A Framework for Object Recognition in Construction Using Building Information Modeling and High Frame Rate 3D Imaging

Alan M. Lytle

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in
Civil and Environmental Engineering

Sunil Sinha, Chair
Yvan J. Beliveau
Tanyel M. T. Bulbul
Mani Golparvar-Fard

April 15, 2011
Blacksburg, Virginia

Keywords: Building Information Modeling, BIM, Industry Foundation Classes, IFC, 3D Imaging, Object Recognition

Copyright 2011, Alan M. Lytle
A Framework for Object Recognition in Construction Using Building Information Modeling and High Frame Rate 3D Imaging

Alan M. Lytle

(ABSTRACT)

Object recognition systems require baseline information upon which to compare sensed data to enable a recognition task. The ability to integrate a diverse set of object recognition data for different components in a Building Information Model (BIM) will enable many autonomous systems to access and use these data in an on-demand learning capacity, and will accelerate the integration of object recognition systems in the construction environment. This research presents a new framework for linking feature descriptors to a BIM to support construction object recognition. The proposed framework is based upon the Property and External Reference Resource schemas within the IFC 2x3 TC1 architecture. Within this framework a new Property Set (Pset. ObjectRecognition) is suggested which provides an on-demand capability to access available feature descriptor information either embedded in the IFC model or referenced in an external model database. The Property Set is extensible, and can be modified and adjusted as required for future research and field implementation. With this framework multiple sets of feature descriptors associated with different sensing modalities and different algorithms can all be aggregated into one Property Set and assigned to either object types or object instances.
This work is dedicated to my best friend and loving wife — Andie.
Acknowledgements

First and foremost the efforts of Dr. Mike Vorster of Virginia Tech were the bedrock of this research effort. He allowed me to explore options and craft a unique research approach during my employment at the National Institute of Standards and Technology (NIST). This research would not have been possible without his initial mentorship.

I am indebted to my dissertation committee members: Dr. Sunil Sinha, Dr. Yvan Beliveau, Dr. Mani Golparvar-Fard and Dr. Tanyel Bulbul. They expertly guided me to a singular contribution in the field, and patiently supported the requirements of working full-time while completing my research and dissertation during off-hours. Ms. Lindy Cranwell went above and beyond in her role as Graduate Programs Coordinator.

My colleagues at NIST provided significant assistance during the course of this research. Ms. Gerry Cheok and Dr. Kamel Saidi provided guidance and information regarding the testing and evaluation of 3D imaging systems. Dr. Marek Franaszek, Dr. Itai Katz, Dr. Tsai Hong and Dr. Roger Eastman provided assistance regarding object recognition and point cloud analysis. Mr. Robert Lipman’s expertise in information modeling with CIS/2 and IFC was crucial. I would also like to thank Dr. Jon Martin and Dr. Shyam Sunder for the overall support provided by NIST. More important than the technical and material assistance though was the continued friendship, encouragement, and inspiration this team provided.

I thank Zachary Lytle for lending his critical expertise in the Java programming language. I also thank Mr. Bob Simmons and Ms. Kelly Luttrell of ConXtech for providing the scale model column used for the target object.

During the last year of this dissertation research I left NIST for the private sector at Northrop Grumman Corporation (NGC). I would not have been able to complete this research without the support and encouragement of my new colleagues at NGC. The leadership support provided by Mr. David Perry and Mr. Tom Jones was vital. Mr. Mark Myers kept me moving forward.

Most of all I would like to thank my wife Andie, and my children Nick, Drew and Allie. Their love, support and understanding made this journey possible. My work was their sacrifice, and for that sacrifice I am eternally grateful.
Contents

1 Introduction ... 1

1.1 Vision .. 1

1.2 Background ... 2

1.2.1 NIST/AISC Steel Construction Workshop 3

1.2.2 CII - Leveraging Technology to Improve Construction
Productivity ... 5

1.2.3 The NRC Construction Productivity Report 7

1.2.4 Summary .. 8

1.3 Motivation ... 8

1.4 Statement of the Problem .. 11

1.5 Research Goal and Objectives .. 12

1.6 Document Overview ... 13

2 Literature Review ... 14

2.1 BIM ... 15

2.1.1 The Need for Interoperability 15

2.1.2 What is a BIM? .. 15

2.1.3 Product Data Models ... 17

2.2 3D Imaging ... 22

2.2.1 Introduction ... 22

2.2.2 3D Imaging in Construction 25

2.3 Object Recognition .. 30
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1 Introduction</td>
<td>30</td>
</tr>
<tr>
<td>2.3.2 Image Processing</td>
<td>33</td>
</tr>
<tr>
<td>2.3.3 Image Analysis</td>
<td>39</td>
</tr>
<tr>
<td>2.3.4 Image Understanding</td>
<td>43</td>
</tr>
<tr>
<td>2.3.5 The Challenge of Real-Time</td>
<td>46</td>
</tr>
<tr>
<td>2.4 Construction Automation: Object Recognition with BIM and 3D Imaging</td>
<td>49</td>
</tr>
<tr>
<td>2.4.1 Construction Object Recognition</td>
<td>49</td>
</tr>
<tr>
<td>2.4.2 Construction Equipment Control</td>
<td>53</td>
</tr>
<tr>
<td>2.5 Summary</td>
<td>59</td>
</tr>
<tr>
<td>3 Statement of the Problem</td>
<td>64</td>
</tr>
<tr>
<td>3.1 Existing State of Research and Practice</td>
<td>65</td>
</tr>
<tr>
<td>3.2 Research Problem</td>
<td>66</td>
</tr>
<tr>
<td>3.3 Assumptions and Constraints</td>
<td>67</td>
</tr>
<tr>
<td>4 Approach</td>
<td>70</td>
</tr>
<tr>
<td>4.1 The IFC Object Recognition Framework</td>
<td>70</td>
</tr>
<tr>
<td>4.1.1 Property Resources</td>
<td>71</td>
</tr>
<tr>
<td>4.1.2 Property Sets</td>
<td>72</td>
</tr>
<tr>
<td>4.1.3 Proposed Object Recognition Property Set</td>
<td>74</td>
</tr>
<tr>
<td>4.2 Implementation</td>
<td>76</td>
</tr>
<tr>
<td>4.2.1 Sensor System</td>
<td>76</td>
</tr>
<tr>
<td>4.2.2 Target Object</td>
<td>84</td>
</tr>
<tr>
<td>4.2.3 Object Detection Methodology</td>
<td>86</td>
</tr>
<tr>
<td>4.3 Demonstration</td>
<td>90</td>
</tr>
<tr>
<td>4.3.1 Architecture</td>
<td>90</td>
</tr>
<tr>
<td>4.3.2 SIFT Training</td>
<td>91</td>
</tr>
<tr>
<td>4.3.3 Object Recognition Property Set</td>
<td>92</td>
</tr>
<tr>
<td>4.3.4 Object Detection Testing</td>
<td>95</td>
</tr>
</tbody>
</table>
5 Conclusions 101

5.1 Findings ... 101
5.2 Contribution ... 102
5.3 Recommendations .. 102
List of Figures

1.1 Sensor-guided steel erection with the NIST RoboCrane. 10

2.1 The IFC2x3 architecture. .. 21
2.2 The processes of object recognition. ... 32
2.3 Transforming an image to actionable information. 34
2.4 Image processing. ... 35
2.5 Image analysis. ... 39
2.6 Image understanding. ... 44

4.1 The IFC2x3 TC1 property resource schema. 72
4.2 The IFC2x3 TC1 property set schema. .. 74
4.3 The proposed object recognition property set. 77
4.4 The Pset_ObjectRecognition schema. ... 78
4.5 The Mesa Imaging AG SwissRanger 4000. 80
4.6 The SR4000 sensor interface software. 81
4.7 Sensor testing. ... 83
4.8 Target segmentation. .. 83
4.9 The sensor interface mixed pixel filter. 85
4.10 The target object. .. 86
4.11 Object detection sequence (A) ... 88
4.12 Object detection sequence (B) ... 88
4.13 Object detection sequence (C) ... 89
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.14</td>
<td>Object detection sequence (D)</td>
<td>89</td>
</tr>
<tr>
<td>4.15</td>
<td>Object detection sequence (E)</td>
<td>90</td>
</tr>
<tr>
<td>4.16</td>
<td>The implementation architecture.</td>
<td>92</td>
</tr>
<tr>
<td>4.17</td>
<td>Training the SIFT descriptors.</td>
<td>93</td>
</tr>
<tr>
<td>4.18</td>
<td>The proposed object recognition property set.</td>
<td>94</td>
</tr>
<tr>
<td>4.19</td>
<td>Testing the detection implementation.</td>
<td>96</td>
</tr>
<tr>
<td>4.20</td>
<td>SR4000 range uncertainty testing.</td>
<td>99</td>
</tr>
<tr>
<td>4.21</td>
<td>Object detection evaluation criteria.</td>
<td>100</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Technologies needed by the steel construction industry (in rank order.)</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Top challenges facing the steel construction industry (in rank order.)</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Characterizations of beneficial equipment technology changes.</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>NRC top five opportunities for breakthrough improvements.</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>Design requirements for a construction 3D imaging system.</td>
<td>11</td>
</tr>
<tr>
<td>2.1</td>
<td>Design requirements of the IFC object model architecture.</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>Construction object recognition with 3D imaging and BIM</td>
<td>60</td>
</tr>
<tr>
<td>2.3</td>
<td>Construction equipment control with 3D imaging and BIM</td>
<td>61</td>
</tr>
<tr>
<td>2.4</td>
<td>Approaches used for object recognition.</td>
<td>63</td>
</tr>
<tr>
<td>4.1</td>
<td>Property resource entities - \texttt{IfcSimpleProperty}.</td>
<td>73</td>
</tr>
<tr>
<td>4.2</td>
<td>Definition of \texttt{P_setColumnCommon}.</td>
<td>75</td>
</tr>
<tr>
<td>4.3</td>
<td>Definition of \texttt{P_setObjectRecognition}.</td>
<td>79</td>
</tr>
<tr>
<td>4.4</td>
<td>Specifications for the Mesa Imaging AG SwissRanger 4000.</td>
<td>80</td>
</tr>
<tr>
<td>4.5</td>
<td>Sensor interface software design requirements.</td>
<td>81</td>
</tr>
<tr>
<td>4.6</td>
<td>Implemented \texttt{P_setObjectRecognition}.</td>
<td>93</td>
</tr>
<tr>
<td>4.7</td>
<td>Object detection results.</td>
<td>98</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Vision

An equipment operator is using a large-scale robotic manipulator under supervisory control to perform an assembly task of an engineered construction component. Prior to the physical move, the assembly task is simulated to verify initial conditions including equipment load constraints, start and final move locations, and a final check of the move trajectory. This simulated run is a final backup check to the continual planning and re-planning cycle performed for the overall site as delivery loads and laydown, equipment locations and health status, human worker locations, and construction progress is continually updated in the Site World Model (SWM). The Building Information Model (BIM) is the primary reference for the SWM. It contains the as-designed specifications for the final build with each part identified and geo-referenced in the site coordinates. The overall build sequence is mapped within the BIM, and meta-data for each part is accessible, including shape, weight, grip points, assembly locations, connection mechanisms, and identification features. The latter information is accessed and used by object recognition software agents supporting progress tracking.
systems and automated construction equipment. These identification features are provided either by component manufacturers, third-party solution providers or the open source community, and enable an on-demand learning capability for autonomous systems supporting the construction effort.

1.2 Background

The construction industry represents approximately 5% of the U.S. Gross Domestic Product per annum [REF], and is critical to creating the required infrastructure to support continued economic growth and improve quality of life standards. In the U.S., the construction industry is also one of the largest sector employers in the national economy. Improving construction productivity at task, project, and industry levels would have a significant national benefit that transcends the industrial sector alone. Empirical evidence shows that the use of automation and integration technologies improves construction productivity (Chapman, 2000; CII, 2008). Improvements in equipment technology (e.g., power, ergonomics, functionality) have demonstrably improved productivity (Goodrum and Haas, 2004; Tatum et al., 2006), as has the development of improved construction materials (Chapman and Butry, 2008).

Leading industry groups such as the Construction Industry Institute (CII) and the Construction Users Roundtable (CURT) identified the need for integrating and automating construction processes. CII made achieving Fully Integrated and Automated Project Processes (FIAPP) a top priority, and in cooperation with the National Institute of Standards and Technology (NIST) formed the Fully Integrated and Automated Technology (FIATECH) consortium (Fowell, 2000). FIATECH is a non-profit organization of facility owners, operators, contractors, suppliers, government agencies and government and academic research organizations whose primary mission is the fast-track development and deployment of technolo-
gies to substantially improve how capital projects and facilities are designed, engineered, built and maintained. To support this goal FIATECH members developed a research roadmap, with elements roughly corresponding to project lifecycle phases. In the Intelligent and Automated Construction Job Site element, it is envisioned that future

Construction sites will become more intelligent and integrated as materials, components, tools, equipment, and people become elements of a fully sensed and monitored environment. Location and status of all materials, equipment, personnel, and other resources will be continuously tracked on site, thus enabling a pull environment where needed resources are delivered on demand. Automation of construction processes will augment manual labor for hazardous and labor-intensive tasks such as welding and high-steel work. Construction job sites will be wirelessly networked with sensors and communications technologies that enable technology and knowledge-enabled construction workers to perform their jobs quickly and correctly (FIATECH, 2004).

Robust field-automation on dynamic and cluttered construction sites will require advanced capabilities in construction equipment automation, site metrology, 3D imaging, construction object identification and tracking, data exchange, site status visualization, and design data integration for autonomous system behavior planning.

1.2.1 NIST/AISC Steel Construction Workshop

In 2002, NIST and the American Institute of Steel Construction (AISC) co-sponsored a workshop to investigate the development of new technologies to facilitate automating the steel construction process. Desired outcomes included both a clear definition of issues and constraints as well as the identification of candidate breakthrough technologies. Workshop
participants included steel producers, fabricators, designers, and erectors, as well as construction robotics and automation researchers. In their opening remarks, Ricles and Schlafly (Lytle and Saidi, 2004) described the need:

Except for the fact that rivets have been replaced by bolting and welding, the procedure for erecting building structures has changed very little over the past 80 years. Field work requires workers to perform complicated and strenuous tasks in a highly dangerous environment. Workers are often required to position themselves at great heights, in difficult positions, and then must guide and secure heavy structural members. In most cases, a construction crane is involved and it is not unusual for these erection activities to take place out of the crane operators sight.

Decreasing fabrication and erection time for steel frame buildings, while increasing the safety of workmen during construction are issues that must be addressed, and provides the motivation for automated construction.

The primary deliverables from the workshop were two ranked lists: (a) the most promising technologies that could benefit the steel construction industry, and (b) the most significant challenges facing the steel construction industry. These lists are provided in Tables 1.1 and 1.2.

In reviewing the listed challenges and technologies, it is apparent that the ability to identify and locate steel members and subassembly components would be an enabling capability for both steel fabrication and erection. Unlike the high volume, low variability production lines commonly associated with highly automated manufacturing, steel fabrication can be characterized as low volume and high variability. Even in fabrication shops that have dedicated
Table 1.1: Technologies needed by the steel construction industry (in rank order).

| New connection systems |
| 3D/4D CAD and data interchange |
| Automated welding |
| Material handling |
| Material tracking |

Table 1.2: Top challenges facing the steel construction industry (in rank order).

| Reduce time from design to erection |
| Introduction and acceptance of new connection technology |
| Reduce overall time to construct |
| Need to optimize man-hours/ton |
| Efficient supply chain management |

CNC equipment to manufacture required subassembly components (e.g. beam drill lines, plate punching and thermal cutting stations, etc.), the final assembly of those components is primarily a human endeavor. Automated welding, a mainstay in the automobile industry, is not typically used in steel fabrication. Steel erection on the job site is likewise a labor-intensive and dangerous process, and technologies that would enable new connection methods and other human-assistive technologies during steel erection would be a top priority.

1.2.2 CII - Leveraging Technology to Improve Construction Productivity

The Construction Industry Institute conducted a research study to provide recommendations, guidelines, and procedures for effectively leveraging technology to improve construction productivity (CII, 2008). The project included a historical review, the development of a predictive model, and a pilot case study to better understand the expected impacts of tech-
nology implementation. The historical review examined labor productivity changes when factored for improvements in the functional range of construction equipment, reductions in unit weight of selected materials, and the automation and integration of project information systems. Researchers noted labor productivity gains of 30\%–45\% when factored for these types of new technologies. A highly successful pilot study was conducted demonstrating the effectiveness of combining RFID tags and GPS systems to improve material tracking, which demonstrably increased both workface and laydown yard productivity. The predictive model was developed based upon an analysis of the jobsite implementation of 28 technologies, and was used to develop a list of promising technologies. The results from the pilot test also provided field test data for the predictive model.

