ACTIVE CONTROL OF AUTOMOBILE CABIN NOISE
WITH CONVENTIONAL AND ADVANCED SPEAKERS

by

Jerome Couche

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Mechanical Engineering

APPROVED:

Dr. Chris R. Fuller, Chairman

__________________________ _______________________

Dr. Harry H. Robertshaw Dr. Mehdi Ahmadian

February 1999
Blacksburg, Virginia
Active Control of Automobile Cabin Noise with Conventional and Advanced Speakers
by
Jerome Couche
Committee Chairman: Chris R. Fuller, Mechanical Engineering

(ABSTRACT)

Recently much research has focused on the control of enclosed sound fields, particularly in automobiles. Both Active Noise Control (ANC) and Active Structural Acoustic Control (ASAC) techniques are being applied to problems stemming from power train noise and road noise (noise due to the interaction of the tires with the surface of the road). Due to the low frequency characteristics of these noise problems, large acoustic sources are required to obtain efficient control of the sound field. This creates demand in the automobile industry for compact lightweight sources.

This work is concerned with the application of active control to power train noise, as well as road noise in the interior cabin of a sport utility vehicle using advanced, compact lightweight piezoelectric acoustic sources. First, a test structure approximately the same size as the automobile was built to study the principles of active noise control in a cavity. A finite element model of the cavity was created in order to optimize the positions of the error sensors and the control sources. Experimental work was performed with the optimized actuator and sensor locations in order to validate the model, and draw conclusions regarding the conditions to obtain global control of the sound field. Second, a broad-band feedforward filtered-X LMS algorithm was used to control power train noise. Preliminary power train noise tests were conducted using arrangements of four microphones and up to four commercially available speakers for control. Attenuation of seven decibel (dB) at the error sensors was measured in the 40-500 Hz frequency band. The dimensions of the zone of quiet generated by the control were measured, and show that noise reductions were obtained for a large volume surrounding the error sensors. Next, advanced speakers were implemented for active control of power train noise. The results obtained with different arrangements of these speakers were very similar to those obtained with
the commercially-available speakers. These advanced speakers use piezoelectric devices to induce the displacement of a speaker membrane, which radiates sound. Their lighter weight and compact dimensions are a significant advantage over conventional speakers, for their application in automobile. Third, preliminary results were obtained for active control of road noise. The controller used an optimized set of four reference signals to control the noise at one error sensor using one control source. Two sets of tests were conducted. The first set of tests was performed on a dynamometer, which simulates the effects of the road on the tires. The second set of tests was performed on a rough road. Reduction of two to four decibel of the sound pressure level at the error sensor was obtained between 100 and 200 Hz.
Acknowledgement

I would like to thank my research advisor, Dr. Chris Fuller, for giving me the opportunity to be introduced to the field of active control. Working under his supervision has been a truly exciting experience. I also wish to thank Dr. Harry Robertshaw and Dr. Mehdi Ahmadian for serving on my advisory committee.

I appreciate Mme N. Jaffrin and Dr. J. R. Mahan, coordinators of the exchange program between Virginia Tech and the Université de Technologie de Compiègne, for giving me the opportunity to study in Blacksburg. Dawn Williams also deserves many thanks for her patience in the many administrative tasks she has assisted me with.

Among the many friends at the Vibration and Acoustics Laboratories who have helped me during the course of this work, I wish to thank Jerome Smith and Anna Tinetti for reading and correcting this thesis. Steeve Booth also deserves thanks for his help in setting up various experiments. I am also thankful to Cathy Guigou, Francois Charette, Marty Johnson, Pierre Cambou, Brody Johnson, Rick Wright and many others for their technical support and most important their friendship.

I am indebted to the Office of Naval Research and Materials System Inc. for funding this work. I wish to thank the Ford Motor Co. for giving the automobile used in the experiments. I also wish to thank Volvo Truck in Dublin, Virginia and Goodyear Rubber Co for providing the testing facilities for some of the experimental work presented in this thesis.

