A Study of Plasma Ignition Enhancement for Aeroramp Injectors in Supersonic Combustion Applications

by

Scott D. Gallimore

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University In partial fulfillment of the requirements for the degree of

DOCTOR of PHILOSOPHY

in

Mechanical Engineering

APPROVED:

Dr. Walter F. O’Brien
Dr. Walter F. O’Brien

Dr. Joseph A. Schetz
Dr. Joseph A. Schetz

Dr. Robert J. Mahan
Dr. Robert J. Mahan

Dr. Uri Vandsburger
Dr. Uri Vandsburger

May 2001
Blacksburg, Virginia
A Study of Plasma Ignition Enhancement for Aeroramp Injectors in Supersonic Combustion Applications

by

Scott D. Gallimore

Committee Chair: Dr. Walter F. O'Brien
Mechanical Engineering Department

(ABSTRACT)

The main goal of this project was to investigate the mixing and chemical phenomena associated with the integration of a low-power, uncooled plasma torch into a fuel injector array. The potential application was for an integrated scramjet igniter/injector, with the hope of producing superior mixing and flameholding performance for supersonic combustion applications. To create a knowledge base for integration, several key investigations were made of the anode material, anode geometry, and spectrographic analysis of different light hydrocarbon fuels and inert feedstocks, all aimed at increasing the ignition potential of the plasma torch. Investigations of the anode material demonstrated the molybdenum provided longer lifetimes than either pure copper or tungsten-copper anodes. In addition, geometric studies of the anode revealed that anodes with short constrictor lengths and sonic exit nozzles provided superior ignition performance based on higher transfer rates of thermal energy from the arc to the feedstock. This resulted in the production of higher hydrogen atom concentrations within the plasma jet. Spectrographic observation of the plasma jets revealed that methane, ethylene, propylene, and propane plasmas all contain excited atomic hydrogen, a radical known to participate in important chain-branching combustion reactions.

Based on the knowledge gained, and encouraging results, a candidate scramjet igniter and flameholder was designed. The design was observed to exhibit a synergistic effect between the plasma igniter and fuel injector in that the fuel injector provides not only a subsonic region for plasma ignition, but also lifts the combustion enhancing radicals out into the fuel-air stream by means of counter-rotating vortices. Furthermore, under the conditions tested, increases in plasma torch power produced an exponential increase in the intensity of downstream products, indicating an enhancement effect. Based upon these observations, the integrated igniter/injector design is expected to perform well in supersonic combustion applications.
Acknowledgements

First thanks must go to God, for getting me through this project with only minor psychological damage. His hand was involved daily. Without His support I would have never made it to the point I am at today. I would also like to thank my parents, brothers, and sister, who were always there for me. Trips back home were like visiting an oasis and made the work here seem so far away that I could truly relax.

On the academic side of things, I am especially grateful to Dr. Walter F. O’Brien, my advisor. He was especially insightful and guided the project with a proficiency that only comes with years of experience. He provided me with the freedom to explore creative avenues, but also made sure to channel that motivation towards worthy goals. I would also like to thank him for the multiple opportunities he provided for me to teach. I found these times perhaps the most rewarding of all my duties here at Tech. I am also extremely appreciative of Dr. Joseph Schetz, who was constantly involved in the project and always on the lookout for new opportunities through which we could make our work public. His results-or-die vision always brought out my best performance. I would also like to thank Dr. Uri Vandsburger, Dr. Robert Mahan, and Dr. Lourdes Maurice for sacrificing their time to serve on my committee. Finally, my lab partner Lance Jacobsen must be given credit. He worked extremely hard to make this project a success and always strived to produce the highest quality results. His selfless sacrifice of time to collect data that he would not even use was especially appreciated.

Without the help of the AOE and ME machines shops, this project would never have been a success. Special thanks must go to Bruce of AOE and Bill of ME, who machined electrode after electrode and injector after injector. They were both especially helpful each time we had a new emergency that “had to be taken care of right now.”