Of particular interest was that researchers noted that the following four characterizations of equipment technology changes were directly related to improvement in the corresponding activity’s labor productivity: amplification of human energy, improving level of control, expanding functional range and improving information processing (see Table 1.3).

Table 1.3: Characterizations of beneficial equipment technology changes.

<table>
<thead>
<tr>
<th>Characterization</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplification of Human Energy</td>
<td>Technology designed to make an activity easier to perform</td>
</tr>
<tr>
<td>Level of Control</td>
<td>Advances in machinery and hand tools that transfer control from the human to the machine.</td>
</tr>
<tr>
<td>Functional Range</td>
<td>Technology which expands the range of capabilities of a tool or machine</td>
</tr>
<tr>
<td>Information Processing</td>
<td>Development and improvement in equipment information processing capabilities (e.g., engine performance monitoring and diagnostics)</td>
</tr>
</tbody>
</table>
1.2.3 The NRC Construction Productivity Report

In 2008, The National Research Council convened an ad hoc committee to document opportunities for significant improvement in the productivity and competitiveness of the capital facilities sector of the U.S. construction industry over the next 20 years (NRC, 2009). The committee conducted a workshop of industry experts to identify and prioritize technologies, processes, and deployment activities that have the greatest potential to meet those opportunities. Table 1.4 provides the committee’s top five Opportunities for Breakthrough Improvements.

Table 1.4: NRC top five opportunities for breakthrough improvements.

| Widespread deployment and use of interoperable technology applications, also called Building Information Modeling (BIM). |
| Improved job-site efficiency through more effective interfacing of people, processes, materials, equipment, and information. |
| Greater use of prefabrication, preassembly, modularization, and off-site fabrication techniques processes. |
| Innovative, widespread use of demonstration installations. |
| Effective performance measurement to drive efficiency and support innovation. |

The committee identified interoperable technology applications as those that provide the ability to manage and communicate electronic data between stakeholders (e.g., owners, clients, contractors, etc.) and project functional units (e.g., design, engineering, construction, etc.). Examples of interoperability tools included CAD, 3D and 4D visualization, laser scanning and materials tracking.

The committee also emphasized the use of automated equipment and information technologies could significantly cut waste, improve job-site safety, and improve the quality of projects. Examples of uses for automated equipment included excavation, earthmoving, concrete place-
ment and pipe installation. Examples of information technologies included RFID tags for asset and material tracking and PDA’s for capturing field data.

1.2.4 Summary

The NIST/AISC Automation in Steel Construction workshop, the CII Construction Productivity study, and the NRC Construction Productivity Report identified similar aspects of targeted improvements expected to yield benefit for improving productivity on steel construction projects. The NIST/AISC workshop recommended new connection technology to support easier assembly, improvements in 3D/4D CAD and data interchange, and automation to support welding, material handling, and material tracking. Each of these recommended technology improvements are consistent with the first two opportunities for breakthrough improvements stated in the NRC report: (1) *widespread deployment and use of interoperable technology applications (i.e., BIM)*, and (2) *improved job-site efficiency through more effective interfacing of people, processes, materials, equipment, and information*. The CII study further clarified those aspect of equipment technology changes expected to yield substantial benefit. These changes included: amplification of human energy, improving level of control, expanding functional range and improving information processing.

1.3 Motivation

Stone et al. (1999) indicate that a goal of construction automation would be to enable an engineer to manage and control construction operations remotely through the use of tele-operation, tele-robotics, or full autonomous operation. Key enablers described for this goal include: (1) remote tracking of materials; (2) remote tracking of equipment; (3) remote as-
essment of the construction site; and (4) augmented simulation of the construction process. In this work the research team demonstrated remote operation of a six degree-of-freedom (DOF) crane (the NIST RoboCrane) from an offsite location. Operator feedback was provided both from video feeds as well as an augmented simulation (i.e., a dynamic model of the operation with position feedback from the crane linkage encoders which provided updated position for the virtual crane in the simulation). The task of remotely placing a steel beam into column supports using ATLSS connectors was demonstrated. Recommended future work included externally tracking the crane position using either (1) automatic tracking of three points on the machine by three motorized total stations; (2) fanning laser light sheets and an associated position-capture device; or (3) phase differential GPS.

A crane tracking solution was implemented in (Lytle et al., 2004), and fully autonomous docking operations were demonstrated, albeit with the quite limiting requirement that all object locations were digitized in the crane reference frame prior to operations. This work was extended in (Lytle and Saidi, 2007) and the autonomous assembly of a multi-component test steel structure was demonstrated which combined the use of a robotic crane with pose tracking provided by a laser-based site measurement system (SMS) and assembly scripts generated from a commercial 4D CAD package. A visualization system (JobSite) allowed real-time monitoring of site sensor data, the current position and planned action of robot agents, and other object data such as CAD models. While the overall capability of the assembly system was significantly improved, the process still required a human operator within the site to measure the location of all objects prior to crane operations. Although some compliance was mechanically available through the suspended gripper mechanism and the ATLSS connectors, the assembly process was intolerant of positioning errors in either object location or the RoboCrane trajectory. As a result, objects in the assembly process required careful measurement using the SMS digitizing system (human required) and no object
movement was allowed following registration. There were no sensors either on the crane or within the operating environment that would enable any reaction to dynamic changes within the work site without human intervention. This would represent a significant limitation in a more dynamic and fluid work environment, such as a real construction site.

An approach for overcoming this limitation is to fit the crane with exteroceptive sensors capable of recognizing target objects and providing real-time guidance during pick and place operations. Fig. 1.1 depicts the NIST RoboCrane during an autonomous docking evolution and a conceptual rendering of 3D imaging-based docking control.

Drawing on research experience in construction site monitoring and autonomous mobility, Stone et al. (2004) describe the ultimate construction site sensor as a laser-based 3D imaging system having the characteristics specified in Table 1.5.

While no sensor currently meets these combined specifications, systems are now commercially available which enable high frame rate data capture, albeit at higher range uncertainty and lower angular resolution than desired. Unlike the more common laser scanning instruments
currently found on construction sites, these focal plane array (FPA) range cameras, or flash LIDAR/LADAR\(^1\) systems, do not require a scanning mechanism. Instead, flash systems use a broad field illumination source and an FPA detector, such that the entire range image is acquired in one transmission. It is important to note that these commercial sensors are not yet ready for deployment in a true construction setting. Chief among the limitations is a susceptibility to variations in ambient lighting, particularly bright sunlight. It is anticipated that at some future point low cost, hardened, high frame rate range cameras will be readily available. Additional research is needed to develop methods for incorporating these new sensors in crane control applications.

\[1\text{If the illumination source is a laser (common for longer range military applications) then the sensor is often referred to as flash LADAR (laser detection and ranging). If the illumination source is not a laser (e.g., an LED), then the sensor is often termed either a range camera or a flash LIDAR (light detection and ranging).}\]

1.4 Statement of the Problem

Fundamental to the introduction of flexible automation techniques in construction will be the ability to recognize targeted construction objects. This ability will support numerous tasks including progress tracking, material locating, and automated piece movement and

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illumination Source</td>
<td>eyesafe</td>
</tr>
<tr>
<td>Field of View (FOV)</td>
<td>$60^\circ \times 60^\circ$</td>
</tr>
</tbody>
</table>
| Range Uncertainty | $\pm 1\text{ mm for } r < 15\text{ m}$
 | $\pm 3\text{ mm for } 15\text{ m} < r < 100\text{ m}$ |
| Angular Resolution | $< 0.03^\circ$ |
| Frame Rate | $> 10\text{ Hz}$ |
| Size | $\approx \text{ Coffee Cup}$ |
| Cost | < 1000 |
assembly. Object recognition systems require baseline information upon which to compare sensed data to enable a recognition task. The existing BIM structure does not support the storage and retrieval of these types of baseline information beyond shape, expected location, and material. This limitation restricts the widespread use of diverse object recognition techniques in the construction environment. The ability to integrate a diverse set of object recognition data for different components in the BIM will enable many autonomous systems to access and use these data in an on-demand learning capacity, and will accelerate the integration of object recognition systems in the construction environment.

1.5 Research Goal and Objectives

The principal goal of this research is to provide a new framework for using a building information model (BIM) to support object recognition in construction. Specifically, this framework will support the storage and retrieval of feature descriptor information to enable engineered construction component detection from 3D image data. A secondary goal is the exploration of a new class of sensor (high frame rate 3D imaging sensors) for construction object recognition. Though not part of this initial research, the motivating application is automated manufactured component placement in a steel fabrication and/or erection scenario.

The principal and secondary goals will be met through answering the following questions:

1. How can Industry Foundation Classes (IFC) be used to encapsulate necessary feature descriptor information to support object recognition of an engineered construction component?

2. How can high frame rate 3D imaging system data be used to recognize and track construction objects (i.e., structural steel)?
3. What is an appropriate framework for using a Building Information Model to support a construction object recognition task?

The following specific objectives will provide both the framework and the path for answering the research questions:

1. Develop a method for construction object recognition using IFC and range camera data.

2. Demonstrate a framework for using a BIM to support construction object recognition.

This research will yield a number of benefits. The primary benefit is opening a new pathway for construction automation. Related benefits include new methods for using BIM to support construction object recognition, and developing methods and inspiring research into a new class of sensors for general construction equipment control. Beneficiaries are expected to be construction researchers and construction equipment manufacturers. A tertiary though relevant benefit is the general introduction of advanced, exciting, high-tech equipment to the construction industry. Construction is generally perceived as a low-tech and undesirable occupation, and any efforts to reverse that view are beneficial to the industry as a whole.

1.6 Document Overview

This dissertation is organized into five chapters. Chapter 2 provides a broad overview of the current state of knowledge and practice with respect to the use of Building Information Models, 3D imaging-based object recognition and construction equipment control. Chapters 3 and 4 clarify the problem statement and the research approach. Findings, contributions and recommendations for future research are provided in Chapter 5.
Chapter 2

Literature Review

Fundamental to the introduction of flexible automation techniques in construction will be the ability to recognize targeted construction objects. This ability will support numerous tasks including progress tracking, material locating, and automated piece movement and assembly. Object recognition systems require baseline information upon which to compare sensed data to enable a recognition task. The existing BIM structure does not support the storage and retrieval of these types of baseline information beyond shape, expected location, and material. This limitation restricts the widespread use of diverse object recognition techniques in the construction environment. The ability to integrate a diverse set of object recognition data for different components in the Building Information Model (BIM) will enable many autonomous systems to access and use these data in an on-demand learning capacity, and will accelerate the integration of object recognition systems in the construction environment.

This chapter provides a broad overview of existing research related to the topics of BIM, 3D imaging and object recognition.
2.1 BIM

2.1.1 The Need for Interoperability

Interoperability is defined as “… the ability to manage and communicate electronic product and project data between collaborating firms’ and within individual companies’ design, construction, maintenance, and business process systems.” ¹ The lack of interoperability in the construction sector is a significant drain on the productivity and efficiency of the construction industry. A NIST study estimated the cost burden on the industry in 2002 at $15.8B (Gallaher et al., 2004). The NRC recommended the widespread deployment and use of interoperable technology applications — identified as Building Information Modeling — as the top opportunity for breakthrough improvement in construction productivity. Those interoperable technology applications provide the ability to manage and communicate electronic data between stakeholders (e.g., owners, clients, contractors, etc.) and project functional units (e.g., design, engineering, construction, etc.) (NRC, 2009).

2.1.2 What is a BIM?

The National Building Information Standard (NBIMS) defines a BIM as a

“… digital representation of physical and functional characteristics of a facility. As such, it serves as a shared knowledge resource for information about a facility forming a reliable basis for decisions during its life cycle from inception onward.” (NIBS, 2007).

¹This definition from Gallaher et al. (2004).
The General Services Administration, an early proponent of BIM technologies, provides a more detailed definition:

Building Information Modeling is the development and use of a multi-faceted computer software data model to not only document a building design, but to simulate the construction and operation of a new capital facility or a recapitalized (modernized) facility. The resulting Building Information Model is a data-rich, object-based, intelligent and parametric digital representation of the facility, from which views appropriate to various users’ needs can be extracted and analyzed to generate feedback and improvement of the facility design. (GSA, 2009a)

A broader view is that BIM defines a new process rather than simply a new product. The parametric extension of 3D CAD modeling data in an object-oriented, hierarchical framework provides a *building product model*. This product data model contains information about object characteristics and relationships to other objections. Since objects are now defined by rules and inter-relationships, it is possible to ripple redesign information throughout the digital framework so that the impact of property changes of one object can be more easily recognized and evaluated. The processes of developing multiple sets of drawings as a building moves from concept to construction becomes moot, because those drawings can be readily extracted from the BIM as the design matures. Multiple parties can access these data as the design develops, providing an exchange process that improves stakeholder communication and better supports the design-build methodology through clash detection, constructability studies, and schedule analysis. The information contained in the product model supports higher-level analysis such as energy use, lighting, acoustics, etc., and can be used for facility management, operational studies, and a host of other requirements to support life-cycle operations up to and including decommissioning. Eastman et al. (2008) is the primary
reference for an introduction to BIM, an understanding of tools and methods to support BIM, and a review of expected and realized benefits for various stakeholders.

2.1.3 Product Data Models

There are two main open-standard protocols which provide object-based product data models to support BIM. These are the CIMSteel Integration Standard version 2 (CIS/2) and Industry Foundation Classes (IFC). Both of these protocols have as a foundation the Standard for the Exchange of Product Model Data (STEP) — ISO 10303.

STEP

The Standard for the Exchange of Product Model Data (STEP) — ISO 10303 — was initiated as an answer to the growing need to exchange object-based digital information of manufactured components. Prior to STEP, Computer Aided Design / Computer Aided Manufacturing (CAD/CAM) data were stored and transferred between stakeholders primarily using file formats which supported shape and other geometric data only. The addition of product data (e.g., material, surface finish, assembly instructions, sub-component inter-relationships, etc.) to this exchange necessitated a new mechanism which went well-beyond the capabilities of file translators. In 1984, an international effort commenced under the cognizance of the ISO technical committee TC 184, Automation systems and integration, sub-committee SC 4, Industrial data. The overall objective of STEP is to completely and unambiguously define a product in a manner that is both independent of any specific computer system and is suitable for use over the entire product lifecycle (SCRA, 2006).

The standard spans a wide variety of product types and lifecycle processes from numerous domains. Due to the complexity and scope of the effort, the standard is subdivided into
parts with each part itself being a balloted standard. There are over 950 parts, separated into the following functional areas: description methods, implementation methods, conformance testing, integrated resources, abstract test suites, application protocols, application constructions, and application modules. The application protocols (AP) are used to specify the product information for a particular domain or application. Examples include AP203 *Configuration controlled 3D designs of mechanical parts and assemblies*, and AP225 *Building Elements Using Explicit Shape Representation*.

Product information is represented using the EXPRESS data modeling language, which was also developed as part of the standard and is described in ISO 10303-11 *Description methods: The EXPRESS language reference manual*. EXPRESS is a machine-readable, entity-attribute-relationship product data model which is used in many activities outside of STEP (e.g., Industry Foundation Classes). EXPRESS-G, also specified in ISO 10303-11, is a graphical version of the language enabling diagram-based object-oriented data modeling.

As of this writing there are 695 published standards from TC184/SC4 (ISO, 2011). A source of information for ISO 10303 is the STEP Application Handbook (SCRA, 2006). The ISO website is www.iso.org. A search for TC184/SC4 will yield the subcommittee. Of note the standards are available by purchase only. The definitive reference for EXPRESS is (Schenck and Wilson, 1994).

CIS/2

The CIMSteel project (Computer Integrated Manufacturing for Construction Steelwork) was a pan-European effort to develop a framework for digital information exchange in the structural steel domain. Development of the CIMSteel Integration Standard (CIS) was a primary output of the program. The initial CIS was published in 1995 with an expanded
second version (CIS/2) in 2000. The current release of the standard is available on the CIS/2 website. The CIS/2 standard was chosen by the American Institute of Steel Construction to improve steel construction by reducing design and fabrication cost while simultaneously shortening design, fabrication and construction timelines. The AISC, in cooperation with AEC software industry, federal research laboratories (e.g., NIST), and academic institutions, led the effort to create a robust user base and support software implementation. CIS/2 is now widely used throughout the Steel Construction industry, and efforts to harmonize CIS/2 implementations with IFC to support BIM are ongoing. The CIS/2 standard is available at www.cis2.org. Starting points for CIS/2 include the sites hosted by Georgia Tech (Georgia Tech, 2011) and NIST (NIST, 2011). An informative overview of CIS/2 is provided in (Khemlani, 2005).