Finally, my family in France and in the US deserves most of my gratitude for their patience and support over these years. Also I would like to thank Jean Marc for his friendship, support, bonne humeur quotidienne, … the list goes on. Finally and most of all, I would like to thank Stéphanie for bearing with me during all that time.
à mes Parents
et à la mémoire de mes Grand-Parents
CONTENTS

Chapter 1
Introduction ..1
1.1 Motivation ... 1
1.2 Active Noise Control .. 2
1.3 Automobile Interior Active Noise Control ... 5
1.4 Thesis Objectives and Organization .. 9

Chapter 2
Theory .. 11
2.1 Global Minimization of the Pressure Field in a 3-D Cavity 11
2.2 Genetic Algorithms for Optimization ... 17
2.3 The Feed-forward Filtered-X LMS Algorithm ... 20

Chapter 3
Development of a Finite Element Model of the Test Cavity System 23
3.1 Acoustic Analysis of the Cavity .. 27
 3.1.1 Experimental Acoustic Modal Analysis of the Test Cavity System 27
 3.1.2 Modal Analysis using the Finite Element Model .. 34
 3.1.3 Conclusions .. 39
3.2 Analysis of the velocity field of the disturbance plate excited by a point force 40
 3.2.1 Experimental Modal Analysis of the Disturbance Plate 40
 3.2.2 Application to the Finite Element Model ... 45
Chapter 4
Optimization of the Locations of the Actuators and Sensors and Active Control of Sound in the Test System

4.1 Active Noise Control Simulation
 4.1.1 Experimental Set-Up
 4.1.2 Comparison of Experimental and Simulation Results
 4.1.3 Conclusions

4.2 Application of the Genetic Algorithm

4.3 Experimental Results with Optimized Configuration
 4.3.1 Application in the Case of a harmonic Disturbance
 4.3.2 Application in the Case a Broad Band Disturbance
 4.3.3 Conclusions

Chapter 5
Application of the Feedforward Filtered-X LMS Algorithm to the Active Control of Sound in a Ford Explorer

5.1 A method for Reference Signal Selection
5.2 Active Noise Control of Power train Noise
 5.2.1 Optimization of the location of the reference sensors
 5.2.2 Experimental Procedure
 5.2.3 Results obtained in a Lab Environment
 5.2.4 Results obtained on the Road
 5.2.5 Control using Advanced Piezoelectric Speakers
 5.3.6 Conclusions

5.3 Active Control of Road Noise
 5.3.1 Reference Signals Selection
 5.3.2 Results obtained on a dynamometer
 5.3.3 Simulated road noise
 5.3.4 Results obtained on the Road
Chapter 6
Conclusions and Recommendations .. 133

References .. 138

Appendix A
Finite Element Analysis .. 143

Appendix B
Development and testing of advanced Speakers ... 148

Appendix C
Comparison of the performance of the piezoelectric based speaker and a
Conventional audio electromagnetic speaker .. 155

Vitae .. 161
List of Figures

1.1 Diagram 1 from the illustration’s page of Lueg’s 1936 patent .. 3

2.1 Finite element model of the cavity with control source and error sensors 14
2.2 Control using 1 actuator and 6 error sensors in a rigid rectangular box 14
2.3 Control involving improper sensor locations ... 15
2.4 (a) Transfer function between actuator and error sensor ... 16
2.4 (b) Transfer functions between actuator and sensor .. 16
2.5 Schematic of simple genetic algorithm ... 19
2.6 Block diagram of the filtered-X LMS algorithm ... 22

