the Forcing Frequency...190

5.3.1. Normal Waves, \(\varepsilon = 0^\circ \) ...190

5.3.2. Oblique Waves, \(\varepsilon = 30^\circ \) ..191

5.3.3. Oblique Waves, \(\varepsilon = 60^\circ \) ..200

5.3.4. Longitudinal Waves, \(\varepsilon = 90^\circ \) ...201

5.4. Effects of Varying the Damping Coefficient...209

6. Conclusions and Recommendations..219

6.1. Conclusions..219

6.2. Recommendations..221

References...222

Appendix A...225

A.1. Regular Springs..225

A.2. Compressionless Springs..233
A.3. Poincaré - Compressionless Springs

Vita
List of Figures

Figure 2.1 Profile View of Breakwater...24
Figure 2.2 Plan View of Breakwater..24
Figure 2.3 End View of Breakwater...25
Figure 2.4 Isometric View of Breakwater..25
Figure 2.5 Breakwater in an Arbitrary State..26
Figure 2.6 $y_{c, eq}$ vs. k...26
Figure 3.1 1st Mode: Surge with Forward Pitch..31
Figure 3.2 2nd Mode: Sway with Backward Roll..32
Figure 3.3 3rd Mode: Yaw Only..32
Figure 3.4 4th Mode: Heave Only..33
Figure 3.5 5th Mode: Sway with Forward Roll..33
Figure 3.6 6th Mode: Surge with Backward Pitch...34
Figure 3.7 1st Natural Frequency vs. Stiffness..37
Figure 3.8 2nd Natural Frequency vs. Stiffness...38
Figure 3.9 3rd – 6th Natural Frequencies vs. Stiffness..38
Figure 3.10 x_c, Undamped Free Vibration, 1st Mode: Surge with Forward Pitch..41
Figure 3.11 ψ, Undamped Free Vibration, 1st Mode: Surge with Forward Pitch..41
Figure 3.12 z_c, Undamped Free Vibration, 2nd Mode: Sway with Backward Roll..41
Figure 3.13 ϕ, Undamped Free Vibration, 2nd Mode: Sway with Backward Roll..42
Figure 3.14 θ, Undamped Free Vibration, 3rd Mode: Yaw Only..........................42
Figure 3.15 y_c, Undamped Free Vibration, 4th Mode: Heave Only........................42
Figure 3.16 z_c, Undamped Free Vibration, 5th Mode: Sway with Forward Roll.....43
Figure 3.17 ϕ, Undamped Free Vibration, 5th Mode: Sway with Forward Roll.....43
Figure 3.18 x_c, Undamped Free Vibration, 6th Mode: Surge with Backward Pitch..43
Figure 3.19 ψ, Undamped Free Vibration, 6th Mode: Surge with Backward Pitch..44
Figure 3.20 x_c, 1st Mode: Surge with Forward Pitch, $x_{c,o} = 0.3$.......................47
Figure 3.21 ψ, 1st Mode: Surge with Forward Pitch, $\psi_o = 0.0702$......................47
Figure 3.22 y_c, 1st Mode: Surge with Forward Pitch, $y_{c,o} = y_{c, eq}$.....................47
Figure 3.23 x_c, 1st Mode: Surge with Forward Pitch, $x_{c,o} = 0.6$.

Figure 3.24 ψ, 1st Mode: Surge with Forward Pitch, $\psi_{c,o} = 0.1404$.

Figure 3.25 y_c, 1st Mode: Surge with Forward Pitch, $y_{c,o} = y_{c,eq}$.

Figure 3.26 x_c, 1st Mode: Surge with Forward Pitch, $x_{c,o} = 0.8$.

Figure 3.27 ψ, 1st Mode: Surge with Forward Pitch, $\psi_{o} = 0.1872$.

Figure 3.28 y_c, 1st Mode: Surge with Forward Pitch, $y_{c,o} = y_{c,eq}$.

Figure 3.29 x_c, 1st Mode: Surge with Forward Pitch, $x_{c,o} = 1.0$.

Figure 3.30 ψ, 1st Mode: Surge with Forward Pitch, $\psi_{o} = 0.2340$.

Figure 3.31 y_c, 1st Mode: Surge with Forward Pitch, $y_{c,o} = y_{c,eq}$.

Figure 3.32 z_c, 2nd Mode: Sway with Backward Roll, $z_{c,o} = 0.3$.

Figure 3.33 ϕ, 2nd Mode: Sway with Backward Roll, $\phi_{o} = 0.2099$.

Figure 3.34 y_c, 2nd Mode: Sway with Backward Roll, $y_{c,o} = y_{c,eq}$.

Figure 3.35 z_c, 2nd Mode: Sway with Backward Roll, $z_{c,o} = 0.6$.

Figure 3.36 ϕ, 2nd Mode: Sway with Backward Roll, $\phi_{o} = 0.4198$.

Figure 3.37 y_c, 2nd Mode: Sway with Backward Roll, $y_{c,o} = y_{c,eq}$.

Figure 3.38 z_c, 2nd Mode: Sway with Backward Roll, $z_{c,o} = 0.8$.

Figure 3.39 ϕ, 2nd Mode: Sway with Backward Roll, $\phi_{o} = 0.5598$.

Figure 3.40 y_c, 2nd Mode: Sway with Backward Roll, $y_{c,o} = y_{c,eq}$.

Figure 3.41 z_c, 2nd Mode: Sway with Backward Roll, $z_{c,o} = 1.0$.

Figure 3.42 ϕ, 2nd Mode: Sway with Backward Roll, $\phi_{o} = 0.6997$.

Figure 3.43 y_c, 2nd Mode: Sway with Backward Roll, $y_{c,o} = y_{c,eq}$.

Figure 3.44 ϕ, 3rd Mode: Yaw Only, $\theta_{o} = 0.2$.

Figure 3.45 y_c, 3rd Mode: Yaw Only, $y_{c,o} = y_{c,eq}$.

Figure 3.46 ϕ, 3rd Mode: Yaw Only, $\theta_{o} = 0.3$.