Industry Foundation Classes

The product data model most used for BIM implementation is the Industry Foundation Classes (IFC). The IFC is a neutral, standardized, object-oriented product data model designed for exchange of information between AEC stakeholders. The development of IFC started in 1994 under an initiative led by Autodesk, Inc. to develop a set of object classes to support integrated application development. The initial Autodesk consortium grew to an international organization now known as buildingSMART (formerly International Alliance for Interoperability). The goal of buildingSMART is to develop and maintain international standards for openBIM including process, data dictionary, and data model information. The IFC are the data model implementation.

The IFC schema is fundamentally based upon class definitions (entities) with defined and extensible attributes and relationships. Table 2.1 provides the basic design requirements for the IFC object model architecture (IAI, 1999).
Table 2.1: Design requirements of the IFC object model architecture.

<table>
<thead>
<tr>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide a modular structure to the model</td>
</tr>
<tr>
<td>Provide a framework for sharing information between different disciplines</td>
</tr>
<tr>
<td>Ease the continued maintenance and development of the model</td>
</tr>
<tr>
<td>Enable information modelers to reuse model components</td>
</tr>
<tr>
<td>Enable software authors to reuse software components</td>
</tr>
<tr>
<td>Facilitate the provision of better upward compatibility between model release</td>
</tr>
</tbody>
</table>

These design requirements are met via a four-layer architecture which consists of a Resource Layer, a Core Layer, an Interoperability Layer, and a Domain Layer (see Fig. 2.1). The Resource Layer provides general classes (entities) which can be used by any of the other higher-level layers. These classes describe such items as Geometry, Material, Measurement, Property and Cost. The Core Layer contains the Kernel and three specific extensions. Core classes can be referenced by either the Interoperability Layer or the Domain Layer. The Core Layer defines the basic structure of the IFC object model with the Kernel defining the concepts of objects, relationships, type definitions, attributes and roles. The Core Extensions apply the generic concepts maintained in the Kernel to specific AEC/FM Control, Product and Process classes. The Interoperability Layer defines shared resources accessible to the Domain Layer. The intent of the Interoperability layer is to provide modular classes which can be used by more than one Domain model. Finally, the Domain Layer provides AEC/FM domain- or process-specific model detail (Eastman et al., 2008; IAI, 1999).

The IFC is described using the EXPRESS data modeling language and are commonly exchanged using an ISO 10303-21 compliant text file. As of this writing the current version of the IFC is IFC2x Edition 3 Technical Corrigendum 1 [IFC2x3 TC1]. IFC2x Edition 4 is in the development cycle and is at currently at Release Candidate 2 [IFC2x4 RC2] (buildingSmart, 2011).
Figure 2.1: The IFC2x3 architecture. Adapted from (buildingSmart, 2011).
2.2 3D Imaging

2.2.1 Introduction

3D imaging refers to the practice of using 3D imaging systems to measure or to capture existing conditions in the built or natural environment. Historically this type of measurement was conducted with single-point measurement systems such as total stations, or camera-based systems that relied on photogrammetric techniques. Both approaches provided only limited 3D information, were slow, and typically required substantial post processing to provide useful information to the end customer. The advent of active emission optical systems over the last decade has revolutionized 3D data collection in the construction industry.

A 3D Imaging system is defined by the ASTM E57 3D Imaging standards committee⁵ “... a non-contact measurement instrument used to produce a 3D representation (e.g., a point cloud) of an object or a site (ASTM, 2009).” These instruments are generally categorized as laser scanners, optical range cameras, or triangulation-based systems. The terms LADAR (for Laser Detection and Ranging, also Laser Radar) and LIDAR (Light Detection and Ranging) are prevalent. Generally the term LADAR is typically used in defense-related research (e.g., missile guidance, ATR) and robotics research. The term LIDAR is most often associated with the remote sensing community. 3D imaging in the construction industry is also commonly referred to as laser scanning.

3D imaging system configurations vary widely but in general all systems involve the use of an emitted optical signal, a system to point the emitted signal throughout the systems field of view, and an optical receiver element to detect and process the returned signal. The optical signal is normally generated from a laser, a laser diode, or an LED, and the

⁵ASTM E57 3D Imaging Systems was formed in 2006 to develop open, consensus-based standards for the 3D imaging community. The author chaired this committee from its inception in 2006 to 2010.
A typical pointing system is either a mechanical scanning (e.g., rotating polygonal mirror) or beam-steering system (e.g., acousto-optic, electro-optic). The time between the emission and return is measured either by pulse time-of-flight or phase comparison, and that measurement converts to a range along the line-of-sight (LOS) of the beam. The direction of the beam is known in both azimuth and elevation angles in relation to the measurement instrument. Those three bits of information — range, azimuth angle, and elevation angle — define a unique point in space which can be expressed in either spherical (r, θ, ϕ) or Cartesian (x, y, z) coordinates. As the beam is moved throughout the instrument’s field-of-view numerous 3D points are collected. Instruments can collect anywhere from thousands to millions of data points during a single scan. This collection of points is known as a point cloud. In addition to spatial information, instruments can (depending upon configuration) provide returned signal strength, color, time stamp, identification, polarization, and multiple range return information for each measured point.

Of particular importance is that these instruments are non-contact measurement devices that can measure non-cooperative targets. A specialized target such as a retroreflector is not required. Different classes of systems are available which can measure up to a range of several meters or kilometers. Typical pulse time-of-flight (TOF) systems used in the construction industry measure up to several hundred meters. In indoor applications where even higher point density is desired (e.g., process plants), phase-based systems are typically employed which have shorter range (< 100 m) but faster scan acquisition times.

In contrast to scanning systems, optical range cameras do not require a pointing mechanism. These systems either use a single pulse, which is shaped by optics into a broad spatial output, or use multiple emitters. The returned pulse is then focused onto a focal plane array and sampled to generate the 3D image. Since the output of these systems is typically a 2D matrix of range values, this output is often referred to as a range image. These systems are known
in the literature as range cameras, TOF cameras, flash LADAR (if the emitter is a laser), or flash LIDAR. Advantages of these types of 3D imaging systems are higher frame rates, fast image formation, and smaller form factors due to the elimination of scanning mechanisms. Disadvantages include a smaller field of view and lower resolution (number of pixel elements) in the 3D image as compared to scanning mechanisms.

For most instruments, datasets are collected in the instrument’s local coordinate frame. Since these systems are LOS, measurements from numerous locations are usually required to measure shadowed object surfaces. This shadowing can occur either because a forefront object occludes a more distant object surface, or simply because a LOS instrument cannot measure a back-facing surface on an object. To compensate for this limitation, measurements are taken from numerous locations. Tying these separate datasets to a common reference frame is referred to as registration, which is defined as “… the process of determining and applying to two or more datasets the transformations that locate each dataset in a common coordinate system so that the datasets are aligned relative to each other (ASTM, 2009).” Registering two or more point clouds can be done using the point clouds themselves (cloud-to-cloud); using targets or survey points that are common to both data sets (target-to-target); point cloud to a generated surface (cloud-to-surface); and between two surfaces (surface-to-surface). Features other than surfaces (e.g., lines, primitives, etc.) can also be generated within the point clouds and used for registration.

Early surveys of 3D imaging technology are found in (Jarvis, 1983) and (Besl, 1988). An early evaluation of 3D imaging system performance with a focus on mobile robot applications is in (Hebert and Krotkov, 1991). A review of the past 20 years of 3D imaging system development is provided in (Blais, 2004). An overall assessment of the 3D imaging technology with a focus on systems for real-time control of autonomous systems is provided in (Stone et al., 2004).
2.2.2 3D Imaging in Construction

Current use of 3D imaging systems on construction sites primarily involves high resolution imaging of existing structural or terrestrial conditions. These images are used for various applications such as the creation of detailed as-bUILts of process plants undergoing modification to rapid surveying of highways and open-pit mines. Process applications include schedule monitoring, project sequencing, and fabrication control. 3D imaging systems enable the capture of existing conditions more completely and with a higher level of detail than most manual methods. The construction sector accounts for approximately 80% of the market for 3D imaging systems, where the ability to rapidly capture and assess existing conditions is providing work process improvements in such areas as increased bid accuracy, reduced installation errors and rework, and better quality control of fabricated materials. From case studies it is estimated that although the direct cost savings of 3D imaging over conventional surveying is small (10% – 20%) compared to the total cost of the project, the ability to provide substantially more data in shorter time provides up to (5% – 10%) savings of the total project through such means as rework reduction and schedule shortening. Other reported benefits include increased accuracy and reduced variance in engineering and construction bids, improved responsiveness to project changes, increased worker safety, quality control, and 3D visualization of complex or complicated conditions (Greaves, 2006). For example the General Services Administration (GSA) is using 3D imaging as a key component of their National 3D-4D-BIM Program to examine and support 3D, 4D and BIM technologies in their projects. GSA expects to “...better meet customer, design, construction, and program requirements through the ...power of visualization, coordination, simulation, and optimization from 3D, 4D, and BIM computer technologies (GSA, 2009a).” Applications include historical documentation; facility condition documentation; construction as-built development; and BIM development. As part of this project, GSA commissioned the development of a
3D imaging guide for project managers that is a good introductory source (GSA, 2009b). A detailed examination of the process of using 3D imaging for capturing the built environment is provided in (Arayici, 2007).

Jacobs (2006) reviews uses of 3D imaging in capital construction projects with a focus on construction and fabrication. Specific uses cited include:

- Quality assurance (QA)
- Designing temporary structures
- Quantity surveys
- Path planning
- Pile and crane locations
- Construction and demolition sequencing
- Design verification
- Deformation monitoring
- Litigation protection
- Construction craft training
- Clearance evaluations for assembly personnel and tooling

Other examples and findings in the literature are noted in the remainder of this section.

Lindfors et al. (1999) provided a survey of metrology instruments available for the AEC industry. This review included relatively new (at that time) instrumentation such as laser-based spatial measurement and imaging systems. The authors presented the potential for LIDAR and LADAR technology to capture as-built information on construction sites.
Cheok et al. (2000) introduced several key concepts related to the use of 3D imaging and construction monitoring. The specific goals of the work were to examine methods to make required construction measurements faster, cheaper and with minimal interruption to construction operations. In particular, the authors sought to develop techniques for real-time assessment and documentation of 3D as-built models of the construction process. The technology chosen was 3D imaging, and the specific task examined was the measurement of cut and fill operations. This capability was examined both in a laboratory setting as well as during actual construction operations at NIST. The authors introduced the concept of a *temporal* project database, where time-stamps associated with the specific site scans provide time-specific updates to construction status. Mesh surfaces were created from the registered point clouds and volume changes were calculated by comparing prior surfaces to the current. Comparison to design also provided cut-and-fill maps. Implicit in this operation is also the ability to compare current status to design.

Shih (2002) examined the application of 3D image data to represent an on-going construction process through geometric approaches. Whereas Cheok et al. (2000) had principally focused on the use of comparative surfaces; Shih examined more complicated construction sites and incorporated an analysis of structural objects with texture mapping to highlight surface attributes. Of particular importance was the introduction of simplified volumetric representations (e.g., bounding boxes) to represent more complicated structure for tasks such as interference checks.

Shih and Wang (2004) introduced the use of 3D imaging for monitoring construction site work processes. The specific application was the comparison of 3D image data with 4D models of a campus building under construction. The capability of differencing schedule progress and actual progress was demonstrated, and the use of 3D image data for actual control of the construction process was suggested. Recommendations included the use of
multiple scanners, permanent visible reference targets for registration, and scheduling scan
data collection as part of the construction plan. The need for linking point cloud data to
the reference database was also indicated.

A method for the use of 3D imaging for quality control in active construction projects was
presented in (Akinci et al., 2006). This research — ASDMCon (Advanced Sensor-based
Defect Management on Construction Sites) — focused on early defect detection during the
construction phase to eliminate costly rework in later stages of the project. Their approach
combined the use of as-planned 3D design information stored in a commercially-available
CAD package with periodic imaging of the construction sites. Case studies of four different
projects including a footbridge, warehouse, office building, and parking garage were pre-
sented. The primary contribution of this work was the development of a formal method
for approaching automated, sensor-based construction QA/QC. Important phases such as
inspection goal identification, inspection planning, understanding sensor limitations and pre-
planning both the timing and location of measurement tasks, (based on an understanding of
sensor limitations), and deviation/defect detection were presented. Of note, the study used
relatively low resolution scanning equipment that did not support sufficient imaging of small
details, (e.g., anchor bolt locations), but did demonstrate the ability to assess the placement
of major components such as columns and beams as well as details such as wall thickness,
etc. Congestion of the job site and presence of temporary installs, construction equipment,
and short-term material laydown were cited as significant challenges to the use of 3D imaging
for defect detection. In short, these challenges necessitated on-site re-planning of the
data collection effort. Although not explicitly stated, these challenges indicate the need for
including inspection plans in the overall construction planning, much as crane placement is
currently evaluated in larger projects. An automated method for scan planning based upon
inspection goals and the design information was developed as part of this project, and this
technique significantly improved the data collection efforts. More information on the scan planning approach is provided in (Latimer et al., 2004).

Jaselskis et al. (2005) examined the use of 3D imaging in transportation projects and concluded the technology was effective for volume measurement, determining road surface elevations, and analyzing bridge beam camber. Pilot tests were conducted at an intersection including a railroad bridge, a section of highway including a pair of bridges, new concrete pavement, bridge beams on an unfinished bridge structure, a stockpile, and a borrow pit. The primary challenge cited was the significant learning curve in use of the hardware and software. Measurement of new concrete pavement smoothness was one application that was not successful due to the measurement accuracy requirements and the uncertainty associated with the system under test. The use of 3D imaging in transportation projects is a growing field due to the fast data collection which can reduce traffic impact and improve safety of work crews. Development of standards and specifications for the use of laser scanning in transportation (in this case Caltrans) projects is provided in (Hiremagalur et al., 2007).

Kiziltas et al. (2008) report on lessons from four case studies on the use of laser scanning which is included in a larger technology assessment. These included condition assessment of a bridge, quality control during construction of a transportation system and operations and maintenance of a facility, and documenting historic elements of a building prior to restoration. Capturing detailed and accurate geometric data was technically feasible and generally met requirements of the end-users. Operation was compared to total station data collection, and although the scanner employed was less accurate than the total station, the ability to capture significantly more data in equivalent time enabled capabilities that were not possible with the total station such as surface generation and solid modeling. One notable issue was the collection of data on a dynamic construction site, which required careful planning to minimize the impact of clutter and moving objects on the collected images. Capturing
smaller details such as those needed for historic preservation documentation necessitated shorter scan ranges and higher point density settings in order to observe required features. Also noted were adverse effects of variation in target reflectivity, sometimes generating obviously incorrect or even missing data for highly reflective objects (e.g., glass, polished metal). The mixed-pixel effect was also noted as a challenge. Processing the point cloud data (registration, outlier identification and rejection, segmentation, primitive fitting, etc.) requires a significant amount of time and system expertise. 3D imaging provides the construction industry with access to enormous amounts of geometric data. Extracting usable information (e.g., modeling, direct takeoffs from point cloud data, etc.) remains primarily a manual operation, which is time-consuming, expensive, requires sophisticated training, and limits the rapid availability of information for immediate use during site operations. Understanding the uncertainty associated with 3D imaging systems and how that impacts the uncertainty of the deliverable remains an open question. Developing standard test methods to quantify system performance and provide uniform techniques for uncertainty traceability is a primary goal of the ASTM E57 3D Imaging standards committee (Cheok et al., 2008).