3.1 Side view of the test cavity system with dimensions .. 24
3.2 General view of the test structure ... 25
3.3 View of the cavity with measurement system ... 26
3.4 Schematic of measurement system ... 28
3.5 Experimental acoustic mode shapes (magnitude) ... 32
3.6 Experimental acoustic mode shapes (phase) ... 33
3.7 Finite element model ... 34
3.8 FEM mode shapes (magnitude) ... 36
3.9 Pressure distribution at 114 Hz (magnitude) ... 36
3.10 FEM mode shapes (phase) ... 37
3.11 Pressure distribution at 114 Hz (phase) ... 37
3.12 Frequency response .. 38
3.13 Modal analysis set-up .. 41
3.14 Example of a frf (H1) and its coherence ... 43
3.15 Structural mode shapes ... 44
3.16 Pressure due to the disturbance plate ... 46
3.17 Discrete model of the plate in y-direction ... 46
5.10 Control results with three reference signals (two on the firewall and one on the oil fill stem) ...86
5.11 Coherence with one reference sensor (one on the oil fill stem) ..87
5.12 Coherence with one reference sensor (crank Pick-Up) ..87
5.13 View of the automobile with actuators and sensors ..89
5.14 Schematic of the set-up showing the location of the error sensors and the actuators ..90
5.15 Experimental set-up ...91
5.16 Sound pressure level at error sensor 2 in dB A ...93
5.17 Scanning system ...97
5.18 Spatial distribution of the pressure (2 by 2 systems) ..98
5.19 Spatial distribution of the pressure (configuration 3) ..99
5.20 Spatial distribution of the pressure (configuration 4) ..100
5.21 Sound pressure level (dB A) at error sensor 1 ..102
5.22 Control on the road ..104
5.23 Location of the piezoelectric actuator ...107
5.24 Sound pressure level (dB A) at error sensor 1 (2 by 2 system) ...108
5.25 Schematic showing the positions of the accelerometers ..112
5.26 Singular values ..113
5.27 Location of the accelerometers on the wheel ..116
5.28 Results with four reference sensors ...117
5.29 Results with six reference sensors (three on each front wheel) ..118
5.30 Results with eight reference sensors, three on each front wheel and two on each side of the firewall ...118
5.31 SPL at error Sensor 1 (head of the passenger) ...120
5.32 Test rig for the dynamometer experiment ..121
5.33 Experimental set-up ..122
5.34 Response at error sensor 2 ...123
5.35 Response measured at the accelerometers ...124
5.36 Singular values ..124
5.37 Results obtained with the piezoelectric sources ..126
5.38 Active control in terms of the number of reference sensors......................................128
5.39 Averaged sound pressure level (dB A) at error sensor ..130
5.40 Sound pressure level (dB A) at error sensor, set 1 ..131

A.1 Finite element ..149

B.1 Advanced speaker ..150
B.2 View of the next generation speaker ...151
B.3 Schematic of diaphragm with measurement points ..151
B.4 Response at the driving points ..153
B.5 Velocity field on outer ring ...153
B.6 Velocity field on a diameter ...154

C.1 Displacement of a baffled piston required to obtained 90 dB at 1m156
C.2 Transfer function of the piezoelectric based source between the input voltage and the SPL measured at 1 m ..157
C.3 Transfer function of the conventional speaker between the input voltage and the SPL measured at 1 m ..158
C.4 Linearity of the piezoelectric source ...159
C.5 Linearity of the conventional source ...160
List of Tables

3.1 Characteristics of the disturbance plate ... 24
3.2 Acoustic Modal Parameters .. 30
3.3 Set-Up of the B&K Analyzer ... 41
3.4 Natural Frequencies and Modal damping .. 43
4.1 Harmonic Results ... 63
4.2 Results obtained with a Broad Band Disturbance ... 68
5.1 Example Attenuation in terms of the coherence .. 79
5.2 Predicted Reduction at the Error Sensor for different configurations of reference Sensors .. 83
5.3 Attenuation at the Error Sensors (dB A) obtained with conventional speakers 94
5.4 Attenuation at the Error Sensors (dB A) obtained on a steep road 102
5.5 Attenuation at the Error Sensors (dB A) obtained with piezoelectric actuators 108
5.6 Reduction at the Error Sensor; Simulation for Road Noise .. 115
5.7 Reduction at the Error Sensor for various numbers of reference Sensors 127
C.1 Displacement required to obtain 90 dB at 1m ... 156
C.2 Maximum theoretical sound pressure level obtained with the piezoelectric based source (at 1 m) ... 157
List of Example Experiment Sounds demonstrating Active Control of Automobile Noise.

The three sounds presented below are wave-file recorded at the error sensor during three experiments. During the first ten seconds the controller is off, then after ten seconds the controller is turned on. Due to the low frequency contents of the signals, these files should be played on a system with large speakers (frequency response down to 20 Hz).

1. Active Control of Power Train Noise (*Noise_1.wav*).
2. Active Control of Road Noise; simulation at Goodyear (*Noise_2.wav*).