Figure 3.47 y_c, 3rd Mode: Yaw Only, $y_{c,o} = y_{c,eq}$.

Figure 3.48 ϕ, 3rd Mode: Yaw Only, $\theta_{o} = 0.4$.

Figure 3.49 y_c, 3rd Mode: Yaw Only, $y_{c,o} = y_{c,eq}$.

Figure 3.50 ϕ, 3rd Mode: Yaw Only, $\theta_{o} = 0.5$.

Figure 3.51 y_c, 3rd Mode: Yaw Only, $y_{c,o} = y_{c,eq}$.

Figure 3.52 y_c, 4th Mode: Heave Only, $y_{c,o} = 3.2$.

ix
Figure 3.53 y_c, 4th Mode: Heave Only, y_{c.o} = 3.4...60
Figure 3.54 y_c, 4th Mode: Heave Only, y_{c.o} = 3.6...60
Figure 3.55 y_c, 4th Mode: Heave Only, y_{c.o} = y_{c_eq} + 1...60
Figure 3.56 z_c, 5th Mode: Sway with Forward Roll, z_{c.o} = 0.03...61
Figure 3.57 \phi_c, 5th Mode: Sway with Forward Roll, \phi_o = 0.0857...61
Figure 3.58 y_c, 5th Mode: Sway with Forward Roll, y_{c.o} = y_{c_eq}...61
Figure 3.59 z_c, 5th Mode: Sway with Forward Roll, z_{c.o} = 0.06...62
Figure 3.60 \phi, 5th Mode: Sway with Forward Roll, \phi_o = 0.1715...62
Figure 3.61 y_c, 5th Mode: Sway with Forward Roll, y_{c.o} = y_{c_eq}...62
Figure 3.62 z_c, 5th Mode: Sway with Forward Roll, z_{c.o} = 0.08...63
Figure 3.63 \phi, 5th Mode: Sway with Forward Roll, \phi_o = 0.2287...63
Figure 3.64 y_c, 5th Mode: Sway with Forward Roll, y_{c.o} = y_{c_eq}...63
Figure 3.65 z_c, 5th Mode: Sway with Forward Roll, z_{c.o} = 0.1...64
Figure 3.66 \phi, 5th Mode: Sway with Forward Roll, \phi_o = 0.2858...64
Figure 3.67 y_c, 5th Mode: Sway with Forward Roll, y_{c.o} = y_{c_eq}...64
Figure 3.68 x_c, 1st Mode: Surge with Backward Pitch, x_{c.o} = 0.03...65
Figure 3.69 \psi, 1st Mode: Surge with Backward Pitch, \psi_o = -0.0395...65
Figure 3.70 y_c, 6th Mode: Surge with Backward Pitch, y_{c.o} = y_{c_eq}...65
Figure 3.71 x_c, 1st Mode: Surge with Backward Pitch, x_{c.o} = 0.06...66
Figure 3.72 \psi, 1st Mode: Surge with Backward Pitch, \psi_o = -0.0789...66
Figure 3.73 y_c, 6th Mode: Surge with Backward Pitch, y_{c.o} = y_{c_eq}...66
Figure 3.74 x_c, 1st Mode: Surge with Backward Pitch, x_{c.o} = 0.08...67
Figure 3.75 \psi, 1st Mode: Surge with Backward Pitch, \psi_o = -0.1052...67
Figure 3.76 y_c, 6th Mode: Surge with Backward Pitch, y_{c.o} = y_{c_eq}...67
Figure 3.77 x_c, 1st Mode: Surge with Backward Pitch, x_{c.o} = 0.1...68
Figure 3.78 \psi, 1st Mode: Surge with Backward Pitch, \psi_o = -0.1315...68
Figure 3.79 y_c, 6th Mode: Surge with Backward Pitch, y_{c.o} = y_{c_eq}...68
Figure 3.80 x_c, 1st Mode: Surge with Forward Pitch, c = 0.1...69
Figure 3.81 \psi, 1st Mode: Surge with Forward Pitch, c = 0.1...70
Figure 3.82 z_c, 2nd Mode: Sway with Backward Roll, c = 0.1...70
Figure 3.83 \phi, 2nd Mode: Sway with Backward Roll, c = 0.1...70
Figure 3.84 \(\theta \), 3rd Mode: Yaw Only, \(c = 1.5 \) ..71
Figure 3.85 \(y_c \), 4th Mode: Heave Only, \(c = 2.0 \) ..71
Figure 3.86 \(z_c \), 5th Mode: Sway with Forward Roll, \(c = 3.0 \) ..71
Figure 3.87 \(\phi \), 5th Mode: Sway with Forward Roll, \(c = 3.0 \) ..72
Figure 3.88 \(x_c \), 6th Mode: Surge with Backward Pitch, \(c = 3.0 \) ..72
Figure 3.89 \(\psi \), 6th Mode: Surge with Backward Pitch, \(c = 3.0 \) ..72