2.3 Object Recognition

2.3.1 Introduction

Object recognition is the branch of computer vision research that focuses on methods and metrics for finding entities within images. The term image refers to a 2D matrix of scalar

3 Mixed-pixels (sometimes also referred to as phantom pixels) are a phenomenon encountered with both phase- and pulse TOF 3D imaging systems. Although one imagines a laser source as an infinitesimally small ray, the laser spot footprint has a discernible size that generally increases with range. When this footprint only partially intersects an object (e.g., on an edge), the remaining photons continue to travel and can be reflected by a second surface. Depending upon the relative distance between the two surfaces and the integration time of the system, these offset returns will be combined and result in data points somewhere between the two surfaces, yielding data points where no physical surface reflections existed.
values representing either gray-scale intensity or color data; a 2D matrix of range data (i.e., a 2.5D range image or depth-map); or a full 3D image which may or may not also contain color, intensity, or other scene parameters. There is variation in the use of the terminology, but in general object recognition involves identifying and locating a specified object instance. This differs from object detection, where the goal is to find a more generalized object class. The distinction between detection and recognition is exemplified in the terminology for face recognition research. Face detection is the process of finding human faces (class) in an image, and face recognition is the identification of a specific face from a database of existing faces. A detection process generally includes a coarse locating function, which is improved during recognition with the use of a higher fidelity model of the recognized entity. The observed location may be refined while transitioning from detection to recognition with the use of a higher fidelity model of the recognized entity.

Fisher (1989) defined model-based object recognition as follows:

Three-dimensional object recognition is the identification of a model structure with a set of image data, such that geometrically consistent model-to-data correspondences are established and the object’s three-dimensional scene position is known. All model features should be fully accounted for by having consistent image evidence either supporting their presence or explaining their absence.

Trucco and Verri (1998) divide the model-based recognition tasks into two subtasks: (1) identifying the models in the database that match the image data, and (2) locating the matched 3D object by determining the rotation and translation parameters.

A general survey of early efforts in 3D object recognition is provided in (Besl and Jain, 1985). Arman and Aggarwal (1990, 1993) review model-based object recognition for range imagery with specific emphasis on range image segmentation, representation (surface, discontinuity,
and volumetric-based), object modeling schemes and matching strategies. Reviews of object recognition techniques with emphasis on freeform objects are provided in (Campbell and Flynn, 2001; Mian et al., 2005a). Yilmaz et al. (2006) provide a comprehensive survey paper on object tracking using recognition techniques. Computer vision text in wide use include (Forsyth and Ponce, 2002; Shapiro and Stockman, 2001; Trucco and Verri, 1998). The Springer Handbook of Robotics (Khatib and Siciliano, 2008) also has several chapters applicable to this domain. Of particular use are 3-D Vision and Recognition (Daniilidis and Eklundh, 2008), Sensing and Estimation (Christensen and Hager, 2008), Visual Servoing and Visual Tracking (Chaumette and Hutchison, 2008), Multisensor Data Fusion (Durrant-Whyte and Henderson, 2008), and Range Sensors (Fisher and Konolige, 2008).

For the purpose of discussion we will break the object recognition process into three distinct phases: image processing, image analysis, and image understanding as shown in Fig. 2.2.\footnote{There is not a universally accepted framework for discussing object recognition. This framework was inspired by (Rosenfeld, 2001).}

An image processing task is used to modify an input image to a more usable format in an analysis task. The output of an image processing task is also an image. Image processing includes functions such as histogram equalization, contrast stretching, image enhancement, spatial transformations, morphological operations, edge detection, distance transforms, etc. An image analysis task takes as input a raw or processed image, and generates data from that input. These data can be basic information about the image such as average intensity,
or higher-level information such as identifying image features or segmenting regions of interest. Operations of interest for image analysis include feature detection (e.g., point, line, corner, surface, etc.), segmentation (k-means, region growing, etc.), and descriptor generation (shape, boundary, regions, etc.). An image understanding task generates actionable information from image analysis data. Image data input could be the descriptors from the segmented range image data. The image understanding function would then perform the model database search for object identification, and then the model-to-image alignment to determine the object location. The output of the image understanding task would be the pose of the identified object for use in calculating necessary control commands for moving the crane. Examples of other image understanding tasks include mapping and navigation for mobile robots, face recognition for security applications, and gesture recognition for human-computer interaction. The transformation of an image to actionable information is shown in Fig. 2.3.

The generalized goal of the image processing and analysis tasks is to transform the raw image into an internal representation. This internal representation is then matched against the known model base in an image understanding process and the position and orientation (pose) of the recognized object is calculated.

2.3.2 Image Processing

As previously described an image processing task is used to modify an input image to a more usable format for an analysis task. The unifying theme in this framework is that the output of a processing task is also an image.5 The input image may be raw sensor data, a previously processed image, or a synthetic image created from the object database. This

5\textit{This definition is by no means universally accepted and its use is not meant to imply otherwise. An alternative approach is to categorize image processing and image analysis as presented in this report as low-level and high-level image processing, respectively.}
Figure 2.3: Transforming an image to actionable information.
concept is depicted in Fig. 2.4, where the asterisk indicates a processed image.

![Image Processing Diagram](image.png)

Figure 2.4: Image processing.

Processing functions can serve to enhance an image or detect features. Image enhancement includes such operations as image smoothing, histogram equalization, and spatial transformation. Example feature detectors include edge, corner, or blob detection algorithms. In this construct there is a distinction between feature detectors and feature extractors. Feature detectors have as output a modified image whereas a feature extractor has as output data which can be formulated into a descriptor and serve as a search index in a model database. Feature extraction and descriptors will be covered in the section on Image Analysis, as will algorithms that serve both the feature detection and extraction functions (e.g., SIFT). Of particular interest are algorithms that can be applied to the range and intensity image output of range cameras.
Image enhancement operations are performed to modify an image for better performance in a subsequent processing step. These operations include filtering for noise removal or equalizing the distribution of pixel values. Examples of image enhancement operations follow:

Mean filter A mean filter is a linear filter image smoothing operation used primarily for noise removal. The filter replaces each image pixel with an average found in a neighborhood around the pixel.

Gaussian smoothing A Gaussian smoothing operation is similar to a median filter but the kernel elements are weighted representative of a 2D Gaussian distribution.

Median filter A median filter is a non-linear image smoothing operation used primarily for noise removal. The concept behind a median filter is simple — replace each pixel with the median of the pixels found in a certain neighborhood around the pixel. A larger neighborhood results in more image smoothing. A variation on this approach is a weighted median filter, where certain positions in the neighborhood have stronger influence on the resulting value. Median filters are generally used to smooth image noise while preserving discontinuities.

Histogram equalization Histogram equalization is used to adjust the probability density function of pixel values (e.g., intensity) to increase the image contrast. In general this process redistributes the pixel values to approach a uniform distribution of possible values.

Morphological operators Morphological operators are used to enhance specific aspects of the underlying shape or form of pixel values to improve recognition. These operations are generally performed on binary images, but they can also be used on intensity images. Different kernels, called structuring elements, affect different types of changes.
on the input image. In general, an erosion operation will shrink an image element whereas a dilation will expand an image element. Sequencing an erosion followed by a dilation is an opening operation, while the reverse is known as closing.

Bilateral filtering Bilateral filtering is a technique to smooth image surfaces while preserving edges. Tomasi and Manduchi (1998) achieve this by convolving with both a spatial and an intensity Gaussian to achieve smoothing of none-edge surfaces. This technique can be applied to 3D meshes (Fleishman et al., 2003) and is expected to be of use to either smooth noisy range images from the range camera, or to smooth intensity image surfaces and maintain edges for segmentation masks for the range data.

In feature detection, one desires to identify meaningful and repeatedly detectable parts of an image. For model-based object recognition, these features must somehow provide mapping back to the encoded object model. Preferably, the selected features are not affected by image variations such as scale and rotation transforms, lighting changes, and partial object occlusion. These types of features are known as invariant features. Some examples of low-level feature detectors include edge, interest point, and blob detectors.

Edge Edge detection is the process of identifying boundary points within an image that arise due to discontinuities in the original scene. These discontinuities may result from an object boundary, depth changes, texture or color differences, or material reflectance changes. To perform edge detection, one looks for image locations where the change in pixel values exceeds some threshold over a specified pixel distance. Edges are generally detected where either the first derivative of the image exceeds this specified value or where the second derivative has a zero crossing. These first and second derivatives are obtained with gradient and Laplacian operators, or by convolving the image with kernels that approximate those operations. The primary challenge with edge detection
is recognition of true edges while suppressing noise responses. Standard edge detection algorithms6 include those by Canny, Sobel, Prewitt, and Roberts. Pioneering work in edge detection theory was provided by Marr and Hildreth. There has also been much work to extend 2D edge detection to 3D, but standard 2D algorithms work for range camera data that is presented as a range image. An important pre-processing step for range edge detection is eliminating mixed pixels. An evaluation of mixed pixel detection algorithms is provided in (Tang et al., 2007). As previously discussed bilateral filtering may be a useful pre-processing step to smooth noisy image surfaces while preserving edges prior to edge detection. The output of an edge detection operation is an edge image or edge map.

Point Interest points are specific locations within an image that can be readily and repeatedly detected. Sample point detectors include Moravec (Moravec, 1979), Harris corner (Harris and Stephens, 1988), and affine invariant (Mikolajczyk and Schmid, 2004). A survey of interest point detectors is provided in (Schmid et al., 2000). There are many more interest point detectors. Those that include development of a descriptor are discussed in the section on Image Analysis.

Blob Blob detection is used to generate regions of interest within an image. There are numerous algorithms for blob detection, but the most notable for the range camera application is the Maximally Stable Extremal Regions (MSER) approach (Matas et al., 2004), which was evaluated as the most effective region detector (Mikolajczyk et al., 2005).

6These algorithms are discussed extensively in Computer Vision texts.
2.3.3 Image Analysis

An image analysis task takes as input a raw or processed image, and generates data from that input. These data can be basic information about the image such as average intensity, or higher-level information such as identifying image features or segmenting regions of interest. Operations of interest for image analysis include feature extraction (e.g., point, line, corner, surface, etc.), segmentation (e.g., k-means, region growing, etc.), and descriptor generation (e.g., shape, point signature, spin image, etc.). Features and descriptors can be local or global. Local features have been shown more effective in object recognition of partially occluded objects and in clutter-filled scenes. The goal is to extract features that are meaningful and easily detected, and from those features generate descriptors that can be used to search the model database and enable object recognition. A generalized image analysis flow chart is shown in Fig. 2.5.

![Image Analysis Flow Chart](image-url)

Figure 2.5: Image analysis.
Segmentation

Segmentation is the partitioning of an image into similar regions. Numerous segmentation algorithms exist. Of particular interest are k-means, region growing, connected components, and graph partitioning.

K-means is a data-clustering algorithm that segments a given data set into k clusters by minimizing the variance of data elements assigned to each bin. Generally k is user-specified, but there are implementations where k is also calculated. In segmenting an image, a measurement value is chosen for evaluation. Depending on the type of image the measurement value might be intensity, color, texture, range, derivatives of those data or any other property a pixel may have. Those pixels are then partitioned into k clusters either randomly or heuristically, and then a mean of each cluster is computed. Each pixel is then re-grouped in the cluster whose distance metric is closest to the pixels value. Each cluster’s mean is re-computed and again the pixels are grouped. The process continues until reaching a point where the number of pixels reassigned during an iteration is either zero or below an assigned threshold. The quality of the algorithm depends on the initial clustering and is guaranteed to terminate but not yield a global optimum.

Region growing is a segmentation algorithm that starts with seeded pixels, and then adds neighboring pixels to those seeded region sets that are within a feature metric distance (e.g., within an intensity-level tolerance). There are unseeded versions of the algorithm. Region growing algorithms are highly dependent upon the similarity metric used, which is in turn dependent upon the application.

Connected components is a segmentation algorithm that is similar to region growing but employs a graph-based technique for segmentation. The basic premise of connected components is to form regions that contain pixels of the same value. Best results are obtained
with a binary image. Connected components will yield labeled segments that are both the same in intensity and space whereas an algorithm such as k-means yields those similar in intensity. The algorithm starts by first considering each pixel in the binary image as a node in a graph. The object is to find groups of neighboring pixels that have the same intensity. This first starts by taking each foreground pixel (intensity of 1) and looking at either the four or eight immediate neighbors to determine if they are the same value. Each neighbor of the same value is given a region label. This process repeats until there are no more neighbors with the same value.

Graph partitioning examines each pixel as a node and the distance to neighboring pixels as edges. The image is segmented by removing edges connecting segments that exceed a distance metric. This approach should be particularly useful for segmenting the 2.5D range images.

Feature Extraction / Descriptors

Descriptors are methods used to create searchable indexes of image features. A good descriptor is unique, rapidly generated, compact, invariant, and efficient to match. Numerous representations schemes exist for object recognition. Surveys are available in (Arman and Aggarwal, 1993; Campbell and Flynn, 2001; Mian et al., 2005b; Zhang and Lu, 2004). In general one can categorize descriptors as global or local, where global descriptors characterize the object by its whole image and local descriptors identify and characterize specific portions of the object image.

Some of the earliest descriptor efforts focused on finding classifications for shape. Besl and Jain (1985, 1986) focused on a surface perception approach to 3D object recognition by combining the signs of mean and Gaussian curvature calculated for surface patches at specific
interest points. Surface patches were classified either as peaks, flats, pits, minimals, ridges, saddle ridges, valleys, or saddle valleys. Other global approaches include generalized cylinders (Binfoid, 1971, 1987), tripod operators (Pipitone and Adams, 1993), surface normals, and Gaussian spheres.

Local descriptors have proven more useful for object recognition within cluttered scenes and with partially occluded objects. A review of local descriptors is provided in (Mikolajczyk and Schmid, 2005). Two highly cited descriptors are Spin Images and SIFT.

A spin image (Johnson and Hebert, 1997) is a 2D histogram in cylindrical coordinates. The coordinate frame’s principal axis is along the normal vector of the plane created from the vertex (interest point) and its surface neighbors. This interest point and associated vector constitute an oriented point. All points within a distance d of this vertex are mapped according to the radial distance from the normal vector and the position above or below the normal plane. This can be visualized as sweeping a plane around the normal vector and collecting the intersected points. This approach has shown to be robust for free-form object recognition (Johnson and Hebert, 1999) but is not suitable for real-time applications. The approach is also susceptible to image noise. Although developed for surfaces, the spin image approach has been extended to point clouds (Frome et al., 2004).

The Scale-Invariant Feature Transform (SIFT) (Lowe, 1999, 2004) is a feature detector which identifies keypoints in an image with an associated region (known as an oriented disk) with assigned scale and orientation. These features are identified by first generating a scale space using Gaussian smoothing and resolution reduction and then differencing the scale images. Keypoints are generated for extrema regions in a neighborhood. Low contrast and edge-based keypoints are rejected, and then orientations for each point are assigned from the histograms of the gradients in a interest point’s neighborhood. SIFT descriptors compactly encode each feature into a 128-element vector, and have been shown to be one of the most
effective descriptors.

The use of SIFT feature detection in the intensity image of a range camera which is then used in the corresponding range image to identify the 3D location of those pixels was shown by (Zhou et al., 2007). A SIFT tutorial and sample Matlab code is available at (Vedaldi and Fulkerson, 2008).

2.3.4 Image Understanding

As defined in this report image understanding tasks generate actionable information from image analysis data. For the task of tracking a steel beam for automated assembly, we are principally interested in object recognition — i.e., identification and location of targeted construction objects. Input data are generally descriptors and segmented image data used for matching and/or fitting. The image understanding function executes the model database search for object identification, and then the model-to-image (or image-to-model) alignment to determine the object location. The outputs of the image understanding task would be (1) whether or not the target object exists in the image, and (2) if the target object is identified then provide the object’s pose for calculating necessary control commands for moving the crane. Examples of other image understanding tasks include mapping and navigation for mobile robots, face recognition for security applications, and gesture recognition for human-computer interaction.

This section will describe common matching and alignment methods. A generalized image understanding flow chart is shown in Fig. 2.6.

Matching and alignment approaches include hypothesize-and-test: e.g., RANSAC-DARCES (Chen et al., 1999), 3DPO (Bolles and Horaud, 1986), geometric hashing (Lamdan and Wolfson, 1988), and iterative model fitting, e.g., ICP (Besl and McKay, 1992). For the task
of recognizing and tracking rigid, polyhedral objects, the dominant algorithmic approach is an accelerated ICP.

Iterative Closest Point

The most commonly used method for calculating the relative transform between sets of range image data is the Iterative Closest Point Algorithm first described by (Besl and McKay, 1992). Chen and Medioni (1991) independently developed a similar approach using a different point pairing heuristic. The ICP algorithm has been used to match sets of data obtained from different sensor locations as well as matching real and synthetic sensor data for pose determination. Rusinkiewicz and Levoy (2001) provide a summary of ICP and variations of the algorithmic steps that have been developed. They provide a description of the general ICP algorithm as follows:

- Select some set of points in one or both meshes
- Match points to samples in the other mesh
- Weight corresponding points
• Reject certain corresponding points based on individual or set-based pair review

• Assign an error metric from the point pairs

• Minimize the error metric.

