REFERENCES

Rosenblueth, E. and Esteva, L. (1972). “Reliability Basis for Some Mexican Codes,” ACI Publication SP-31, American Concrete Institute, Detroit, MI.

Viest, I. M. (1956). “Investigation of Stud Shear Connectors for Composite Concrete and Steel T-Beams.” J. of the American Concrete Institute, 27, 875-891.

APPENDIX A

EXAMPLE OF AISC FLEXURAL THEORY CALCULATIONS

The flexural strength for Beam Test 1 is calculated using the AISC flexural theory outlined in Sec. 8.3.2.

Test Parameters:

- **Beam span:** 30.0 ft
- **Slab:**
 - Slab depth = 5.0 in.
 - Slab width = 81.0 in.
- **Concrete:**
 - $f'_c = 5000$ psi
 - $w = 141.3$ pcf
 - $E_c = 57000(5000)^{0.5} = 4 \times 10^6$ psi
- **Steel beam:**
 - Section = W16x31
 - $A_s = 9.12$ in2
 - $d = 15.88$ in.
 - $b_f = 5.525$ in.
 - $t_f = 0.44$ in.
 - $t_w = 0.275$ in.
 - $A_{sf} = b_f \times t_f = (5.525)(0.44) = 2.431$ in2
 - $A_{sw} = A_s - 2A_{sf} = 9.12 - 2(2.431) = 4.258$ in2
 - $F_{yw} = 58.2$ ksi
 - $F_{yk} = 54.3$ ksi
- **Studs:**
 - diameter = 0.75 in. ($A_{sc} = 0.4418$ in2)
 - $H_s = length = 3.5$ in.
 - $F_u = 66.81$ ksi
 - no. of studs = 12
- **Deck:**
 - $h_r = height = 2$ in.
 - $w_r = ave. \ rib \ width = 6$ in.
20 gauge

Calculations:

1. Sum the strengths of the studs, Q_{c} or Q_{AISC}, located between zero and maximum moment.

 \[
 Q_{AISC} = SRF \times 0.5A_{sc} \sqrt{f'_c E_c} \leq A_{sc} F_u
 \]

 \[
 SRF = \frac{0.85}{\sqrt{N_r}} \left(\frac{w_r}{h_r} \right) \left(\frac{H_s}{h_r} \right) - 1.0 \leq 1.0
 \]

 \[
 SRF = \frac{0.85}{1} \left(\frac{6}{2} \right) \left(\frac{3.5}{2} \right) - 1.0 = 1.91 > 1.0, \quad \text{use } SRF = 1.0
 \]

 \[
 SRF \times 0.5A_{sc} \sqrt{f'_c E_c} = 1.0(0.5)(0.4418) \sqrt{\left(\frac{5000}{1000} \right)} = 31.4 \text{ k}
 \]

 \[
 A_{sc} F_u = (0.4418)(66.81) = 29.5 \text{ k}
 \]

 \[
 Q_{AISC} = 29.5 \text{ k}
 \]

 \[
 \sum Q_{AISC} = 12(29.5) = 354 \text{ k}
 \]

2. Calculate the effective width, b_e, of the concrete slab.

 \[
 b_e = \text{minimum of } \frac{1}{4} \text{ (beam span)} = \frac{1}{4} \text{ (30 ft)} = 7.5 \text{ ft} = 90 \text{ in.}
 \]

 \[
 1/2 \text{ (distance to c.l. of adjacent beams)} = \text{Not Applicable}
 \]

 \[
 \text{distance to edge of slab} = 81 \text{ in.}
 \]

 \[
 b_e = 81 \text{ in.}
 \]