Certainly the turbolab guys must be given thanks: Peter, Keith, Matt, Wayne, Grant, John, Mac, Drew, Alexandre, and Joe (evil!). These guys made the days sitting in front of a computer a little more enjoyable with their… shall we say… antics. However, a special award is reserved for Karl. “Guten Tag Herr Sheldon.” And lastly, how could I forget Chip? Don’t forget your fireboots!

The plasma igniter/aeroramp integration was initially developed under subcontract to, and in cooperation with, Phoenix Solutions Co. under an Air Force SBIR Phase II plasma igniter program with the Air Force Research Laboratory.
Table of Contents

Abstract ii
Acknowledgments iii
List of Figures viii
List of Tables xii
Nomenclature xiii
Motivation xv

Introduction 1

Chapter 1: The Role of Plasma Igniters and Fuel Injectors in Hypersonic Technology 6
1.1: Development of Hypersonic Technology 7
1.2: Identified Difficulties with Supersonic Combustion 11
1.3: Mixing and Flameholding Methods in Supersonic Flow 13
 1.3.1: Flameholding by Means of Passive Mixing Devices 13
 1.3.1.1: Cavities 14
 1.3.1.2: Rearward-Facing Steps 15
 1.3.1.3: Ramp Injectors 16
 1.3.1.4: Lobe Mixers 17
 1.3.1.5: Wedges 18
 1.3.2: Flameholding by Means of Active Mixing Devices 19
 1.3.3: Recent Fuel Injector Developments 19
 1.3.4: Development of Aeroramps 21
1.4: Development of Plasma Torches for Supersonic Combustion 24
 1.4.1: Chemical Processes Governing the Effectiveness of Plasma Torches 26
 1.4.2: Demonstrations of Plasma Torch Enhancement for High-speed Flows 28
 1.4.3: Other Methods of Ignition in High-Speed Flows 30
 1.4.4: Recent Advances in Plasma Torch Aided Supersonic Combustion 31
1.5: Attempts at Injector/Igniter Integration 32
1.6: Key Issues Related to Current Ignition/Injection Systems 34
1.7: Proposed Advances 35

Chapter 2: The Virginia Tech Plasma Torch, 3rd Generation (VTPT-3) 36
2.1: The Anode and Cathode 37
2.2: The Torch Body 38
2.3: The Micrometer Drive Assembly 39
2.4: The Bolt and Body Insulators 40
2.5: The Flow Swirler and Support Rod 40
2.6: Design Issues 41

Chapter 3: Experimental Setup and Equipment 43
3.1: Lab Equipment 43
 3.1.1 The Flow System 43
 3.1.1.1: The Torch Feedstock System 43
3.1.1.2: The Injector Fuel System 44
3.1.2: The Power System 44
3.1.3: The Data Acquisition System 44
 3.1.3.1: The Spectrometer 45
 3.1.3.2: Temperature Probes 45
 3.1.3.3: High-Speed Cameras 45
 3.1.3.4: Other Data Acquisition Equipment 46
3.1.4: Other Laboratory Equipment 46
 3.1.4.1: The Supersonic Tunnel 46
 3.1.4.2: Positioning Stages 47
 3.1.4.3: Argon Laser 48
 3.1.4.4: Spectral Band-pass Filters 48

3.2: Experimental Procedures 49
 3.2.1: Plasma Torch Setup 49
 3.2.2: Spectroscopic Analyses 50
 3.2.2.1: Basic Spectroscopic Studies 50
 3.2.2.2: Spatial Spectroscopic Studies of the Plasma Jet 50
 3.2.2.3: Spatial Spectroscopic Studies of the Plume 51
 3.2.3: Total Temperature Sampling 52
 3.2.4: Stereoscopic Investigations 53
 3.2.5: Shadowgraphs 53
 3.2.6: Surface Oil Flow 54
 3.2.7: High-Speed Digital Photography 55
 3.2.8: Filtered Photography 55
 3.2.9: Video Observation 55