In addition to a breakdown of the ICP flow path, the authors describe numerous variations developed for each of the steps, and provide performance comparisons among many of them. A fast ICP algorithm is described which combines optimally performing variants, and is reported to align meshes in tens of milliseconds.

Rusinkiewicz et al. (2002) describe the implementation of the fast ICP variant previously developed and applied to real-time 3D model acquisition. The system presented combines a 60 Hz structured-light scanning system and a graphical interface which shows the model creation in real-time. A user is able to hold and rotate a small object in front of the scanner and watch as the point clouds are acquired and registered, filling gaps as they appear. The system demonstrated the capability of real-time ICP, though the algorithms suitability for low-resolution, noisy data was not discussed. Also, the use of a black glove and a black background made removal of outlier data trivial, and is not available in typical robotic applications. Reported drawbacks of ICP include the need for a good initial guess of alignment and its susceptibility to noise.

In addition to registering two range images ICP is commonly used to align models to image data (pose determination) (Simon et al., 1994; Wunsch and Hirzinger, 1996). Other variations include Iterative Closest X where X can be lines, patches, or other geometric primitives (Li and Griffiths, 2000); or a modification of the distance metric to include a feature-metric (Lu et al., 2006; Sharp et al., 2002).
2.3.5 The Challenge of Real-Time

As stated previously the object recognition literature is vast, and while computational efficiency is a general goal, not all approaches are relevant for real-time applications. Object tracking surveys are provided in (Lepetit and Fua 2005; Porikli 2006; Yilmaz et al. 2006). As described in Chapter 1 the initial motivation for this work was to provide onboard sensing capability for an autonomous or semi-autonomous crane control application using the NIST RoboCrane. For this application, the design requirement would be better characterized as soft real-time, meaning that there is an operational deadline but the system (in this case the crane controller) can handle periodic lateness of delivered information. The RoboCrane controller was built using the NIST 4D/RCS Reference Model Architecture (Albus et al. 2002; Lytle et al. 2008), and this provides general guidance on information requirements. For low-level planning, the hierarchical controller is built upon the following planning horizons:

1. Servo: 50 ms with output every 5 ms;
2. Primitive: 500 ms with replanning every 50 ms; and
3. Subsystem: 5 s with replanning every 500 ms.

The servo level is designed for direct actuator control, the primitive level provides steering and velocity input, and the subsystem level provides immediate vicinity obstacle-free path calculation.

For the control application envisioned the planning horizon is 0.5 s (primitive level), which equates to a re-planning rate of 50 ms or 20 Hz. The range camera of interest has a nominal frame rate of up to 54 Hz, though in practice 20 Hz for both range and intensity image delivery is a more reasonable number. We are therefore interested in object recognition algorithms that have a computational speed of 20 Hz or greater. Of note, 4D/RCS was
designed for unmanned driving at highway speeds and the crane operates at significantly reduced velocities. For a ball-park reference value it is expected that 2 Hz or greater tracking rate would suffice for initial experiments.

Notable related research follows:

Simon et al. (1994) presented one of the earliest real-time tracking implementations using range sensors. Their implementation used a triangulated mesh (model data) matched and aligned to sensor data using and enhanced ICP algorithm and achieved a 10 Hz update rate. Pose estimation at 1% of object size (translation) and 1° rotation were demonstrated.

Zheng et al. (2001) present a pulsed (flash) LADAR object-recognition system which fit 10 pixel × 20 pixel range images to a template generated from a laser physics based simulation. The algorithm used a projection based filter to trim the candidate pool, and then used both pixel matching (shape) and silhouette matching (boundary) for recognition. The system was trained using synthetic image data for seven military vehicle targets. Each target set was comprised of templates of horizontal viewing angles and each 5° of aspect angle. Tests run on 276 real 10 pixel × 20 pixel images cued by a human provided a 90% match rate. The physics package simulated an anticipated military LADAR vice modeling an existing one. Test images were not generated with a real 10 pixel × 20 pixel pulse LADAR. Computational requirements were not discussed, nor was there any indication of the ability of the algorithm to isolate the correct aspect angle of the recognized target.

Jurie and Dhome (2002) present an appearance-based approach to track planar and 3D objects in image sequences at video rates. The specific contribution is the use of an error metric between the predicted and reference pattern to trim the search space for the current object in the image.
Stevens et al. (2002) present an Automated Target Acquisition (ATA) algorithm for missile seekers using flash LADAR and pulse millimeter wave radar (PMMW). Using LADAR data, they segmented the potential targets based on variations in reflectance and range from the surrounding image data. No shape analysis was conducted; rather any image area which met a threshold for variation was a potential target.

Koenig (2007) reports the use of a range camera (SR-3000) for a real-time visual servoing task — in this case performing human detection and tracking for human-robot interaction. The approach used a connected-components algorithm to first segment point data, and then used an SVM which was trained on a human profile as described by data after the connected components operation. Frame-to-frame human tracking was performed using a Kalman filter, with control input to the robot based upon a proportional derivative (PD) controller. Researchers achieved 15 Hz human tracking on a Pentium Core 2 Duo 2.0 GHz processor with one gigabyte of ram. Limitations reported included few people in the scene and full view of subjects (i.e., no partial occlusion).

Kim and Kweon (2005) demonstrate 3D object recognition and tracking from 2D images using Zernike moments generated at Harris point features. These are manually correlated with 3D model points to initialize the tracking function.

Nuchter et al. (2004) use a General Ada Boost learning algorithm to construct a cascade of classifiers which are created using simple feature detectors similar to Haar basis functions. Authors report real-time recognition of office chairs from fused CCD and range image data collected from a mobile robot.

Blais et al. (2001) demonstrated real-time tracking of circular targets using a galvanometer-based 3D imaging using a Lissajous scanning pattern and processing and tracking in the scanner inverse spherical coordinate system. The targeted application was equipment place-
moment and docking on the International Space Station.

Yoon et al. (2005) used an edge gradient in comparison with a target wire frame with predictions from an extended Kalman filter. The pose estimation was calculated at near video frame rates but the edge extraction process limited the system to approximately 2 Hz–3 Hz. Pose tracking at video rates was demonstrated.

2.4 Construction Automation: Object Recognition with BIM and 3D Imaging

Both BIM and 3D imaging are enabling technologies for a diverse set of construction automation systems. This section will examine potential applications of BIM and 3D imaging in construction automation, with specific emphasis on construction object recognition and future support of construction equipment control.

2.4.1 Construction Object Recognition

The primary application areas for construction object recognition are reconstructing building models, quality assurance, and progress monitoring (Lukins and Trucco, 2007). Numerous researchers have explored the use of camera, stereo, and video sensors to assess the status of construction operations and to inform either automated planning, QA/QC systems or human operators (Brilakis and Soibelman, 2006; Choi et al., 2008; Kim et al., 2008; Memon et al., 2007; Zhang et al., 2009; Zhu et al., 2010). Navon (2007) provides a review of the need for automation in progress monitoring and cites as motivating factors the high labor requirements for data collection, low quality of manually collected data, resulting infrequent project control, and lack of real-time input for corrective measures. Tang et al. (2010)
surveyed methods for creating as-built building information models from 3D data. The focus was to examine opportunities for easing the time consuming manual task of creating as-built BIM from laser scans. The paper presents a thorough overview of the three identified steps for as-built modeling, namely geometric modeling, object recognition, and object relationship modeling.

With respect to construction object recognition from laser-based 3D imaging, much work has been done of reconstructing buildings from airborne LIDAR data. Examples include (Maas and Vosselman, 1999; Rottensteiner and Briese, 2002; You et al., 2003). There has been relatively little work in specific construction object recognition from terrestrial laser-based 3D imaging systems. Some specific examples from the literature follow:

Gilsinn et al. (2005) examined construction object recognition from 3D imaging through experiments in recognizing a single steel beam placed on a flat ground plane and imaged in various rotations. Ground truth was provided using a laser-based large scale digitizing system. The recognition approach used was a bounding box match using principal components analysis (PCA) on the segmented points of interest. A 3D occupancy-grid approach was used to reduce data elements and simplify the observed data. Voxels were tested and selected based upon a combination of height above ground and adjacency. Sets of voxelized data were then analyzed using PCA to derive an orientation and a bounding box was created around the targets of interest. These bounding boxes were compared to the designed bounding box generated from a CAD model of the steel beam. Potential targets that did not match the bounding box constraints were eliminated. This study used a segmentation algorithm highly tailored to the observed scene and there was no clutter, therefore extension to actual construction sites is limited.

Construction object recognition based on implicit shape descriptors was used in the AS-DMCon project (Yue et al., 2006; Akinci et al., 2006). The approach used was based upon
spin imagery (Johnson and Hebert, 1999) to recognize targeted objects in the acquired point clouds. The scan data was overlaid on the IFC design model to provide some a priori information in the object recognition search.

Teizer et al. (2007) examined the use of a range camera system to detect, track, and model moving objects for construction equipment safety. The approach was based primarily upon a single-frame 3D occupancy grid. Each grid volume was set to a cubic voxel of predetermined size of 0.1 m³. In normal occupancy grid mapping, voxels are set to an initial belief (generally 50%) and that belief is either incremented or decremented based upon counting returns that fall within the voxel spacing. In Teizer’s implementation, the occupancy grid was as an initial step in data reduction and image segmentation for each range image frame rather than the traditional use as a mapping element. First, a 3D array was predefined which matched the flash LIDARs field of view (FOV). Each element of the range image then was converted to Cartesian space and if more than one returned point fell within a voxel, then that voxel was considered ‘occupied’. Any voxel occupied by only a single range point was considered a spurious return. Next, the occupied voxels were analyzed based upon a neighborhood filter. If the individual occupied voxel had a specific number of adjacent neighbors then that voxel was retained. Potential objects of interest were then identified from remaining occupied voxels using an Agglomerative Hierarchical Clustering algorithm. Once potential objects were identified, the centroid and volume of the potential objects (based upon voxel centers) were calculated and compared to previous frames. Target object correlations were made based upon meeting a threshold percentage of the prior centroid and volume. Once matched, a velocity vector of each tracked object was calculated. This was a general locating function only, as orientation of the target object was not calculated. Also the test involved a single object without occlusion.

Bosche and Haas (2008a) developed an innovative and simple method of inferring the pres-
ence of model objects in range images. Their approach centered on the comparison of a 3D image of a construction scene with a simulated scan of a 4D building model using similar scan parameters. The simulated scan provided a priori knowledge of expected sensor information such as location and number of returned surface points from a particular model element. This information was compared to the actual scan data, and model elements were deemed to be present if the comparison of actual returned points and virtual expected points met a particular threshold. The presence of particular model elements was then used to provide a generalized assessment of construction progress as compared to the 4D plan. The approach was successfully demonstrated in a steel construction project. Bosche (2010) extended this approach to use a comparison of observed to expected surface normals to improve the object inference algorithm. Further research on including actual uncertainty models of 3D imagers and using additional sensed information such as RGB data is recommended.

Son and Kim (2010) proposed a methodology for component progress tracking using 3D data generated from color stereo vision. A rectified 2D image frame was segmented using HSI colorspace and the resulting positive image mask was overlaid on the 3D range image to segment the points of interest. A complete 3D model of the scale structure was obtained through an ICP registration of the different image data sets. The full 3D point cloud was then compared to an STL-format model to determine which of the individual components in the model were present in the acquired image. A threshold based on number of points (similar to (Bosche and Haas, 2008b)) was used to determine whether or not a component was present.

Golparvar-Fard et al. (2011) developed a methodology for construction progress monitoring that leverages the large number of photographs (photologs) that are already taken on construction sites for production documentation. Correlation between different photographs is determined using an interest point detector (SIFT) and then the camera positions for the
different views are reconstructed using a bundle adjustment. The forward propagation of
the site line vectors for the matched interest points yields 3D cartesian measurements
for each of those interest points. The result is a point cloud generated from the combination
of unordered imagery. By tying control points into the imagery the coordinate frame of the
3D data can be transformed into the site coordinate system, and the generated point clouds
and photographs can be layered over the IFC model providing a powerful visualization tool.
The IFC model is queried for as-planned and schedule information using components built
from the the IFCEngine library. By analyzing imagery taken day-to-day, a time-based vi-

sualization can be generated which compares the 4D as-built data with the 4D as-planned
within a common user interface. The framework was extended in (Golparvar-Fard et al.,
2010) to include a machine learning scheme built upon a Bayesian probabilistic model that
automatically detects physical progress in presence of occlusions and demonstrates physical
progress monitoring at the schedule activity-level. Deviations from the IFC-based BIM are
highlighted using stoplight color-coding, which a user can explore through an interactive,
image-based 3D viewer.

2.4.2 Construction Equipment Control

Construction sites are dynamic by nature and are typically unstructured, cluttered, and
congested with material, equipment, and humans. These characteristics make the construc-
tion environment a particularly difficult environment in which to apply robotic technology
(Saidi et al., 2008). Robust field-automation on dynamic and cluttered construction sites
will require advanced capabilities and new methods for construction equipment automation.
Laser-based 3D imaging systems will have a significant impact in realizing those needs.
Experimental use of TOF laser range finding systems for mobile robot perception was first
reported in the literature in 1977 (Everett, 1995). Inexpensive line scanning laser sensors such as the SICK LADAR have now made laser ranging systems a mainstay in autonomous mobility applications (Evans, 2002). A general review of ranging systems with emphasis on robotic applications is provided in (Hebert, 2000), which also includes a summary of LADAR types with analysis of their applicability to particular robot sensing requirements. A earlier review of 12 different 3D imaging sensors and their application in robotics is provided in (Carmer and Peterson, 1996). An evaluation of 3D imaging systems for manufacturing, construction, and autonomous mobility is presented in (Stone et al., 2004). Some examples of 3D imaging used for construction equipment control follow:

An approach for automated excavation was demonstrated by Carnegie Mellon University, where an autonomous backhoe was developed for mass excavation. The backhoe was equipped with two single-axis, 360° laser scanners mounted on either side of the excavator’s boom. These sensors provided data for dig/dump planning and control. These scanners were used to detect and navigate the dig face, truck, and obstacles in the workspace. A fully implemented truck loading system was shown to load as quickly as human operators during equipment operations lasting up to several hours at a time (Singh, 2002; Stentz, 2001). Automation of a mini-excavator is presented in (Quang et al., 2002). This system also used a laser scanner to develop 3D terrain data though detailed information is not provided.

Another automated excavation system, this one for dragline swing automation, was developed which uses a laser scanner mounted on the boom of a 3500 ton mining machine (Bucyrus Erie 1350) to create digital terrain maps (DTM) during the swing operation (Roberts et al., 2003). Laser-based 3D imaging was added to the system to enable the detection of spoil piles, highwalls, and the ground and thus provide real sensing of the changing conditions within which the system operates. This capability would eliminate (or minimize reliance upon) human-entered ‘no-go’ points for the bucket and boom travel. A single-axis laser
scanner was mounted on the boom tip of the crane with the laser plane oriented along the boom. As the boom moved through the work volume, 3D image data was collected and used to develop a DTM of the work site. Integration of the 3D information for dragline operations planning was not yet implemented. Future work also included development of an operator interface, integration of multiple DTMs as the dragline changes position over a shift, and procedures for filtering non-relevant information (e.g., the bucket) from the data collected.

Dunbabin and Corke (2006) explored automating rope shovels for mining operations, and used a laser mapping system which provided information for automatically planning bank engagement for the scooping operation. A single axis laser scanner was mounted the boom tip of a 1:7 scale rope shovel in a similar configuration to that for the dragline automation. Expected uses of the 3D image data were to detect where to initiate digging and detect when the dipper was full, plan base movements, and estimate bank shape changes (dig face) over time. In this preliminary research, the team was able to demonstrate the use of a laser scanner to provide bank engagement planning and to estimate dipper fill during scooping operations.