Figure 4.1 \(f_{xh} \) vs. \(t \) ..74
Figure 4.2 \(f_y \) vs. \(t \) ...74
Figure 4.3 \(f_x \) vs. \(f_z \) ..75
Figure 4.4 \(f_y \) vs. \(t \), Standard Case ...76
Figure 4.5 \(f_y \) vs. \(t \), Standard Case ...77
Figure 4.6 \(f_y \) vs. \(f_{xh} \), Standard Case ...77
Figure 4.7 \(f_y \) vs. \(f_z \), \(\Omega = 0.75 \), \(f_o = 0.35 \), \(\epsilon = 0^\circ \), \(t_y = t_x + .25T \), \(v = 1.0 \) ..77
Figure 4.8 \(f_y \) vs. \(f_z \), \(\Omega = 0.75 \), \(F_o = 0.35 \), \(\epsilon = 0^\circ \), \(t_y = T \), \(v = 0.5 \) ..78
Figure 4.9 \(f_y \) vs. \(f_z \), \(\Omega = 0.75 \), \(F_o = 0.35 \), \(\epsilon = 0^\circ \), \(t_y = t_x \), \(v = 0.5 \) ..78
Figure 4.10 Translation Norm vs. \(f_o \), Standard Case, \(\epsilon = 0^\circ \) ..81
Figure 4.11 Rotation Norm vs. \(f_o \), Standard Case, \(\epsilon = 0^\circ \) ..81
Figure 4.12 \(y_{c_{\text{min}}} \) vs. \(f_o \), Standard Case, \(\epsilon = 0^\circ \) ...82
Figure 4.13 \(y_c \) vs. \(t \), Standard Case, \(f_o = 1.07 \), \(\epsilon = 0^\circ \) ..82
Figure 4.14 \(z_c \) vs. \(t \), Standard Case, \(f_o = 1.07 \), \(\epsilon = 0^\circ \) ..83
Figure 4.15 \(\phi \) vs. \(t \), Standard Case, \(f_o = 1.07 \), \(\epsilon = 0^\circ \) ..83
Figure 4.16 \(y_c \) vs. \(t \), Standard Case, \(f_o = 1.071 \), \(\epsilon = 0^\circ \) ..84
Figure 4.17 \(z_c \) vs. \(t \), Standard Case, \(f_o = 1.071 \), \(\epsilon = 0^\circ \) ..84
Figure 4.18 \(\phi \) vs. \(t \), Standard Case, \(f_o = 1.071 \), \(\epsilon = 0^\circ \) ..85
Figure 4.19 Harmonic Motion, \(\epsilon = 0^\circ \) ...85
Figure 4.20 Translation Norm vs. \(f_o \), Standard Case, \(\epsilon = 30^\circ \) ..86
Figure 4.21 Rotation Norm vs. \(f_o \), Standard Case, \(\epsilon = 30^\circ \) ..87
Figure 4.22 \(y_{c_{\text{min}}} \) vs. \(f_o \), Standard Case, \(\epsilon = 30^\circ \) ..87
Figure 4.23 Translation Norm vs. \(f_o \), Standard Case, \(\epsilon = 60^\circ \) ..88
Figure 4.53 Poincaré Plot, Pitch, Standard Case, \(f_o = 0.50, \varepsilon = 90^\circ \) .. 103
Figure 4.54 Poincaré Plot, Surge, Standard Case, \(f_o = 0.58, \varepsilon = 90^\circ \) .. 104
Figure 4.55 Poincaré Plot, Heave, Standard Case, \(f_o = 0.58, \varepsilon = 90^\circ \) .. 104
Figure 4.56 Poincaré Plot, Pitch, Standard Case, \(f_o = 0.58, \varepsilon = 90^\circ \) .. 104
Figure 4.57 Poincaré Plot, Surge, Standard Case, \(f_o = 0.61, \varepsilon = 90^\circ \) .. 105
Figure 4.58 Poincaré Plot, Heave, Standard Case, \(f_o = 0.61, \varepsilon = 90^\circ \) .. 105
Figure 4.59 Poincaré Plot, Pitch, Standard Case, \(f_o = 0.61, \varepsilon = 90^\circ \) .. 105
Figure 4.60 Poincaré Plot, Pitch, Standard Case, \(f_o = 0.65, \varepsilon = 90^\circ \) .. 106
Figure 4.61 Poincaré Plot, Heave, Standard Case, \(f_o = 0.65, \varepsilon = 90^\circ \) .. 106
Figure 4.62 Poincaré Plot, Pitch, Standard Case, \(f_o = 0.65, \varepsilon = 90^\circ \) .. 106
Figure 4.63 Translation Norm vs. \(\Omega \), Standard Case, \(\varepsilon = 0^\circ \) .. 109
Figure 4.64 Rotation Norm vs. \(\Omega \), Standard Case, \(\varepsilon = 0^\circ \) .. 109
Figure 4.65 \(y_c \) vs. \(t \), Standard Case, \(\Omega = 0.8, \varepsilon = 0^\circ \) .. 110
Figure 4.66 \(z_c \) vs. \(t \), Standard Case, \(\Omega = 0.8, \varepsilon = 0^\circ \) .. 110
Figure 4.67 \(\phi \) vs. \(t \), Standard Case, \(\Omega = 0.8, \varepsilon = 0^\circ \) .. 110
Figure 4.68 \(y_c \) vs. \(t \), Standard Case, \(\Omega = 9.97, \varepsilon = 0^\circ \) .. 111
Figure 4.69 \(z_c \) vs. \(t \), Standard Case, \(\Omega = 9.97, \varepsilon = 0^\circ \) .. 111
Figure 4.70 \(\phi \) vs. \(t \), Standard Case, \(\Omega = 9.97, \varepsilon = 0^\circ \) .. 111
Figure 4.71 \(y_c \) vs. \(t \), Standard Case, \(\Omega = 15.81, \varepsilon = 0^\circ \) .. 112
Figure 4.72 \(z_c \) vs. \(t \), Standard Case, \(\Omega = 15.81, \varepsilon = 0^\circ \) .. 112
Figure 4.73 \(\phi \) vs. \(t \), Standard Case, \(\Omega = 15.81, \varepsilon = 0^\circ \) .. 112
Figure 4.74 \(y_c \) vs. \(t \), Standard Case, \(\Omega = 0.46, \varepsilon = 0^\circ \) .. 113
Figure 4.75 \(z_c \) vs. \(t \), Standard Case, \(\Omega = 0.46, \varepsilon = 0^\circ \) .. 113
Figure 4.76 \(\phi \) vs. \(t \), Standard Case, \(\Omega = 0.46, \varepsilon = 0^\circ \) .. 113
Figure 4.77 Translation Norm vs. \(\Omega \), Standard Case, \(\varepsilon = 30^\circ \) .. 114
Figure 4.78 Rotation Norm vs. \(\Omega \), Standard Case, \(\varepsilon = 30^\circ \) .. 114
Figure 4.79 \(x_c \) vs. \(t \), Standard Case, \(\Omega = 0.76, \varepsilon = 30^\circ \) .. 115