Chapter 4: Anode Material Selection and Design Issues 56
 4.1: Material Review and Selection Criteria 57
 4.2: Test Procedure 58
 4.3: Results and Discussion 59
 4.3.1: Quiescent Electrode Erosion Results 60
 4.3.2: Stereoscopic Investigation of the Anodes and Cathodes 61
 4.3.2.1: Tungsten-Copper 61
 4.3.2.2: Molybdenum 62
 4.3.2.3: Copper 64
 4.3.2.4: Investigations of the Cathode 65
 4.3.3: The Anode Attachment Point Model 66
 4.3.4: Crossflow and Anode Exit Geometry Effects on Arc Attachment Point 70
 4.3.4.1: Arc Attachment for Normal Injection 71
 4.3.4.2: Arc Attachment for Transverse Injection 72
 4.3.5: The Effect of Air and Nitrogen Plasmas On Molybdenum 74
 4.4: Conclusions 75

Chapter 5: Spectroscopic Studies of Hydrocarbon, Air and Nitrogen Plasmas 78
 5.1: Experimental Procedures 79
 5.2: Results and Discussion 80
 5.2.1: Methane 80
Chapter 6: Geometric Studies of the Plasma Torch Anode 96

6.2: Test Procedure 97
 6.2.1: Anode Exit Geometry 97
 6.2.2: Studies of Nozzles, Throat Lengths, and Injection Angle 98
 6.2.3: Stereoscopic Investigation of Anode Wear 99

6.3: Results and Discussion 100
 6.3.1: Studies of the Anode Diverging Section 100
 6.3.1.1: Results of the Power Requirements 100
 6.3.1.2: Results of the Protection Studies 101
 6.3.2: Geometric Study of Nozzles, Throat Lengths and Injection Angle 103
 6.3.2.1: Results for the 90°, 2.54-mm Throat Length, Sonic Anode 111
 6.3.2.2: Results for the 90°, 3.12-mm Throat Length, Sonic Anode 117
 6.3.2.3: Results for the 90°, Supersonic Anode 119
 6.3.2.4: Results for the 60°, 2.54-mm Throat Length, Sonic Anode 122
 6.3.2.5: Results for the 60°, 3.12-mm Throat Length, Sonic Anode 125
 6.3.2.6: Results for the 60°, Supersonic Anode 130

6.4: Conclusions 132

Chapter 7: Plasma Torch Operational Characteristics in Quiescent and Supersonic Environments 135

7.1: Experimental Setup 136
7.2: Results and Discussion 137
 7.2.1: Quiescent Experimental Results 137
 7.2.1.1: Spectral Measurements of the Plasma Jet Centerline 137
 7.2.1.2: Two-Dimensional Ion Concentration Profiles 141
 7.2.1.3: High Speed Visualization 143
 7.2.2: Supersonic Experimental Results 147
 7.2.2.1: Methane in Supersonic Flow 148
 7.2.2.2: Ethylene in Supersonic Flow 156
 7.2.2.3: Nitrogen in Supersonic Flow 159

7.4: Conclusions 166
Chapter 8: Comparisons of CFD Calculations and Measurements for a Sonic Methane Plasma Jet in a Supersonic Crossflow 169
8.1: Experimental Conditions 169
8.2: Computational Methodology 170
 8.2.1: Jet and Boundary Conditions 170
 8.2.2: Grid Generation 171
 8.2.3: Reaction Mechanism 173
8.3: Results and Discussion 173
 8.3.1: Sources for Error 179
8.4: Conclusions 180

Chapter 9: The Results of the Integrated Design 182
9.1: Experimental Setup 184
9.2: Results and Discussion 185
 9.2.1: Methane-Ethylene Experiments 186
 9.2.2: Nitrogen-Ethylene Experiments 195
 9.2.3: Ethylene-Ethylene Experiments 204
 9.2.4: Air-Ethylene Experiments 206
 9.2.5: Electrode Emission 210
9.3: Conclusions 211

Chapter 10: Conclusions and Recommendations 214
10.1: Recommendations

References 220

Appendix A: A Review of Plasma Spectroscopy 226

Appendix B: Topics Related to Plasma Dynamics 234

Appendix C: Relationships for Momentum Flux Ratio, Mass Flowrate, and Chamber Pressure 254