Researchers at the Field Systems and Construction Automation Laboratory of the University of Texas at Austin (FSCAL–Austin) developed a technique for rapidly creating local-area geometric data extraction for creating 3D visualizations of unstructured construction workspaces. In their Sparse Point Cloud (SPC) approach, a human-guided laser rangefinder equipped with pan and tilt angle monitoring was used to select points in a scene for measurement, which were then used to geometrically define objects and workspaces and incorporated into a world model (Kwon and Liapi, 2002). Use of the sparse point clouds for potential equipment control was demonstrated in (Cho and Haas, 2003), where pole and wire locations were modeled in one application, and trench boundaries and pipe locations were imaged and modeled in another. Use of the modeled data for actual equipment operations was not dis-
cussed. Use of sparse point clouds for workspace modeling using partitioning, convex hulls, and tight-fitting bounding boxes is described in (McLaughlin et al., 2004). The use of a range camera for generating convex hulls and generalized shape models of construction site objects was shown in (Kim et al., 2008). The SPC research was extended by Teizer et al. (2007) through the use of a range camera system (SR2) to detect, track, and model moving objects for obstacle avoidance. This work was a first investigation of using rapid range image acquisition as opposed to the manual — and therefore slower — method of identifying and measuring key points on static objects which was used in the SPC methodology. A more detailed description is provided in the Construction Object Recognition section. Chi et al. (2008) describe the use of range cameras for heavy equipment crash avoidance, but have not demonstrated implementations beyond lab experiments with small mobile robots.

Reed (2002) conducted a review of the applicability of CIS/2 to support field steel construction activities. The review focused on automating the erection and surveying of structural steel. For automated steel erection, the following computer-sensible information was determined to be required:

1. The parts and prefabricated assemblies to be delivered to the construction site.
2. The erection and/or assembly sequence for those parts and assemblies.
3. The joint systems connecting those parts and assemblies.
4. The final positions and orientations of those parts and assemblies.

To support the surveying task, the information required was a description of the model of the steel structure with individual component data such as piece identification and corresponding position data. The CIS/2 product data model was assessed to have sufficient mappings to required information to support automated erection and surveying of steel structures. It
was noted that the mapping of required data was not sufficient in and of itself, and that process controls on how the CIS/2 was implemented was needed. Specifically, the correct geo-referencing of the manufacturing model to the site coordinate system as well as a mechanism to register the individual pieces to their coordinate locations was needed.

Kamat and Lipman (2007) extended this concept and implemented a prototype evaluation in the VITA-SCOPE construction visualization package and the KineMach construction equipment simulator. Steel member geometry and final installed pose was extracted from the CIS/2 file via the NIST CIS/2 to VRML translator. The translation provided explicit member geometry and a model scene graph which facilitated extraction of the necessary assembly information. The required geo-referencing of the CIS/2 model to the virtual site coordinates was achieved by manually registering the CIS/2 global frame with the virtual crane’s coordinate frame. Using the geometry and a notional laydown point for each piece, the inverse kinematics were calculated to move the those pieces from the start point to the final installed location. The ability to extract steel member geometry and final assembly locations from a CIS/2 file and develop a sequencing plan and motion controls to do a virtual assembly was demonstrated. The assembly sequence is not readily available from the CIS/2 file, and must be externally provided or algorithmically determined. Extensions of the product data model to include project specific construction planning and laydown information was recommended.

Lytle and Saidi (2007) demonstrated the autonomous assembly of a multi-component test steel structure using the NIST RoboCrane with pose tracking provided by a laser-based site measurement system (SMS) and assembly scripts generated from a commercial 4D CAD package. A visualization system (JobSite) allowed real-time monitoring of site sensor data,

7Of note, this methodology was employed on the Frederic C. Hamilton building expansion of the Denver Art Museum project by Mortenson Construction. During the steel fabrication, fiducial points were engraved on steel pieces and a survey crew used those fiducials and corresponding geolocations from the BIM to verify proper placement during erection. (Personal communication Cunz, D. and Lytle, A.)
the current position and planned action of robot agents, and other object data such as CAD models. A significant limitation in the demonstrated approach was that all object locations were required to be digitized in the crane reference frame prior to operations, though the addition of external sensing for site awareness and on-board sensing for visual-servoing of the crane was recommended as future work. The final assembly locations were hand-coded, though a natural extension would be to use product models to extract those data. The ability to recognize and track target construction objects using on-board sensors was noted as a necessary enabler for automated assembly.

Borkowski et al. (2010) examined the use of BIM to extract semantic information (e.g., geometric features and relationships) from a building model to support mobile robot path planning and navigation. The use of IFC data to provide connectedness and function of spaces within a structure from which to generate topological maps was examined. Suggested opportunities to use BIM to better support mobile service robots included adding a MobileRobot entity to the Facilities Management Domain Layer and extending classes within that domain (e.g., IfcActionRequest, IfcMove, IfcOrderAction). The concept of using the Actor Role (i.e., IfcActor) to include not only human but also robotic actors was proposed. A 3D imaging system (SICK LMS 200 line scanner on a rotating support) was used to provide navigation sensory data. Recognition of objects using a Viola-Jones classifier using Haar-like features was explored and shown to recognize objects such as a wastebasket, door, staircase, and washbasin. The authors did not specify that actual BIM data was used in any stage of the project nor was the storage and retrieval of stored feature data addressed. The need to bring together experts in BIM and mobile robotics to explore this new interdisciplinary domain was stated.
2.5 Summary

Recognizing targeted construction objects is a fundamental enabler for the introduction of flexible automation techniques in construction. This capability supports numerous tasks including progress tracking, QA/QC, material locating, and automated piece movement and assembly.

Research on construction object recognition with BIM and 3D imaging remains in early stages. Most of the work conducted to date is to support progress monitoring, and principally employs some general method to segment points of interest and then compare those points to a model to determine if they are target points. Comparison methods include simple number thresholding and examination of surface normals against either a co-registered model or a virtual scan. There are examples of the use of local descriptors such as Spin Images and Haar-like features. For construction equipment control, work conducted to date is principally to support automated excavation, and centers on free-form surface generation for dig planning or recognition of key features (e.g., truck bed boundaries, dipper fill, bucket location, etc.). Integration of BIM-enabled 3D image construction object recognition with construction equipment control for task completion remains an open research area. Initial work has started on the use of BIM to provide navigation information for mobile robots operating inside of buildings.

An overview of the relevant literature for construction object recognition using 3D imaging and BIM is provided in Table 2.2. A similar overview focusing on construction equipment control is provided as Table 2.3. A summary of object recognition approaches reviewed is provided as Table 2.4.

As can be seen from Table 2.2 the predominant sensing modality for 3D image data is laser scanning. Of note, the methodology developed in (Golparvar-Fard et al., 2011) provides new
Table 2.2: Construction object recognition with 3D imaging and BIM - Relevant Literature.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Progress Monitoring</td>
<td>-</td>
<td>-</td>
<td>○</td>
<td>○</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>○</td>
</tr>
<tr>
<td>QA/QC</td>
<td>-</td>
<td>-</td>
<td>○</td>
<td>○</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>○</td>
</tr>
<tr>
<td>Safety</td>
<td>-</td>
<td>-</td>
<td>○</td>
<td>○</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>○</td>
</tr>
<tr>
<td>Model Reconstruction</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>○</td>
</tr>
<tr>
<td>Component Tracking</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>○</td>
</tr>
<tr>
<td>Workface Control</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>○</td>
</tr>
<tr>
<td>Use of 3D Imaging Data</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>○</td>
</tr>
<tr>
<td>Laser Scanner</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>○</td>
</tr>
<tr>
<td>Range Camera</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>○</td>
</tr>
<tr>
<td>Stereo Vision</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>○</td>
</tr>
<tr>
<td>Structure from Motion</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>○</td>
</tr>
<tr>
<td>CAD as a priori information</td>
<td>○</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>○</td>
</tr>
<tr>
<td>BIM as a priori information</td>
<td>○</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>○</td>
</tr>
<tr>
<td>Use of BIM</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>○</td>
</tr>
<tr>
<td>Use of IFC</td>
<td>○</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>○</td>
</tr>
<tr>
<td>Use of Model Descriptors</td>
<td>○</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>○</td>
</tr>
<tr>
<td>Model Descriptors Derived from BIM</td>
<td>○</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>○</td>
</tr>
<tr>
<td>Model Descriptor Storage/Retrieval</td>
<td>○</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>○</td>
</tr>
<tr>
<td>Experimental Approach</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>○</td>
</tr>
<tr>
<td>Prototype System</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>○</td>
</tr>
<tr>
<td>Field Demonstration</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>○</td>
</tr>
</tbody>
</table>

● Focus, ○ Discussion
Table 2.3: Construction equipment control with 3D imaging and BIM - Relevant Literature.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Object Recognition</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Progress Monitoring</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>QA/QC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Safety</td>
<td>o</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Model Reconstruction</td>
<td>-</td>
<td>-</td>
<td>o</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Component Tracking</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Workface Control</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>o</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Use of 3D Imaging Data</td>
<td>o</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>o</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Laser Scanner</td>
<td>-</td>
<td>o</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Range Camera</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>o</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stereo Vision</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Structure from Motion</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CAD as a priori information</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BIM as a priori information</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Use of BIM</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>o</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Use of IFC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Use of Model Descriptors</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Model Descriptors Derived from BIM</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Model Descriptor Storage/Retrieval</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Experimental Approach</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Prototype System</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Field Demonstration</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

● Focus, ○ Discussion
opportunities due to the ease and low cost of data acquisition as compared to traditional laser scanning. Range camera technology is still in early development and implementation as a construction sensor is likewise in early study.

A standardized methodology for the universal storage and retrieval of feature descriptor information to support construction object recognition is a technology and framework gap that is not currently addressed in the literature. This research will focus on such a framework, with a secondary exploration of range camera use for construction object recognition.
Table 2.4: Approaches used for object recognition.

<table>
<thead>
<tr>
<th></th>
<th>Segmentation Approach</th>
<th>Recognition Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gilsinn et al. (2005)</td>
<td>Voxel Binning, Triangulated Irregular Network</td>
<td>PCA, Bounding Box Comparison</td>
</tr>
<tr>
<td>Yue et al. (2006)</td>
<td>Euclidean distance to model component</td>
<td>Threshold number of points; Geometric model fitting and comparison</td>
</tr>
<tr>
<td>Akinci et al. (2006)</td>
<td>Not addressed</td>
<td>Spin Images</td>
</tr>
<tr>
<td>Teizer et al. (2007)</td>
<td>Occupancy Grid, 3D Median Filtering, K-Means Clustering</td>
<td>Moving Cluster Detection</td>
</tr>
<tr>
<td>Bosche and Haas (2008a)</td>
<td>Expected location of points from scan simulation</td>
<td>Threshold number of points</td>
</tr>
<tr>
<td>Bosche (2010)</td>
<td>Expected location of element surfaces from scan simulation</td>
<td>Surface visibility thresholds</td>
</tr>
<tr>
<td>Son and Kim (2010)</td>
<td>Color-matching of 2D rectified image used as mask for 3D image</td>
<td>Threshold number of points</td>
</tr>
<tr>
<td>Golparvar-Fard et al.</td>
<td>Euclidean distance to co-registered IFC Model instances</td>
<td>Bayesian probabilistic model based upon physical occupancy and visibility thresholds</td>
</tr>
<tr>
<td>Borkowski et al. (2010)</td>
<td>Flood-fill f(range), surface normals</td>
<td>Simple rule-based classifier (e.g., walls are vertical, etc.); Haar-like features</td>
</tr>
</tbody>
</table>
The two highest-ranked opportunities for breakthrough improvements in construction are (1) widespread deployment and use of interoperable technology applications (i.e., BIM), and (2) improved job-site efficiency through more effective interfacing of people, processes, materials, equipment, and information. Information technology supporting interoperability includes CADD, 3D/4D visualization and modeling, 3D imaging, cost estimating and scheduling tools, and material tracking technologies. Expanded use of automated construction equipment and information technology to support site management and stakeholder communication is important for improving job site efficiency (NRC, 2009).

Field-automation on dynamic and cluttered construction sites will require advanced capabilities in construction equipment automation, site metrology, 3D imaging, construction object identification and tracking, data exchange, site status visualization, and design data integration. These capabilities will be needed to support autonomous or human-supervised system behavior planning as well as information-rich machines, instruments and assessment tools to assist project leaders, planners, and workers.
Recognizing targeted construction objects is a fundamental enabler for the introduction of flexible automation techniques in construction. This specific capability supports numerous tasks including progress tracking, QA/QC, material locating, and automated piece movement and assembly.

3.1 Existing State of Research and Practice

As noted in Chapter 2, research on construction object recognition with BIM and 3D imaging remains in early stages. To the best of the author’s knowledge there is no actual field implementation in use on construction sites of object recognition technology beyond laboratory field experiments and initial prototype implementations (e.g., Bosche et al. (2009); Golparvar-Fard et al. (2011)). The most prevalent use today would be in the algorithms used in 3D point cloud processing software for such tasks at automated fitting of basic geometric shapes such as planes and cylinders or standard structural shapes to selected points (Cheok et al., 2010).

Primary research work conducted to date on construction object recognition is to support progress monitoring. The general approach is to segment potential objects of interest and then compare those potential objects to the expected location of objects from the available design information (CAD, Product Model, BIM, etc.). Techniques using 3D imaging principally employ some general method to segment points of interest from the 3D image and then compare those points to a model to determine if they are target points. Comparison methods include simple number thresholding and examination of surface normals against either a co-registered model or a virtual scan. There are examples of the use of local descriptors such as Spin Images and Haar-like features. For construction equipment control, work conducted to date is principally to support automated excavation, and centers on free-form
surface generation for dig planning or recognition of key features (e.g., truck bed boundaries, dipper fill, bucket location, etc.). Integration of BIM-enabled 3D image construction object recognition with construction equipment control for task completion remains an open research area. Initial work has started on the use of BIM to provide navigation information for mobile robots operating inside of buildings.

3.2 Research Problem

Object recognition systems require baseline information upon which to compare sensed data to enable a recognition task. The existing BIM structure does not support the storage and retrieval of these types of baseline information beyond shape, expected location, and material. This limitation restricts the widespread use of diverse object recognition techniques in the construction environment. The ability to integrate a diverse set of object recognition data for different components in the BIM will enable many autonomous systems to access and use these data in an on-demand learning capacity, and will accelerate the integration of object recognition systems in the construction environment.

Building Information Models currently have some capacity to support construction object recognition. Potential features include location, shape, relationships between objects (e.g., connectedness), material properties and temporal information. What is not available is a methodology for either directly or indirectly embedding trained feature descriptor information. This needed methodology is a technology and framework gap that is not currently addressed in the literature. The principal goal of this research is to provide a new framework for using a building information model to support object recognition in construction through the storage and retrieval of trained feature descriptor information. A secondary goal is the exploration of a new class of sensor (high frame rate 3D imaging sensors) for construction
object recognition.

The principal and secondary goals will be met through answering the following questions:

1. How can Industry Foundation Classes (IFC) be used to encapsulate necessary feature descriptor information to support object recognition of an engineered construction component?

2. How can high frame rate 3D imaging system data be used to recognize and track construction objects (i.e., structural steel)?

3. What is an appropriate framework for using a Building Information Model to support a construction object recognition task?

The following specific objectives will provide both the framework and the path for answering the research questions:

1. Develop a method for construction object recognition using IFC and range camera data.

2. Demonstrate a framework for using a BIM to support construction object recognition.

3.3 Assumptions and Constraints

The following assumptions and constraints are established to bound the research problem:

1. Industry Foundation Classes will be the product model explored. While the approach could have centered on CIS/2, a framework to support object recognition implemented in IFC will have a broader applicability within the construction sector.
2. IFC 2x3TC1 is the IFC version used for this research. Although version 2x4 is in the final stages of approval it is not supported by all of the open-source IFC tools. While the approach could have been implemented in IFCxml, the standard IFC format was chosen as it was better supported by available research tools and it is more widely used.

3. The construction object of interest used in this research is a 1:10 scale model of the ConXtech column connection system. The IFC model created to demonstrate the framework is a simplified version of the column and connector as a full IFC model is not available and an exact replica is not required to demonstrate the concept. Open-source or freeware modeling tools do not yet exist which can export data to the IFC format.

4. The examination of the object recognition method is secondary to the problem of embedding the trained feature descriptors in the BIM. As such, this research will not present a detailed examination of the efficacy of the object recognition approach. Occlusion (static or dynamic) and clutter is not considered.

5. For this study recognition will be limited to detection based upon the feature descriptor match. A pose calculation through model fitting will not be performed. This provides a test of embedding links to the feature descriptor information in the IFC model but does not continue the process to the logical conclusion of determining where the object is located in the reference frame of the sensor as compared to the IFC model. This constrains the examined problem to just the trained feature descriptor aspect. Pose determination and shape verification is left to future work. This simplification also eliminates issues with IFC accuracy as compared to observed data. It also eliminates the need to register the IFC model to the point cloud.
6. The feature detector chosen for the example does not differentiate similar elements and therefore is not robust enough for generic object recognition. Secondary instance identification capability such as RFID or barcode piecemark information is not considered.