Figure 4.80 \(y_c \) vs. \(t \), Standard Case, \(\Omega = 0.76, \varepsilon = 30^\circ \) .. 115
Figure 4.81 \(z_c \) vs. \(t \), Standard Case, \(\Omega = 0.76, \varepsilon = 30^\circ \) .. 115
Figure 4.82 \[\psi \text{ vs. } t, \text{ Standard Case, } \Omega = 0.76, \varepsilon = 30^\circ \] ..116
Figure 4.83 \[\theta \text{ vs. } t, \text{ Standard Case, } \Omega = 0.76, \varepsilon = 30^\circ \] ..116
Figure 4.84 \[\phi \text{ vs. } t, \text{ Standard Case, } \Omega = 0.76, \varepsilon = 30^\circ \] ..116
Figure 4.85 \[x_\text{c} \text{ vs. } t, \text{ Standard Case, } \Omega = 0.46, \varepsilon = 30^\circ \] ..117
Figure 4.86 \[y_\text{c} \text{ vs. } t, \text{ Standard Case, } \Omega = 0.46, \varepsilon = 30^\circ \] ..117
Figure 4.87 \[z_\text{c} \text{ vs. } t, \text{ Standard Case, } \Omega = 0.46, \varepsilon = 30^\circ \] ..117
Figure 4.88 \[\psi \text{ vs. } t, \text{ Standard Case, } \Omega = 0.46, \varepsilon = 30^\circ \] ..118
Figure 4.89 \[\theta \text{ vs. } t, \text{ Standard Case, } \Omega = 0.46, \varepsilon = 30^\circ \] ...118
Figure 4.90 \[\theta \text{ vs. } t, \text{ Standard Case, } \Omega = 0.46, \varepsilon = 30^\circ \] ...118
Figure 4.91 Translation Norm vs. \[\Omega \], Standard Case, \[\varepsilon = 60^\circ \]120
Figure 4.92 Rotation Norm vs. \[\Omega \], Standard Case, \[\varepsilon = 60^\circ \] ...120
Figure 4.93 \[x_\text{c} \text{ vs. } t, \text{ Standard Case, } \Omega = 0.738, \varepsilon = 60^\circ \] ..121
Figure 4.94 \[y_\text{c} \text{ vs. } t, \text{ Standard Case, } \Omega = 0.738, \varepsilon = 60^\circ \] ..121
Figure 4.95 \[z_\text{c} \text{ vs. } t, \text{ Standard Case, } \Omega = 0.738, \varepsilon = 60^\circ \] ..121
Figure 4.96 \[\psi \text{ vs. } t, \text{ Standard Case, } \Omega = 0.738, \varepsilon = 60^\circ \] ..122
Figure 4.97 \[\theta \text{ vs. } t, \text{ Standard Case, } \Omega = 0.738, \varepsilon = 60^\circ \] ..122
Figure 4.98 \[\phi \text{ vs. } t, \text{ Standard Case, } \Omega = 0.738, \varepsilon = 60^\circ \] ..122
Figure 4.99 \[x_\text{c} \text{ vs. } t, \text{ Standard Case, } \Omega = 0.39, \varepsilon = 60^\circ \] ..123
Figure 4.100 \[y_\text{c} \text{ vs. } t, \text{ Standard Case, } \Omega = 0.39, \varepsilon = 60^\circ \] ..123
Figure 4.101 \[z_\text{c} \text{ vs. } t, \text{ Standard Case, } \Omega = 0.39, \varepsilon = 60^\circ \] ..123
Figure 4.102 \[\psi \text{ vs. } t, \text{ Standard Case, } \Omega = 0.39, \varepsilon = 60^\circ \] ..124
Figure 4.103 \[\theta \text{ vs. } t, \text{ Standard Case, } \Omega = 0.39, \varepsilon = 60^\circ \] ..124
Figure 4.104 \[\phi \text{ vs. } t, \text{ Standard Case, } \Omega = 0.39, \varepsilon = 60^\circ \] ..124
Figure 4.105 \[\text{Translation Norm vs. } \Omega, \text{ Standard Case, } \varepsilon = 90^\circ \]125
Figure 4.106 \[\text{Rotation Norm vs. } \Omega, \text{ Standard Case, } \varepsilon = 90^\circ \] ...125
Figure 4.107 \[x_\text{c} \text{ vs. } t, \text{ Standard Case, } \Omega = 0.69, \varepsilon = 90^\circ \] ...126
Figure 4.108 \[y_\text{c} \text{ vs. } t, \text{ Standard Case, } \Omega = 0.69, \varepsilon = 90^\circ \] ...126
Figure 4.109 \[\psi \text{ vs. } t, \text{ Standard Case, } \Omega = 0.69, \varepsilon = 90^\circ \] ...126
Figure 4.110 \[x_\text{c} \text{ vs. } t, \text{ Standard Case, } \Omega = 0.39, \varepsilon = 90^\circ \] ..127
Figure 4.111 y_c vs. t, Standard Case, $\Omega = 0.39$, $\varepsilon = 90^\circ$.................................127
Figure 4.112 ψ vs. t, Standard Case, $\Omega = 0.39$, $\varepsilon = 90^\circ$.................................127
Figure 4.113 Translation Norm vs. c, Standard Case, $\varepsilon = 0^\circ$.................................129
Figure 4.114 Rotation Norm vs. c, Standard Case, $\varepsilon = 0^\circ$.................................129
Figure 4.115 Translation Norm vs. c, Standard Case, $\varepsilon = 30^\circ$...............................130
Figure 4.116 Rotation Norm vs. c, Standard Case, $\varepsilon = 30^\circ$...............................130
Figure 4.117 Translation Norm vs. c, Standard Case, $\varepsilon = 60^\circ$...............................131
Figure 4.118 Rotation Norm vs. c, Standard Case, $\varepsilon = 60^\circ$...............................131
Figure 4.119 Translation Norm vs. c, Standard Case, $\varepsilon = 90^\circ$...............................132
Figure 4.120 Rotation Norm vs. c, Standard Case, $\varepsilon = 90^\circ$...............................132