Appendix D: Selected Excerpts from “Numerical Model for Plasma Jet Injection in a Supersonic Crossflow” 258

Vita 300
List of Figures

1) Figure 1.1: Approximate Performance Levels of Various Classes of Engines (Curran, 1999) 7
2) Figure 1.2: The Dual-Combustor Ramjet Concept (Waltrup et al., 1996) 9
3) Figure 1.3: A Concept Picture of the X-30 10
4) Figure 1.4: Dual Cavities for Flameholding and Mixing (Yu et al., 1998) 15
5) Figure 1.5: Compression and Expansion Ramps (Stouffer et al., 1993) 17
6) Figure 1.6: Illustration of Swept and Unswept Ramp Injectors 17
7) Figure 1.7: Squared-off Lobe Mixer (Marble et al., 1990) 18
8) Figure 1.8: Comparison of a Physical Ramp and Aeroramp Injector (Fuller et al., 1996) 22
9) Figure 1.9: A Plasma Torch Design for Combustion Enhancement of IC Engines (Weinberg, 1978) 25
10) Figure 1.10: Direct Arc Injection Method (DAIM) 32
11) Figure 2.1: Schematic of VTPT-3 37
12) Figure 2.2: Plasma Torch Electrodes 38
13) Figure 2.3: Plasma Torch Body 39
14) Figure 2.4: The Micrometer Drive Assembly 39
15) Figure 2.5: Bolt and Body Insulators 40
16) Figure 2.6: Flow Swirler and Support Rod 41
17) Figure 3.1: Tunnel Schematic Showing Injector, Torch and Equipment Locations 47
18) Figure 3.2: Velmex® Positioning Stages 48
19) Figure 3.3: The Measurement Locations of Centerline, Exit, and Two-Dimensional Hβ-Profiles 51
20) Figure 3.4: Spectrometer Setup for Plume Studies 52
21) Figure 3.5: Laser-Shadowgraph Setup Schematic 54
22) Figure 3.6: Surface Oil Flow Setup 54
23) Figure 4.1: Stereoscopic Photographs of Worn Tungsten-Copper Anodes 62
24) Figure 4.2: Stereoscopic Photographs of Worn Molybdenum Anodes 63
25) Figure 4.3: Stereoscopic Photographs of Copper-1 64
26) Figure 4.4: Stereoscopic Photograph of Copper-3 65
27) Figure 4.5: Microscopic Photographs of Cathode Tip Wear 66
28) Figure 4.6: Results of Analytical Arc Diameter Analysis 70
29) Figure 4.7: A Molybdenum Anode in Crossflow after 50+ Runs 72
30) Figure 4.8: Figure 4.8: A Schematic of an Anode Designed for Angled Injection 73
31) Figure 4.9: Wear on Copper Anodes for 45° Transverse Injection 74
32) Figure 4.10: Molybdenum Anodes Showing Erosion from Air Plasma 75
33) Figure 5.1: Methane Spectrogram 81
34) Figure 5.2: C2 Swan Band Systems 82
35) Figure 5.3: CH Bands and Hβ Line near 430 nm 83
36) Figure 5.4: CN Violet Band Systems 84
37) Figure 5.5: NH Bandheads at 336 nm 85
38) Figure 5.6: N2 Second Positive System 86
39) Figure 5.7: Spectrogram of Ethylene Plasma 86
40) Figure 5.8: Spectrograms of Propane and Propylene Plasmas 87
41) Figure 5.9: Spectrogram of Nitrogen Plasma 88
123) Figure 8.8: Air Mass Fraction Plots at 49.6 d_{eq} Downstream of Torch Exit 178