7. The framework does not consider semantic information which may be available for progress monitoring reasoning such as the physical or operational sequence among elements. Other feature information such as location, shape, relationships between objects (e.g., connectedness) and material properties is likewise not included. Inclusion of these additional data is left for future work.
Chapter 4

Approach

This chapter describes the approach taken to develop and demonstrate a new extensible framework for linking feature descriptors to a BIM to support construction object recognition. The specific implementation is a new Property Set — Pset_ObjectRecognition — within the IFC schema which provides a capability to query an IFC object for linked feature descriptors and associated sensors. A review of the IFC Property Resource and the proposed property set schema is presented. The implementation is described including the sensor system, the IFC model development, the object detection approach and the prototype architecture. The results of a demonstration experiment are provided.

4.1 The IFC Object Recognition Framework

The proposed framework is based upon the Property and External Reference Resource schemas within the IFC architecture. Within this framework a Property Set is suggested which provides an on-demand capability to access available Feature Descriptor information either embedded in the IFC model or referenced in an external model database. The Prop-
Property Set framework is extensible, and can be modified and adjusted as required for future research and field implementation. The discussion which follows provides necessary background information on the Property and External Reference Resource schemas, the methods to aggregate these schemas in a Property Set, the suggested \texttt{Pset_ObjectRecognition} structure, and assignment of that Property Set to either object instances or object types.

4.1.1 Property Resources

The Property Resource schema in the Resource Layer (see Fig. 2.1) provides property types that are used to describe the characteristics and behavior of an object. These properties allow extension of the IFC architecture without having to change the model, and allow for the introduction of user-defined information. Properties are defined via the abstract \texttt{IfcProperty} entity, which has subclasses \texttt{IfcSimpleProperty} and \texttt{IfcComplexProperty}. Figure 4.1 provides the EXPRESS-G schema for the \texttt{IfcProperty} class. The \texttt{IfcSimpleProperty} class provides the subclass property definitions described in Table 4.1. Of particular interest is the \texttt{IfcPropertyReferenceValue} class, which allows a property value to be assigned from any other entity within the Resource Layer, such as \texttt{IfcLibraryReference} from the External Reference Resource schema. This capability is of particular import, because it enables the linking of an external file or database within the Property Set definition.

The \texttt{IfcComplexProperty} object is used to define complex properties as a single property within a property set. A complex property is one which is a collection of mixed or consistent \texttt{IfcProperty} subclasses, including nesting of \texttt{IfcComplexProperty} entities. This allows the addressing a collection of properties as a single property in an \texttt{IfcPropertySet}. Property Resources are not directly assigned to object instances or types. Rather they are first aggregated into an \texttt{IfcPropertySet} class and then assigned.
4.1.2 Property Sets

Individual Property Types are grouped together in Property Sets which can then be associated to either a group of objects or to one or multiple individual instances. The IfcPropertySet class is part of the Kernel schema in the Core Layer (see Fig. 2.1). Figure 4.2 provides the EXPRESS-G schema for the IfcPropertySet class.
Table 4.1: Property resource entities - \texttt{IfcSimpleProperty}.

<table>
<thead>
<tr>
<th>Entity</th>
<th>Description</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{IfcPropertySingleValue}</td>
<td>Single numeric or descriptive value</td>
<td>Nominal value, Unit (optional)</td>
</tr>
<tr>
<td>\texttt{IfcPropertyEnumeratedValue}</td>
<td>Value(s) assigned chosen from an enumeration</td>
<td>Enumeration value(s), Enumeration reference</td>
</tr>
<tr>
<td>\texttt{IfcPropertyBoundedValue}</td>
<td>Maximum of two numeric or descriptive values assigned</td>
<td>Upper bound value, Lower bound value, Unit (optional)</td>
</tr>
<tr>
<td>\texttt{IfcPropertyTableValue}</td>
<td>Two numeric or descriptive lists creating a defined / defining relationship</td>
<td>Defining value, Defined value, Units (optional)</td>
</tr>
<tr>
<td>\texttt{IfcPropertyReferenceValue}</td>
<td>Reference to another IFC Resource layer object</td>
<td>Name, Reference</td>
</tr>
<tr>
<td>\texttt{IfcPropertyListValue}</td>
<td>Several numeric or descriptive values in an ordered list</td>
<td>Nominal values, Unit (optional)</td>
</tr>
</tbody>
</table>

There are two ways to bind a Property Set to an object. Either method allows multiple Property Sets to be associated with an object. The first method is to assign the Property Set(s) using an \texttt{IfcRelDefinesByProperties} relationship. This is a method by which one or more Property Sets can be applied to a single object instance. The other method is to include the Property Set definition(s) in the \texttt{IfcTypeObject} which applies one or more \texttt{IfcPropertySet} classes to every instantiation of the object defined by that particular type. These two methods provide great flexibility in describing objects using Property Sets. A single Property Set can be applied to more that one object, and an object can have more than one Property Set assigned. Individual object instances can have Property Sets assigned by both methods to extend individual instance characteristics beyond those defined for the general type. This requires a query capability for the Property Sets which can trace both the \texttt{IfcRelDefinesByProperties} relationship and the \texttt{IfcTypeObject} definition.
There are 317 pre-defined Property Sets in the IFC2x3 TC1 architecture. An example — P_setColumnCommon — is provided in Table 4.2.

4.1.3 Proposed Object Recognition Property Set

The proposed P_set_ObjectRecognition framework is based upon the Property and External Reference Resource schemas within the IFC 2x3 TC1 architecture and provides an on-demand capability to access available feature descriptor information either embedded in the IFC model or referenced in an external model database. The Property Set framework is extensible, and can be modified and adjusted as required for future research and field implementation.
Table 4.2: Definition of P_setColumnCommon.

<table>
<thead>
<tr>
<th>Name</th>
<th>Property Type</th>
<th>Data Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>IfcPropertySingleValue</td>
<td>IfcIdentifier</td>
<td>Reference ID for this specified type in this project (e.g. type ‘A-1’)</td>
</tr>
<tr>
<td>Slope</td>
<td>IfcPropertySingleValue</td>
<td>IfcPlaneAngleMeasure</td>
<td>Slope angle - relative to horizontal (0.0 degrees). The shape information is provided in addition to the shape representation and the geometric parameters used within. In cases of inconsistency between the geometric parameters and the shape properties, provided in the attached property, the geometric parameters take precedence.</td>
</tr>
<tr>
<td>IsExternal</td>
<td>IfcPropertySingleValue</td>
<td>IfcBoolean</td>
<td>Indication whether the element is designed for use in the exterior (TRUE) or not (FALSE). If (TRUE) it is an external element and faces the outside of the building.</td>
</tr>
<tr>
<td>LoadBearing</td>
<td>IfcPropertySingleValue</td>
<td>IfcBoolean</td>
<td>Indicates whether the object is intended to carry loads (TRUE) or not (FALSE).</td>
</tr>
<tr>
<td>FireRating</td>
<td>IfcPropertySingleValue</td>
<td>IfcLabel</td>
<td>Fire rating for this object. It is given according to the national fire safety classification.</td>
</tr>
</tbody>
</table>

The ReferenceID and ObjectDescription properties are both IfcPropertySingleValue classes, and provide a query tag and a human-readable description for the associated object type or instance. The SensorApplicability property is an IfcPropertyListValue class and indicates which sensors have either been trained or tested for the referenced feature descriptors. The associated algorithmic approaches are indicated in the FeatureDescriptorClassification property, which is an IfcPropertyEnumeratedValue. An IfcPropertyReferenceValue property – FeatureDescriptorDatabaseLocation – encapsulates an IfcExternalReference class, and provides the location of the applicable model database. The SubmittingOrganization
property is also an IfcExternalReference property and references the IfcOrganization class which indicates the organization responsible for the referenced feature descriptors. The SensorTypeGeneral and DataTypeGeneral properties are both IfcPropertyEnumeration classes, and provide the general categories of sensors and data for which the referenced feature descriptors are applicable.

These Property Resource entities are assigned within an IfcComplexProperty class which is encapsulated within an IfcPropertySet. The use of the IfcComplexProperty is important, as it enables the combination of various feature descriptor approaches within a single Property Set. For example, feature descriptors for multiple sensors and algorithmic approaches can be combined within a single Pset_ObjectRecognition and assigned to a particular object type or instance.

The Pset_ObjectRecognition schema is shown in Figure 4.18, and Table 4.3 describes the Property Resource entities which make up the proposed Property Set. The integration of the Pset_ObjectRecognition as an assigned property to an object type or instance is shown in Figure 4.4.

4.2 Implementation

4.2.1 Sensor System

The sensor system includes the range camera and the custom sensor interface software. A discussion of each is included in this section, as well as a description of sensor range uncertainty testing and the implemented mixed pixel filter.
Figure 4.3: The proposed object recognition property set.
Figure 4.4: The Pset_ObjectRecognition schema.
Table 4.3: Definition of P_setObjectRecognition.

<table>
<thead>
<tr>
<th>Name</th>
<th>Property Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReferenceID</td>
<td>IfcPropertySingleValue</td>
<td>Reference ID for the specified type associated with the Property Set (e.g. CXT-1)</td>
</tr>
<tr>
<td>ObjectDescription</td>
<td>IfcPropertySingleValue</td>
<td>Human-readable description of the specified type associated with the Property Set</td>
</tr>
<tr>
<td>SensorApplicability</td>
<td>IfcPropertyListValue</td>
<td>List of sensors for which the referenced feature descriptors are applicable</td>
</tr>
<tr>
<td>FeatureDescriptorClassification</td>
<td>IfcPropertyEnumeratedValue</td>
<td>Enumerated list of algorithmic approaches for which the referenced feature descriptors are applicable</td>
</tr>
<tr>
<td>FeatureDescriptorDatabaseLocation</td>
<td>IfcLibraryReference</td>
<td>Access location of the referenced feature descriptors (e.g., model-database URL)</td>
</tr>
<tr>
<td>SubmittingOrganization</td>
<td>IfcPropertyReferenceValue</td>
<td>Organization responsible for the referenced feature descriptors</td>
</tr>
<tr>
<td>SensorTypeGeneral</td>
<td>IfcPropertyEnumeration</td>
<td>General classes of sensors for which the referenced information is applicable (e.g., RANGE_CAMERA, LASER_SCANNER, etc.)</td>
</tr>
<tr>
<td>DataTypeGeneral</td>
<td>IfcPropertyEnumeration</td>
<td>General classes of data for which the referenced information is applicable (e.g., POINT_CLOUD, RANGE_IMAGE, RASTER_IMAGE_COLOR, etc.)</td>
</tr>
</tbody>
</table>

Sensor Description

The range camera used for this research is a commercially-available, phase-based AM-homodyne device which uses an array of IR LEDs (850 nm wavelength) for the illumination source. The source is modulated at 15 MHz yielding an unambiguous range of 10 m. The
FPA is 176 pixels (horizontal) x 144 pixels (vertical) QCIF (Quarter Common Intermediate Format) with a corresponding nominal field of view (FOV) of $43^\circ \times 35^\circ$. The returned signal is sampled during each quarter wavelength to establish the phase shift. The phase angle correlates to the range of the reflected surface. Data returned from the device include range and amplitude per pixel at a frame rate of up to 54 Hz. The range camera has both hardware and software trigger modes. The range camera is shown in Figure 4.5. Manufacturer’s specifications are provided in Table 4.4.

![Figure 4.5: The Mesa Imaging AG SwissRanger 4000.](image)

Table 4.4: Specifications for the Mesa Imaging AG SwissRanger 4000.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illumination Source</td>
<td>IR LEDs (850 nm)</td>
</tr>
<tr>
<td>Pixel Array Size</td>
<td>176 (horizontal) x 144 (vertical)</td>
</tr>
<tr>
<td>Field of View (FOV)</td>
<td>$43.6^\circ \times 34.6^\circ$</td>
</tr>
<tr>
<td>Operating Range</td>
<td>0.3 m to 10 m</td>
</tr>
<tr>
<td>Range Accuracy</td>
<td>maximum of 1% of range or ±1 cm</td>
</tr>
<tr>
<td></td>
<td>single pixel (1σ); 50% reflective target</td>
</tr>
<tr>
<td>Angular Resolution</td>
<td>0.23°</td>
</tr>
<tr>
<td>Frame Rate</td>
<td>up to 54 Hz</td>
</tr>
<tr>
<td>Dimensions</td>
<td>65 mm x 65 mm x 90 mm</td>
</tr>
<tr>
<td>Computer Interface</td>
<td>USB 2.0 or Ethernet</td>
</tr>
</tbody>
</table>
Sensor Interface Software

The SR4000 sensor is delivered with Windows OS and Linux drivers and a sample viewing package for Windows OS. To support the required development and testing, a more complete and flexible sensor interface package was needed. A custom software application was developed in MATLAB to provide the capabilities listed in Table 4.5. Figure 4.6 shows a screen-capture of the software application.

Table 4.5: Sensor interface software design requirements.

<table>
<thead>
<tr>
<th>Instrument control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viewing and processing both live and off-line range data</td>
</tr>
<tr>
<td>Point cloud viewing and segmentation</td>
</tr>
<tr>
<td>Single, multiple (user-selected number), and continuous frame acquisition</td>
</tr>
<tr>
<td>Integrated computer vision algorithm testing</td>
</tr>
<tr>
<td>Feature training</td>
</tr>
<tr>
<td>Data set storage and retrieval</td>
</tr>
</tbody>
</table>

Figure 4.6: The SR4000 sensor interface software.
Range Uncertainty Testing

Understanding the ability of a 3D imaging system to measure range is a fundamental design constraint in implementing a 3D imaging-based sensor system. Range is defined “... the distance, in units of length, between a point in space and an origin fixed to the 3D imaging system that is measuring that point.” (ASTM, 2009). There is currently no consistent standard for measuring range uncertainty of a 3D imaging system. Manufacturers report range accuracy of their systems according to their own test protocols. Range uncertainty is that uncertainty associated with a distance measurement reported by an instrument to a given object of interest (or target). Range uncertainty as a function of target range, target reflectance, and target angle of incidence is of particular interest. To support this research an experiment was conducted at NIST adapting procedures originally reported in (Lytle et al., 2005) and modified based upon initial work on an international standard for 3D imaging range uncertainty testing (Cheok et al., 2007).

To assess the ranging performance of the sensor, planar targets of known reflectance values were imaged at ranges of 0.5 m to 5 m. The range increment between sample points was 0.5 m. The sensor was mounted on an 8 m linear rail and was repositioned for each sample. The target was stationary and positioned so that the angle of incidence from the sensor was 0°. Ground truth was measured using a laser distance meter with a range uncertainty of ±1.5 mm over a range of 0.2 m to 200 m. At each sample location, 100 images were collected. The data collection process was repeated for each of the three planar targets (reflectance = 20%, 50% and 75%).

For each sample position the target area was manually segmented in the sensor interface software. This segmentation mask was applied to all of the 100 images collected for each range / reflectance combination. For each of the 100 segmented range images per sample
combination, 500 points were randomly selected and the z values (range) were averaged to provide an estimated range from the sensor to the target. The mean and standard deviation of these 100 range measurements provided the estimate of the range measurement performance.

The test apparatus is shown in Figure 4.7. Figure 4.8 depicts the segmentation process. Test results are provided in Section 4.4.1.
Mixed Pixel Filter

As described in Chapter 2 mixed-pixels (sometimes also referred to as phantom pixels) are a phenomenon encountered with both phase- and pulse TOF 3D imaging systems. Although one imagines a laser source as an infinitesimally small ray, the laser spot footprint has a discernible size that generally increases with range. When this footprint only partially intersects an object (e.g., on an edge), the remaining photons continue to travel and can be reflected by a second surface. Depending upon the relative distance between the two surfaces and the integration time of the system, these offset returns will be combined and result in data points somewhere between the two surfaces, yielding data points where no physical surface reflections exists. The SR4000 sensor is particular susceptible to mixed pixel effects due to the relatively large pixel footprint.