Figure 5.1 Translation Norm vs. f_o, Standard Case, $\varepsilon = 0^\circ$.................................137
Figure 5.2 Rotation Norm vs. f_o, Standard Case, $\varepsilon = 0^\circ$.................................137
Figure 5.3 Mooring Line Tension Norm vs. f_o, Standard Case, $\varepsilon = 0^\circ$......................138
Figure 5.4 $y_{c,\text{min}}$ vs. f_o, Standard Case, $\varepsilon = 0^\circ$.................................138
Figure 5.5 y_c vs. t, Compressionless Springs, Standard Case, $f_o = 0.54$, $\varepsilon = 0^\circ$........139
Figure 5.6 z_c vs. t, Compressionless Springs, Standard Case, $f_o = 0.54$, $\varepsilon = 0^\circ$........139
Figure 5.7 ϕ vs. t, Compressionless Springs, Standard Case, $f_o = 0.54$, $\varepsilon = 0^\circ$........139
Figure 5.8 $T_{1,3}$ vs. t, Compressionless Springs, Standard Case, $f_o = 0.54$, $\varepsilon = 0^\circ$.....140
Figure 5.9 $T_{2,4}$ vs. t, Compressionless Springs, Standard Case, $f_o = 0.54$, $\varepsilon = 0^\circ$.....140
Figure 5.10 y_c vs. t, Compressionless Springs, Standard Case, $f_o = 0.55$, $\varepsilon = 0^\circ$........141
Figure 5.11 z_c vs. t, Compressionless Springs, Standard Case, $f_o = 0.55$, $\varepsilon = 0^\circ$........141
Figure 5.12 ϕ vs. t, Compressionless Springs, Standard Case, $f_o = 0.55$, $\varepsilon = 0^\circ$........141
Figure 5.13 $T_{1,3}$ vs. t, Compressionless Springs, Standard Case, $f_o = 0.55$, $\varepsilon = 0^\circ$.....142
Figure 5.14 $T_{2,4}$ vs. t, Compressionless Springs, Standard Case, $f_o = 0.55$, $\varepsilon = 0^\circ$.....142
Figure 5.15 $T_{1,3}$ vs. t, Compressionless Springs, Standard Case, $f_o = 0.54$, $\varepsilon = 0^\circ$.....143
Figure 5.16 $T_{2,4}$ vs. t, Compressionless Springs, Standard Case, $f_o = 0.54$, $\varepsilon = 0^\circ$.....143
Figure 5.17 f_y vs. t, Standard Case, $f_o = 0.54$..144
Figure 5.18 $T_{1,3}$ vs. t, Compressionless Springs, Standard Case, $f_o = 0.55$, $\varepsilon = 0^\circ$.....144
Figure 5.19 $T_{2,4}$ vs. t, Compressionless Springs, Standard Case, $f_o = 0.55$, $\varepsilon = 0^\circ$.....144
Figure 5.20 f_y vs. t, Standard Case, $f_o = 0.55$..144
Figure 5.21 Translation Norm vs. f_o, Standard Case, $\varepsilon = 30^\circ$..................................147
Figure 5.22 Rotation Norm vs. f_o, Standard Case, $\varepsilon = 30^\circ$..................................147
Figure 5.23 Mooring Line Tension Norm vs. f_o, Standard Case, $\varepsilon = 30^\circ$.............148
Figure 5.24 $y_{c,\text{min}}$ vs. f_o, Standard Case, $\varepsilon = 30^\circ$..148
Figure 5.25 x_c vs. t, Standard Case, $f_o = 0.37$, $\varepsilon = 30^\circ$, $0 \leq t \leq 300$........149
Figure 5.26 x_c vs. t, Standard Case, $f_o = 0.37$, $\varepsilon = 30^\circ$, $300 \leq t \leq 600$........149
Figure 5.27 y_c vs. t, Standard Case, $f_o = 0.37$, $\varepsilon = 30^\circ$, $0 \leq t \leq 300$........149
Figure 5.28 y_c vs. t, Standard Case, $f_o = 0.37$, $\varepsilon = 30^\circ$, $300 \leq t \leq 600$........150
Figure 5.29 z_c vs. t, Standard Case, $f_o = 0.37$, $\varepsilon = 30^\circ$, $0 \leq t \leq 300$........150
Figure 5.30 z_c vs. t, Standard Case, $f_o = 0.37$, $\varepsilon = 30^\circ$, $300 \leq t \leq 600$........150
Figure 5.31 ψ vs. t, Standard Case, $f_o = 0.37$, $\varepsilon = 30^\circ$, $0 \leq t \leq 300$........151
Figure 5.32 ψ vs. t, Standard Case, $f_o = 0.37$, $\varepsilon = 30^\circ$, $300 \leq t \leq 600$........151
Figure 5.33 θ vs. t, Standard Case, $f_o = 0.37$, $\varepsilon = 30^\circ$, $0 \leq t \leq 300$........151
Figure 5.34 θ vs. t, Standard Case, $f_o = 0.37$, $\varepsilon = 30^\circ$, $300 \leq t \leq 600$........152
Figure 5.35 ϕ vs. t, Standard Case, $f_o = 0.37$, $\varepsilon = 30^\circ$, $0 \leq t \leq 300$........152
Figure 5.36 ϕ vs. t, Standard Case, $f_o = 0.37$, $\varepsilon = 30^\circ$, $300 \leq t \leq 600$........152
Figure 5.37 T_1 vs. t, Standard Case, $f_o = 0.37$, $\varepsilon = 0^\circ$, $0 \leq t \leq 300$...........153
Figure 5.38 T_1 vs. t, Standard Case, $f_o = 0.37$, $\varepsilon = 0^\circ$, $300 \leq t \leq 600$...........153
Figure 5.39 T_2 vs. t, Standard Case, $f_o = 0.37$, $\varepsilon = 0^\circ$, $0 \leq t \leq 300$...........154
Figure 5.40 T_2 vs. t, Standard Case, $f_o = 0.37$, $\varepsilon = 0^\circ$, $300 \leq t \leq 600$...........154
Figure 5.41 T_3 vs. t, Standard Case, $f_o = 0.37$, $\varepsilon = 0^\circ$, $0 \leq t \leq 300$...........155