124) Figure 9.1: The Experimental Setup 185
125) Figure 9.2: The Lifting Effect of an Upstream Aeroramp 186
126) Figure 9.3: Filtered Photographs Showing the Effect of Aeroramp Lifting on Plasma Species 186
127) Figure 9.4: Spectrogram of Excited Ethylene/Methane Fragments by Methane Plasma Interaction 187
128) Figure 9.5: Changes of the Spectral Profiles of C_{2} Line with Increasing Power for Methane Plasma 188
129) Figure 9.6: A Comparison of Fuel vs. No Fuel on the C_{2} Line Intensity for Various Powers 189
130) Figure 9.7: The Exponential Dependence of the Average C_{2} Line Intensity on Torch Power 190
131) Figure 9.8: C_{2} Line Profiles for 2500 W and Various Injector Momentum Flux Ratios for Methane Plasma 191
132) Figure 9.9: The Effect of Increasing the Fuel Mass Flowrate on the Intensity of C_{2} Line 192
133) Figure 9.10: Distribution of the Maximum C_{2} Line Intensity versus Distance from Torch 192
134) Figure 9.11: Filtered Photographs of Methane Plasma Jet for 2000 W 193
135) Figure 9.12: CH Profile Variations with Increasing Power 194
136) Figure 9.13: CH Profile Variations with Increasing Injector Mass Flowrate 194
137) Figure 9.14: 2D Temperature Profile of Methane Plume at 2000 W 195
138) Figure 9.15: A Spectrogram of Excited Ethylene and Nitrogen Species by Interaction with a Nitrogen Plasma Jet 196
139) Figure 9.16: Profiles Showing the Effect of Arc Gap on CN Distribution for Nitrogen Plasma 197
140) Figure 9.17: CN Line Maxima for Two Arc Gaps 198
141) Figure 9.18: A Comparison of Fuel Mass Flowrate Effects on CN Line Intensity 198
142) Figure 9.19: Radical Profiles Near Torch Exit 200
143) Figure 9.20: Filtered Photographs for Nitrogen-Ethylene at 2000 W 201
144) Figure 9.21: Photographs Demonstrating the Effect of Increasing Power on the CH Profile 202
145) Figure 9.22: Evidence of Fuel Interaction with Nitrogen Plasma Jet 203
146) Figure 9.23: 2D Temperature Profile for Nitrogen Plume at 2000 W 204
147) Figure 9.24: Changes of the Spectral Profiles of C_{2} Line with Increasing Power for Ethylene Plasma 205
148) Figure 9.25: The Exponential Dependence of C_{2} Line Intensity on Torch Power and Feedstock 206
149) Figure 9.26: A Spectrogram of Excited Ethylene and Air Species by Interaction with an Air Plasma Jet 208
150) Figure 9.27: Changes of the Spectral Profiles of C_{2} Line Intensity with Increasing Power for Air Plasma 209
151) Figure 9.28: A Comparison of CH and C_{2} Profiles for Air-Ethylene Tests 209
152) Figure 9.29: A 2D Temperature Profile for Air Plume at 3000 W 210
153) Figure 9.30: High-speed Photographs Showing Particle Injection 211
List of Tables