A mixed pixel filter was needed which could automatically detect and remove these false returns. The straightforward solution was to look areas of range discontinuity and eliminate the potentially affected pixels. Initial efforts centered on traditional edge detection and morphology operations to create an image mask. The final improved approach used a 3x3 max/min filter on the range image. The resulting image was then converted to a binary image using Otsu’s algorithm (Otsu, 1979) for global thresholding. The resulting binary image was used as a noise mask to eliminate points from the point cloud which were likely to be spurious data points. A range image, the corresponding noise mask and the pre- and post-segmented point cloud is shown in Figure 4.9.

4.2.2 Target Object

The target construction object used in this research is 1:10 scale model of a ConXtech column with a self-aligning, drop-in connection system. The column is shown in Figure 4.10b. This
object was chosen for three reasons. First, it is a convenient object to use for laboratory testing because of its small size. Second, the drop-in assembly capability it enables provides opportunity for future automated steel assembly research as an extension to prior work using ATLSS connectors (Lytle and Saidi, 2007). Third, the ConXtech space frame system is not simply a research idea, but is actually in use for commercial construction. See (ConXtech, 2011; Bijlaard et al., 2009) for more information on the ConXtech system.

An IFC model for the target object was created using the Open IFC Java Toolbox (Tauscher and Tulke, 2008). The `CreateConxtechColumn` class instantiated a new ConXtech column.
within an IfcProject and generated an IFC-compliant STEP file. The IFC file was verified using the free software applications Solibri Model Viewer (Solibri, 2010) and IfcQuickBrowser (GEM, 2010). The CreateConxtechColumn class also created the Pset_ObjectRecognition for the target object as described in Section 4.3.3. The target object and a screen capture of the IFC model in the Solibri Model Viewer is shown in Figure 4.10.

4.2.3 Object Detection Methodology

As described in Section 3.3, the development of a robust object recognition algorithm was beyond the scope of this research. Instead, the focus was on developing and demonstration the proposed information modeling framework to an object recognition problem in construction. A secondary focus was on examining the use of range camera technology for future construction automation applications. To demonstrate the proposed IFC Pset_ObjectRecognition, an object detection experiment was designed to exercise the framework in a computer vision application using the target construction object. The detection approach centered on the
use of SIFT feature descriptors in a range image.

The Scale Invariant Feature Transform (SIFT) approach of (7) is a widely used and highly rated local descriptor for 2D images (Mikolajczyk and Schmid, 2005). The SIFT algorithm identifies keypoints in an image with an associated region (known as an oriented disk) with assigned scale and orientation. Keypoints are identified as local maxima/minima of the difference of Gaussian images across scale space. If the resulting pixel value is maximum or minimum among all compared pixels in a certain neighborhood, the pixel is selected as a keypoint. Low contrast and edge-based keypoints are rejected, and then orientations for each remaining keypoint are assigned from the histograms of the gradients in the interest point’s neighborhood. SIFT descriptors compactly encode each feature into a 128-element vector. The use of SIFT feature detection in the intensity image of a range camera which is then used in the corresponding range image to identify the 3D location of those pixels was shown by (Zhou et al., 2007). Adaptations to SIFT for range images include (Skelly and Sclaroff, 2007; Lo and Siebert, 2009) The SIFT implementation used in the framework demonstration was from (Vedaldi and Fulkerson, 2008).

In the demonstration experiment, SIFT features were used to identify potential regions of interest for point segmentation rather than specific object recognition. After image acquisition, a range image was generated with the associated noise mask. SIFT features were identified within this range image and matched against training data from the model database accesses via the \texttt{Pset_ObjectRecognition} property set. The highest ranking SIFT feature was then used as a seed point for a region growing algorithm applied to the range image data. The single-value threshold for the region growing algorithm was tuned based on the training data to provide optimum segmentation results for the target construction object. The results from the region growing step were used to create binary image mask for point cloud segmentation. The image mask was used to segment the point cloud for the points of interest. The
The approach is shown in Figures 4.11 – 4.15.

Figure 4.11: Object detection sequence (A): (1) acquire range data, (2) generate a range image, (3) create a noise mask.

Figure 4.12: Object detection sequence (B): (4) identify SIFT features in the range image.
Figure 4.13: Object detection sequence (C): (5) compare and match SIFT feature descriptors to those from the model library.

Figure 4.14: Object detection sequence (D): (6) use matched SIFT feature descriptor locations to seed point region-growing algorithm for points of interest, (7) make an image mask for point cloud segmentation.
Figure 4.15: Object detection sequence (E): (8) segment the points of interest.

4.3 Demonstration

4.3.1 Architecture

A number of software packages, libraries, and openly available software tools were used in the development of the prototype implementation. The sensor controller used the Windows OS drivers available with the Mesa Imaging AG Swiss Ranger SR4000 with a custom sensor interface written in MATLAB. All image analysis was conducted in MATLAB. The SIFT algorithms of Lowe (2004) were used as implemented in the VLFeat open source image processing library (Vedaldi and Fulkerson, 2008). The IFC model for the target object including the proposed Pset.ObjectRecognition was coded in Java using the Open IFC Java Toolbox (Tauscher and Tulke, 2008). The model creation code instantiated all necessary
ICF entities and relationships and wrote an IFC-compliant STEP file. A Java wrapper-class provided query capability between the IFC model and the MATLAB sensor interface. The IFC file was verified using the free software applications Solibri Model Viewer (Solibri, 2010) and IfcQuickBrowser (GEM, 2010).

The demonstration architecture consisted of four main components: (1) the range camera with the sensor interface software and the Java wrapper class for model query, (2) the BIMServer IFC model storage, (3) the Dropbox file hosting service where the working IFC model and the object recognition Model Database resided, and (4) the local mirror for the Dropbox files (see Figure 4.16).

In the proposed scenario a Site Controller would indicate a next task to an Execution Agent. In the demonstration this task would involve the identification of the column with the tag CXT-1. The sensor controller initiates a query to the IFC model whether an object exists with this tag, and if so, whether the object has an associated Pset_ObjectRecognition. The query includes the sensor configuration (e.g., SR4K) and the desired feature descriptor type (e.g., SIFT). Given a positive response to this query, the location of the Model Database is provided to the sensor controller. The referenced SIFT feature descriptors are then accessed by the sensor controller for use in the object detection task.

4.3.2 SIFT Training

SIFT training data was collected using the sensor interface software. Images of the target object at three ranges (1 m, 2 m and 3 m) and two rotations at each range (0° and 45°) were collected. Each image used was an average of three frame acquisitions to reduce image noise. For each sample location, the target object was segmented and the SIFT features were calculated for the range image data specific to the target. The combined SIFT features
and associated descriptors for each range/rotation combination were stored in the model database accessed in the IFC Pset_ObjectRecognition query. The training sequence is shown in Figure 4.17.

4.3.3 Object Recognition Property Set

The Pset_ObjectRecognition framework described in Section 4.1.3 was used for the demonstration. Specific values used for the property resource entities within the property set are provided in Table 4.6.
Figure 4.17: Training the SIFT descriptors. Ranges: 1 m, 2 m, 3 m. Rotations: 0°, 45°.

Table 4.6: Implemented P.setObjectRecognition.

<table>
<thead>
<tr>
<th>Name</th>
<th>Property Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReferenceID</td>
<td>IfcPropertySingleValue</td>
<td>CXT-1</td>
</tr>
<tr>
<td>ObjectDescription</td>
<td>IfcPropertySingleValue</td>
<td>ConXtech 1:10 scale column with connector</td>
</tr>
<tr>
<td>SensorApplicability</td>
<td>IfcPropertyListValue</td>
<td>SR4K</td>
</tr>
<tr>
<td>FeatureDescriptorClassification</td>
<td>IfcPropertyEnumeratedValue</td>
<td>SIFT</td>
</tr>
<tr>
<td>FeatureDescriptorDatabaseLocation</td>
<td>IfcLibraryReference</td>
<td>/Users/alytle/Dropbox/IfcDataBase/</td>
</tr>
<tr>
<td>SubmittingOrganization</td>
<td>IfcPropertyReferenceValue</td>
<td>VCEMP</td>
</tr>
<tr>
<td>SensorTypeGeneral</td>
<td>IfcPropertyEnumeration</td>
<td>RANGE_CAMERA</td>
</tr>
<tr>
<td>DataTypeGeneral</td>
<td>IfcPropertyEnumeration</td>
<td>RANGE_IMAGE</td>
</tr>
</tbody>
</table>
Figure 4.18: The proposed object recognition property set.
4.3.4 Object Detection Testing

The Pset:ObjectRecognition framework was used in an object detection experiment to validate the approach. The detection method itself was evaluated using precision and recall ratios. Precision is calculated as the ratio of all true positive (TP) detections to all true positive and false positive (FP) detections. Therefore,

$$\text{Precision} = \frac{TP}{TP + FP}$$ \hspace{1cm} (4.1)

Recall is the ratio of all true positive detections to all true positive and false negative (FN) detections. Therefore,

$$\text{Recall} = \frac{TP}{TP + FN}$$ \hspace{1cm} (4.2)

True positive indicates that the point cloud was appropriately segmented and the points associated with the target object were selected. A false positive indicates that a subset of points within the point cloud was selected but they did not represent the target object. A false negative indicates no subset of points within the point cloud was selected though the target object was present.\(^1\)

Images of the target object were collected at five ranges: 1 m to 3 m (step 0.5 m). At each range images at three different rotations were obtained: 0°, 22.5°, 45°. This collection process was repeated for two additional locations (left and right of centerline) for each of the nominal range positions. Similar to training data collection, each image used was an average of three frame acquisitions to reduce image noise. The testing sequence is shown in Figure 4.19. Test results are provided in Section 4.4.2.

\(^1\)A review of evaluating the performance of computer vision algorithms is provided in (Clark and Clark, 1999)
4.4 Results

4.4.1 Sensor Range Testing

The results of the range error measurement are shown in Figure 4.20. In general, range uncertainty increased with range as expected. Also range uncertainty and the range error reduced with increasing target reflectance as long as the sensor was not saturated with returned light. The observed performance was not within the manufacturer’s reported specifications for range error, though this fourth-generation sensor performs significantly better than predecessor units (Lytle et al., 2005). In subsequent implementations, the increasing range uncertainty should be taken into account for point segmentation thresholding.
4.4.2 Object Detection Testing

The framework for using a \texttt{Pset_ObjectRecognition} property set to link the trained SIFT descriptors for the target object within the IFC model worked successfully. The IFC model was queried for the existence of an \textit{CXT-1} object with an associated \texttt{Pset_ObjectRecognition} for the sensing modality and local feature descriptor algorithm in use. The external reference for the \textit{CXT-1} model database containing the SIFT descriptors was returned, and the object detection sequence was executed on the image data using that model database information.

Although the actual results of the detection test are secondary to the framework validation, there were some observations worth noting for future research. This approach generated insufficient information in the 2D range image on the object to produce enough SIFT features for object recognition. However, the use of SIFT feature matches to seed point cloud segmentation and ranking regions of interest proved successful. The overall precision and recall rates for the test were 90\% and 78\%, respectively. As can be seen in Table 4.7, the majority of the false detections (positive or negative) happened at a 45° target rotation where high noise impacted the region-growing algorithm. A dynamic threshold for region-growing based upon training and characterization data would have improved system performance but was not implemented. In this instance, a static threshold was used. Figure 4.21 shows the true and false positive evaluation criteria. Results from the testing are shown in Table 4.7.
Table 4.7: Object detection results.

<table>
<thead>
<tr>
<th>Sample Set</th>
<th>True Positive</th>
<th>False Positive</th>
<th>False Negative</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>97</td>
<td>11</td>
<td>27</td>
<td>90%</td>
<td>78%</td>
</tr>
<tr>
<td>0° rotation</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>22.5° rotation</td>
<td>34</td>
<td>4</td>
<td>7</td>
<td>90%</td>
<td>83%</td>
</tr>
<tr>
<td>45° rotation</td>
<td>18</td>
<td>7</td>
<td>20</td>
<td>72%</td>
<td>47%</td>
</tr>
</tbody>
</table>
Figure 4.20: SR4000 range uncertainty test results for $n = 100$ image samples and 500 target pixels sampled per range image. All samples are with the target angle of incidence = 0°. Target reflectances 20%, 50% and 75%. Plotted points are offset slightly for visibility. Error bars indicate uncertainty ($\pm 1 \sigma$).
Figure 4.21: Object detection evaluation criteria: true positive (top), false positive due to insufficient point segmentation but with the correct SIFT seed points (middle), false positive due to incorrect SIFT seed points (bottom).
Chapter 5

Conclusions

5.1 Findings

The three principal findings from this research are as follows:

1. The use of the IFC schema to either embed or link information to support construction object recognition is both feasible and recommended. In this research, a framework was developed and demonstrated to provide an initial example using a new Property Set construct to support construction object recognition.

2. The SwissRanger SR4000 range camera is a much-improved sensor in its fourth-generation implementation, though the sensor noise level and low pixel count are limiting factors for use as a stand-alone sensor. An improved approach would be to couple the range data with traditional optical image data (e.g., color machine vision camera). As these sensors continue to improve they will be powerful enablers for construction automation, particularly for construction equipment control.
3. SIFT is a potential approach for identifying regions of interest within range images. More testing and development with SIFT and other scale and partially affine invariant feature transforms is required (especially for texture-less surfaces).

5.2 Contribution

This research developed and demonstrated a new extensible framework for linking feature descriptors to a BIM to support construction object recognition. The proposed framework is based upon the Property and External Reference Resource schemas within the IFC 2x3 TC1 architecture. Within this framework a Property Set is suggested which provides an on-demand capability to access available Feature Descriptor information either embedded in the IFC model or referenced in an external model database. The Property Set framework is extensible, and can be modified and adjusted as required for future research and field implementation. With this framework multiple sets of feature descriptors associated with different sensing modalities and different algorithms can all be aggregated into one Pset_ObjectRecognition property set and assigned to an object type or object instance.

5.3 Recommendations

The need to bring together experts in BIM and mobile robotics to explore this new interdisciplinary domain was recommended in Borkowski et al. (2010). Based upon this research, the following recommendations for future work are provided:

1. IFC Architecture: Transition the IFC2x3 TC1 proposed property set Pset_ObjectRecognition to the new IFC2x4 schema.
2. **Pset_ObjectRecognition Definition**: The proposed definition for the property set is an initial construct to support the lab demonstration. This will be a changing definition as more object recognition opportunities are identified and defined. One suggested area of research is an examination of the range of feature descriptors and the development of an overall taxonomy of fields to support an expanded implementation of Pset_ObjectRecognition.

3. **New Property Sets**: The Pset_ObjectRecognition framework for linking feature descriptors to classes or instances within an IFC model can be extended to other cases where it would be useful to link external information to particular classes or instances. Implementations could include property sets to link 3D image data or photographs to particular object or set of objects (e.g., Pset_3DImage, Pset_CameraImage).

4. **Range Camera**: There are several recommendations for extending the object detection/recognition approach with the SR 4000. The first is to couple the range data with traditional optical image data and combine the capabilities of both sensing modalities. The region growing approach can be improved with an adaptive threshold based upon the local variation of range (i.e., noise levels) within the vicinity of the identified SIFT feature constrained by the uncertainty bounds determined in the sensor characterization experiment. This implementation used the best SIFT match as a seed for the region-growing. A better approach would be to grow from each of the matched SIFT features and then test for which set(s) have the highest confidence factor for representing the target object.

5. **Expanded IFC-based Object Recognition**: An IFC model can contain other semantic information to support object recognition. This information not only includes shape, location, and material properties, but also encompasses relationships between objects. Tang et al. (2010) presents three categories of spatial relationships relating to knowl-
edge representation in BIM: (1) aggregation, (2) topology and (3) direction. An aggregation represents a part of relationship (e.g., IfcRelAggregates). A topological relationship defines connectedness, space, covering, etc, (e.g., IfcRelConnects). A directional relationship indicates relative location, and can be derived from location data associated with components of interest. Future research should examine the extension of the approach presented with additional semantic information derived from the IFC model to enhance BIM-enabled object recognition.

ISO. International organization for standardization, 2011.

T.W.R. Lo and J.P. Siebert. Local feature extraction and matching on range images: 2.5D SIFT. Computer Vision and Image Understanding, 113(12):1235–1250, 2009.

K. Reed. The role of the CIMSTEEL integration standards in automating the erection and surveying of structural steelwork., 2002.

Andrea Vedaldi and Brian Fulkerson. VLFeat: An open and portable library of computer vision algorithms, 2008.

Kui Yue, Daniel Huber, Burcu Akinci, and Ramesh Krishnamurti. The ASDMCon project: The challenge of detecting defects on construction sites, 2006.