Figure 5.42 T_3 vs. t, Standard Case, $f_o = 0.37$, $\varepsilon = 0^\circ$, $300 \leq t \leq 600$...........155
Figure 5.43 T_4 vs. t, Standard Case, $f_o = 0.37$, $\varepsilon = 0^\circ$, $0 \leq t \leq 300$...........156
Figure 5.44 T_4 vs. t, Standard Case, $f_o = 0.37$, $\varepsilon = 0^\circ$, $300 \leq t \leq 600$...........156
Figure 5.45 x_c vs. t, Compressionless Springs, Standard Case, $f_o = 0.38$, $\varepsilon = 30^\circ$....157
Figure 5.46 y_c vs. t, Compressionless Springs, Standard Case, $f_o = 0.38$, $\varepsilon = 30^\circ$....157
Figure 5.47 z_c vs. t, Compressionless Springs, Standard Case, $f_o = 0.38$, $\varepsilon = 30^\circ$....157
Figure 5.48 ψ vs. t, Compressionless Springs, Standard Case, $f_o = 0.38$, $\varepsilon = 30^\circ$......158
Figure 5.49 θ vs. t, Compressionless Springs, Standard Case, $f_o = 0.38$, $\varepsilon = 30^\circ$......158
Figure 5.50 ϕ vs. t, Compressionless Springs, Standard Case, $f_o = 0.38$, $\varepsilon = 30^\circ$......158
Figure 5.51 T_1 vs. t, Compressionless Springs, Standard Case, $f_o = 0.38$, $\varepsilon = 30^\circ$......159
Figure 5.52 T_2 vs. t, Compressionless Springs, Standard Case, $f_o = 0.38$, $\varepsilon = 30^\circ$......159
Figure 5.53 T_3 vs. t, Compressionless Springs, Standard Case, $f_o = 0.38$, $\varepsilon = 30^\circ$......160
Figure 5.54 T_4 vs. t, Compressionless Springs, Standard Case, $f_o = 0.38$, $\varepsilon = 30^\circ$......160
Figure 5.55 T_4 vs. t, Compressionless Springs, Standard Case, $f_o = 0.37$, $\varepsilon = 30^\circ$......161
Figure 5.56 f_y vs. t, Standard Case, $f_o = 0.37$..161
Figure 5.57 T_4 vs. t, Compressionless Springs, Standard Case, $f_o = 0.38$, $\varepsilon = 30^\circ$......161
Figure 5.58 Translation Norm vs. f_o, $\varepsilon = 60^\circ$..163
Figure 5.59 Rotation Norm vs. f_o, $\varepsilon = 60^\circ$..163
Figure 5.60 Mooring Line Tension Norm vs. f_o, $\varepsilon = 60^\circ$..164
Figure 5.61 $y_{c, min}$ vs. f_o, $\varepsilon = 60^\circ$..164
Figure 5.62 x_c vs. t, Compressionless Springs, Standard Case, $f_o = 0.20$, $\varepsilon = 60^\circ$......165
Figure 5.63 y_c vs. t, Compressionless Springs, Standard Case, $f_o = 0.20$, $\varepsilon = 60^\circ$......165
Figure 5.64 z_c vs. t, Compressionless Springs, Standard Case, $f_o = 0.20$, $\varepsilon = 60^\circ$......165
Figure 5.65 ψ vs. t, Compressionless Springs, Standard Case, $f_o = 0.20$, $\varepsilon = 60^\circ$......166
Figure 5.66 θ vs. t, Compressionless Springs, Standard Case, $f_o = 0.20$, $\varepsilon = 60^\circ$......166
Figure 5.67 ϕ vs. t, Compressionless Springs, Standard Case, $f_o = 0.20$, $\varepsilon = 60^\circ$......166
Figure 5.68 T_1 vs. t, Compressionless Springs, Standard Case, $f_o = 0.20$, $\varepsilon = 60^\circ$......167
Figure 5.69 T_2 vs. t, Compressionless Springs, Standard Case, $f_o = 0.20$, $\varepsilon = 60^\circ$......167
Figure 5.70 T_3 vs. t, Compressionless Springs, Standard Case, $f_o = 0.20$, $\varepsilon = 60^\circ$......168
Figure 5.71 T_4 vs. t, Compressionless Springs, Standard Case, $f_o = 0.20$, $\varepsilon = 60^\circ$......168
Figure 5.72 x_c vs. t, Compressionless Springs, Standard Case, $f_o = 0.21$, $\varepsilon = 60^\circ$......169
Figure 5.73 y_c vs. t, Compressionless Springs, Standard Case, $f_o = 0.21$, $\varepsilon = 60^\circ$......169
Figure 5.74 z_c vs. t, Compressionless Springs, Standard Case, $f_o = 0.21$, $\varepsilon = 60^\circ$......169
Figure 5.75 ψ vs. t, Compressionless Springs, Standard Case, $f_o = 0.21$, $\varepsilon = 60^\circ$......170
Figure 5.76 θ vs. t, Compressionless Springs, Standard Case, $f_o = 0.21$, $\varepsilon = 60^\circ$......170
Figure 5.77 ϕ vs. t, Compressionless Springs, Standard Case, $f_o = 0.21, \varepsilon = 60^o$......170
Figure 5.78. T_1 vs. t, Compressionless Springs, Standard Case, $f_o = 0.21, \varepsilon = 60^o$.....171
Figure 5.79 T_2 vs. t, Compressionless Springs, Standard Case, $f_o = 0.21, \varepsilon = 60^o$.....171
Figure 5.80 T_3 vs. t, Compressionless Springs, Standard Case, $f_o = 0.21, \varepsilon = 60^o$.....172
Figure 5.81 T_4 vs. t, Compressionless Springs, Standard Case, $f_o = 0.21, \varepsilon = 60^o$.....172
Figure 5.82 T_4 vs. t, Compressionless Springs, Standard Case, $f_o = 0.2, \varepsilon = 60^o$......173
Figure 5.83 f_y vs. t, Standard Case, $f_o = 0.2$...173
Figure 5.84 T_4 vs. t, Compressionless Springs, Standard Case, $f_o = 0.21, \varepsilon = 60^o$.....173