1) Table 3.1: Spectral Filter Specifications 49
2) Table 4.1: Table of Material Properties 58
3) Table 4.2: Anode Erosion Test Results 60
4) Table 4.3: Cathode Erosion Test Results 61
5) Table 5.1: Torch Operating Conditions 80
6) Table 5.2: Spectral Peak Characteristics in the 520-540 nm Range 91
7) Table 6.1: Operating Conditions for the Anode Angle Experiments 98
8) Table 6.2: X-intercepts for the Six Anode Designs 104
9) Table 7.1: Radicals and Spectral Lines 137
10) Table 8.1: Bowman and Seery Reaction Mechanism for Methane 173
11) Table 8.2: Mass Fraction Maxima and Minima 176
12) Table 8.3: Maximum Mass Fraction for Various Species at 49.6 deq 179
Nomenclature

Symbols

- **A**: A constant
- **A**: Concentration of specie “A”
- **B**: Concentration of specie “B”
- **C_p**: Specific heat
- **d**: Diameter
- **e**: Electronic charge
- **E**: Voltage gradient along an arc
- **E_A**: Activation energy
- **H**: Heat carried away through convection
- **h**: Heat transfer coefficient, Planck’s constant
- **I**: Arc current
- **j**: Current density
- **J_o**: Nondimensional constant
- **k**: Thermal conductivity
- **k_B**: Boltzmann’s constant
- **k_e**: Conductivity at melting
- **L**: Lorentz Ratio
- **M**: Mach number
- **m**: Mass flow rate
- **N_Av**: Avagadro’s number
- **Q**: Rate of heat transfer
- **p**: Pressure, Steric factor
- **P_t**: Torch power
- **q**: Jet to freestream momentum flux ratio
- **q_e**: Heat transfer at the point of arc attachment
- **r**: Radius of anode constrictor
- **R**: Radius of bow shock
- **R_o**: Characteristic radius of bow shock
- **R_v**: Coefficient of variation
- **S**: Rate of entropy production
- **R_o**: Characteristic radius of bow shock
- **R_u**: Universal gas constant
- **t**: Anode thickness
- **T**: Temperature
- **v**: Uniform velocity of a gas
- **V_{af}**: Voltage across anode fall
- **V_i**: Ionization potential
- **W**: Molecular weight of a gas
- **x**: Fraction of ionized atoms within a gas
- **x**: Streamwise coordinate
- **y**: Spanwise coordinate
- **z**: Vertical coordinate
Greek Symbols
\(\delta \) Thickness of anode fall
\(\varepsilon \) Effective ionization potential, A multiplication factor
\(\xi \) A multiplication factor
\(\gamma \) Ratio of specific heats
\(\phi \) Thermionic work function
\(\rho \) Density
\(\sigma \) Boltzmann Constant
\(\sigma_e \) Electrical conductivity of a gas
\(\sigma_{AB} \) Collision cross section
\(\nu \) Frequency of radiation

Subscripts
\(\infty \) Freestream
\(\text{a} \) anode
\(\text{e} \) electron
\(\text{eff} \) Effective
\(\text{eq} \) Equivalent
\(\text{inj} \) injector
\(\text{j} \) jet
\(\text{o} \) total value
\(\text{p} \) plasma
\(\text{s} \) Sensible
\(\text{t} \) torch, total value
Motivation

The benefit of using supersonic combustion over subsonic combustion in high-speed flight vehicles is the attainment of higher flight velocities and lower fuel-consumption. With the added challenge of supersonic combustion, new difficulties arise with effective mixing, ignition, and maintaining combustion. Furthermore, these difficulties are compounded through the use of hydrocarbon fuels, which, although they contain more energy per unit volume than hydrogen, are hard to ignite. The development of a practical supersonic combustor design usually involves some tradeoff between the mixing and combustion characteristics, and the necessary losses needed to achieve such conditions. Traditional methods of injection and flameholding usually incorporate a physical shape used to provide a subsonic recirculation region to which a flame can be anchored, at the cost of large pressure losses. In addition, ignition and injection schemes have been largely unintegrated, usually with the majority of the work focused on the injection mechanisms. A huge potential lies undiscovered, both in the possibility of using flush-wall injectors to reduce total pressure losses, and within the largely overlooked ignition system. The careful integration of these two key components could potentially realize huge benefits over current injection/flameholding schemes.

This investigation was planned to discover the fundamentals of hydrocarbon plasma jet operation and vortex-induced flush-wall injectors that would lead to a synergistic combination. The premise behind the integration of the two components is the thought that the end result would be an integrated design that achieves greater performance due to the careful study of a torch as an igniter, and the integration of the torch into a fuel injector, in essence, investigating the potential largely overlooked in conventional designs. The investigation of the torch focused on the fundamentals of torch performance as an igniter, i.e. what aspects of the torch can be changed to improve the ignition and flameholding characteristics of the torch? Based on the knowledge gained in these investigations, a preliminary igniter/injector design was built. Studies of the integrated design were aimed at investigating the synergy between the igniter and injector, and the mixing/flameholding phenomena associated with such a device.