Figure 5.85 Translation Norm vs. f_o, $\varepsilon = 90^o$..175
Figure 5.86 Rotation Norm vs. f_o, $\varepsilon = 90^o$..175
Figure 5.87 Mooring Line Tension Norm vs. f_o, $\varepsilon = 90^o$..176
Figure 5.88 $y_{c, min}$ vs. f_o, $\varepsilon = 90^o$..176
Figure 5.89 x_c vs. t, Compressionless Springs, Standard Case, $f_o = 0.18, \varepsilon = 90^o$......177
Figure 5.90 y_c vs. t, Compressionless Springs, Standard Case, $f_o = 0.18, \varepsilon = 90^o$......177
Figure 5.91 ψ vs. t, Compressionless Springs, Standard Case, $f_o = 0.18, \varepsilon = 90^o$......177
Figure 5.92 $T_{1,2}$ vs. t, Compressionless Springs, Standard Case, $f_o = 0.18, \varepsilon = 90^o$...178
Figure 5.93 $T_{3,4}$ vs. t, Compressionless Springs, Standard Case, $f_o = 0.18, \varepsilon = 90^o$...178
Figure 5.94 x_c vs. t, Compressionless Springs, Standard Case, $f_o = 0.19, \varepsilon = 90^o$......179
Figure 5.95 y_c vs. t, Compressionless Springs, Standard Case, $f_o = 0.19, \varepsilon = 90^o$......179
Figure 5.96 ψ vs. t, Compressionless Springs, Standard Case, $f_o = 0.19, \varepsilon = 90^o$......179
Figure 5.97 $T_{1,2}$ vs. t, Compressionless Springs, Standard Case, $f_o = 0.19, \varepsilon = 90^o$...180
Figure 5.98 $T_{3,4}$ vs. t, Compressionless Springs, Standard Case, $f_o = 0.19, \varepsilon = 90^o$...180
Figure 5.99 $T_{1,2}$ vs. t, Compressionless Springs, Standard Case, $f_o = 0.18, \varepsilon = 90^o$...181
Figure 5.100 f_y vs. t, Standard Case, $f_o = 0.18$...181
Figure 5.101 $T_{1,2}$ vs. t, Compressionless Springs, Standard Case, $f_o = 0.19, \varepsilon = 90^o$...181
Figure 5.102 Poincaré Plot, Heave, $f_o = 0.28$, $\Omega = 0.8$, $\varepsilon = 0^o$.................................183
Figure 5.103 Poincaré Plot, Sway, $f_o = 0.28$, $\Omega = 0.8$, $\varepsilon = 0^o$.................................183
Figure 5.104 Poincaré Plot, Roll, $f_o = 0.28$, $\Omega = 0.8$, $\varepsilon = 0^o$.................................183
Figure 5.105 Poincaré Plot, Heave, $f_o = 0.29$, $\Omega = 0.8$, $\varepsilon = 0^o$.................................184
Figure 5.106 Poincaré Plot, Sway, $f_0 = 0.29$, $\Omega = 0.8$, $\epsilon = 0^\circ$.................................184
Figure 5.107 Poincaré Plot, Roll, $f_0 = 0.29$, $\Omega = 0.8$, $\epsilon = 0^\circ$.................................184
Figure 5.108 y_c vs. t, Compressionless Springs, $\Omega = 0.8$, $f_0 = 0.29$, $\epsilon = 0^\circ$............185
Figure 5.109 z_c vs. t, Compressionless Springs, $\Omega = 0.8$, $f_0 = 0.29$, $\epsilon = 0^\circ$............185
Figure 5.110 ϕ vs. t, Compressionless Springs, $\Omega = 0.8$, $f_0 = 0.29$, $\epsilon = 0^\circ$............185
Figure 5.111 Poincaré Plot, Surge, Standard Case, $f_0 = 0.19$, $\epsilon = 90^\circ$.............................186
Figure 5.112 Poincaré Plot, Heave, Standard Case, $f_0 = 0.19$, $\epsilon = 90^\circ$.............................186
Figure 5.113 Poincaré Plot, Pitch, Standard Case, $f_0 = 0.19$, $\epsilon = 90^\circ$.............................186
Figure 5.114 x_c vs. t, Compressionless Springs, Standard Case, $f_0 = 0.19$, $\epsilon = 90^\circ$...........187
Figure 5.115 y_c vs. t, Compressionless Springs, Standard Case, $f_0 = 0.19$, $\epsilon = 90^\circ$...........187
Figure 5.116 ψ vs. t, Compressionless Springs, Standard Case, $f_0 = 0.19$, $\epsilon = 90^\circ$...........187
Figure 5.117 Poincaré Plot, Surge, Standard Case, $f_0 = 0.2$, $\epsilon = 90^\circ$.............................188
Figure 5.118 Poincaré Plot, Heave, Standard Case, $f_0 = 0.2$, $\epsilon = 90^\circ$.............................188
Figure 5.119 Poincaré Plot, Pitch, Standard Case, $f_0 = 0.2$, $\epsilon = 90^\circ$.............................188
Figure 5.120 x_c vs. t, Compressionless Springs, Standard Case, $f_0 = 0.2$, $\epsilon = 90^\circ$...........189
Figure 5.121 y_c vs. t, Compressionless Springs, Standard Case, $f_0 = 0.2$, $\epsilon = 90^\circ$...........189
Figure 5.122 ψ vs. t, Compressionless Springs, Standard Case, $f_0 = 0.2$, $\epsilon = 90^\circ$...........189
Figure 5.123 Translation Norm vs. Ω, Standard Case, $\epsilon = 0^\circ$.................................192
Figure 5.124 Rotation Norm vs. Ω, Standard Case, $\epsilon = 0^\circ$.................................192
Figure 5.125 Mooring Line Tension Norm vs. Ω, Standard Case, $\epsilon = 0^\circ$....................193
Figure 5.126 y_c vs. t, Compressionless Springs, Standard Case, $\Omega = 0.82$, $\epsilon = 0^\circ$........194
Figure 5.127 z_c vs. t, Compressionless Springs, Standard Case, $\Omega = 0.82$, $\epsilon = 0^\circ$........194
Figure 5.128 ϕ vs. t, Compressionless Springs, Standard Case, $\Omega = 0.82$, $\epsilon = 0^\circ$........194
Figure 5.129 Translation Norm vs. Ω, Standard Case, $\epsilon = 30^\circ$.................................196
Figure 5.130 Rotation Norm vs. Ω, Standard Case, $\epsilon = 30^\circ$.................................196
Figure 5.131 Mooring Line Tension Norm vs. Ω, Standard Case, $\epsilon = 30^\circ$....................197
Figure 5.132 x_c vs. t, Compressionless Springs, Standard Case, $\Omega = 0.98$, $\epsilon = 30^\circ$........198
Figure 5.133 y_c vs. t, Compressionless Springs, Standard Case, $\Omega = 0.98$, $\epsilon = 30^\circ$........198
Figure 5.134 z_c vs. t, Compressionless Springs, Standard Case, $\Omega = 0.98$, $\epsilon = 30^\circ$........198
Figure 5.135 ψ vs. t, Compressionless Springs, Standard Case, $\Omega = 0.98$, $\varepsilon = 30^\circ$199
Figure 5.136 θ vs. t, Compressionless Springs, Standard Case, $\Omega = 0.98$, $\varepsilon = 30^\circ$199
Figure 5.137 ϕ vs. t, Compressionless Springs, Standard Case, $\Omega = 0.98$, $\varepsilon = 30^\circ$199
Figure 5.138 Translation Norm vs. Ω, Standard Case, $\varepsilon = 60^\circ$...202
Figure 5.139 Rotation Norm vs. Ω, Standard Case, $\varepsilon = 60^\circ$...202
Figure 5.140 Mooring Line Tension Norm vs. Ω, Standard Case, $\varepsilon = 60^\circ$203
Figure 5.141 x_c vs. t, Compressionless Springs, Standard Case, $\Omega = 0.75$, $\varepsilon = 60^\circ$204
Figure 5.142 y_c vs. t, Compressionless Springs, Standard Case, $\Omega = 0.75$, $\varepsilon = 60^\circ$204
Figure 5.143 z_c vs. t, Compressionless Springs, Standard Case, $\Omega = 0.75$, $\varepsilon = 60^\circ$204
Figure 5.144 ψ vs. t, Compressionless Springs, Standard Case, $\Omega = 0.75$, $\varepsilon = 60^\circ$205
Figure 5.145 θ vs. t, Compressionless Springs, Standard Case, $\Omega = 0.75$, $\varepsilon = 60^\circ$205
Figure 5.146 ϕ vs. t, Compressionless Springs, Standard Case, $\Omega = 0.75$, $\varepsilon = 60^\circ$205
Figure 5.147 Translation Norm vs. Ω, Standard Case, $\varepsilon = 90^\circ$...206
Figure 5.148 Rotation Norm vs. Ω, Standard Case, $\varepsilon = 90^\circ$...206
Figure 5.149 Mooring Line Tension Norm vs. Ω, Standard Case, $\varepsilon = 90^\circ$207
Figure 5.150 x_c vs. t, Compressionless Springs, Standard Case, $\Omega = 0.73$, $\varepsilon = 90^\circ$208
Figure 5.151 y_c vs. t, Compressionless Springs, Standard Case, $\Omega = 0.73$, $\varepsilon = 90^\circ$208
Figure 5.152 ψ vs. t, Compressionless Springs, Standard Case, $\Omega = 0.73$, $\varepsilon = 90^\circ$208
Figure 5.153 Translation Norm vs. c, Standard Case, $\varepsilon = 0^\circ$...211
Figure 5.154 Rotation Norm vs. c, Standard Case, $\varepsilon = 90^\circ$...211
Figure 5.155 Mooring Line Tension Norm vs. c, Standard Case, $\varepsilon = 0^\circ$212
Figure 5.156 Translation Norm vs. c, Standard Case, $\varepsilon = 30^\circ$...213
Figure 5.157 Rotation Norm vs. c, Standard Case, $\varepsilon = 30^\circ$...213
Figure 5.158 Mooring Line Tension Norm vs. c, Standard Case, $\varepsilon = 30^\circ$214
Figure 5.159 Translation Norm vs. c, Standard Case, $\varepsilon = 60^\circ$...215
Figure 5.160 Rotation Norm vs. c, Standard Case, $\varepsilon = 60^\circ$...215
Figure 5.161 Mooring Line Tension Norm vs. c, Standard Case, $\varepsilon = 60^\circ$216
Figure 5.162 Translation Norm vs. c, Standard Case, $\varepsilon = 90^\circ$...217
Figure 5.163 Rotation Norm vs. c, Standard Case, $\varepsilon = 90^\circ$...217
Figure 5.164 Mooring Line Tension Norm vs. c, Standard Case, $\epsilon = 90^\circ$.................218
List of Tables

Table 3.1 Natural Frequencies and Periods, Standard Case.................................31
Table 3.2 Natural Frequencies and Periods, Special Case..36
Table 3.3 Coupled Terms For Large Motions..45

Table 4.1 Standard Case Values..76

Table 5.1 Resonant Norm Comparison Between the Two Stiffness Models,
\(\varepsilon = 0^\circ \)..191
Table 5.2 Resonant Norm Comparison Between the Two Stiffness Models,
\(\varepsilon = 30^\circ \)..195
Table 5.3 Resonant Norm Comparison Between the Two Stiffness Models,
\(\varepsilon = 60^\circ \)..200
Table 5.4 Resonant Norm Comparison Between the Two Stiffness Models,
\(\varepsilon = 90^\circ \)..201