3. Calculate the force, C, in the concrete slab at ultimate load. This value is taken as the minimum of C_1, C_2, and C_3, where

 \[
 C_1 = A_s F_y = A_{sf} F_{sf} + A_{sw} F_{yw} = (2)(2.431)(54.3) + (4.258)(58.2) = 512 \text{ k}
 \]

 \[
 C_2 = 0.85 f'_c A_c = 0.85 f'_c b_e (t_{slab} - h_r) = 0.85(5)(81)(5 - 2) = 1033 \text{ k}
 \]

 \[
 C_3 = \sum Q_{AISC} = 354 \text{ k}
 \]
4. Calculate the depth, \(a \), of the equivalent rectangular stress block in the slab.

\[
a = \frac{C}{0.85 f_c' b_e} = \frac{354}{0.85(5)(81)} = 1.03 \text{ in.}
\]

5. Determine the location of the plastic neutral axis (p.n.a.).

Because \(\sum Q_{\text{disc}} < A_s F_y \), the p.n.a. is located in the steel section.

Determine location of p.n.a. First assume p.n.a. is in web.

- \(C_f = \) compression force in flange = \(A_{sf} F_{yf} = (2.431)(54.3) = 132 \text{ k} \)
- \(T = C_f - C_f = \) remainder of force in steel section = \(512 - 132 = 380 \text{ k} \)
- \(C_f + C = \) total compression force = \(132 + 354 = 486 \text{ k} \)

\(C_f + C > T \), therefore p.n.a. is in flange

Determine location of p.n.a. knowing it is in flange.

\[
T_y = \text{tension force in steel section} = \frac{(A_s F_y + C)}{2} = 433 \text{ k}
\]

\[
T_w = \text{tension force in web} = A_{sw} F_{yw} = (4.258)(58.2) = 248 \text{ k}
\]

\[
T_{fb} = \text{tension force in bottom flange} = A_{sf} F_{yf} = (2.431)(54.3) = 132 \text{ k}
\]

\[
T_{ft} = \text{tension force in top flange} = T_y - T_w - T_{fb} = 433 - 248 - 132 = 53 \text{ k}
\]

\[
s = \text{portion of top flange in tension} = \frac{T_{ft}}{b_f F_{yf}} = \frac{53}{(5.525)(54.3)} = 0.18 \text{ in.}
\]

\[
\rho = \text{portion of top flange in compression} = t_f - s = 0.26 \text{ in.}
\]

\[
C_f = \text{compression force in top flange} = \rho b_f F_{yf} = (0.26)(5.525)(54.3) = 78 \text{ k}
\]

Therefore, the p.n.a. is located in the flange 0.26 in. from the top of the beam.
6. Calculate the flexural strength of the beam. Summing the couples caused by the compression force in the slab and the compression and tension forces in the beam about the top flange of the steel section yields the following equation:

\[
M_{AISC} = C \left(\text{slab depth} - \frac{a}{2} \right) - C_f \left(\frac{p}{2} \right) + T_{f_{b}} \left(p + \frac{s}{2} \right) + T_{w} \left(\frac{d}{2} \right) + T_{f_{b}} \left(d - \frac{t_{f}}{2} \right)
\]

\[
= 354 \left(5 - \frac{1.03}{2} \right) - 78 \left(\frac{0.26}{2} \right) + 53 \left(0.26 + \frac{0.18}{2} \right) + 248 \left(\frac{15.88}{2} \right) + 132 \left(15.88 - \frac{0.44}{2} \right)
\]

\[
= 5632 \text{ k-in.} = 469 \text{ k-ft}
\]
VITA

Michelle Deanna Rambo-Roddenberry was born in Winston-Salem, North Carolina on July 23, 1971. She was raised in the cities of Asheville, North Carolina and Tallahassee, Florida. She graduated Valedictorian from James S. Rickards High School in 1989. She graduated Summa Cum Laude from Florida State University in 1992 with a Bachelor of Science in Civil Engineering, and she received her Master of Science in Civil Engineering from Florida State University in 1994. She began studying for her doctorate at Virginia Tech in 1994 as a Via doctoral fellow. She currently resides in Tallahassee, Florida and is a bridge designer for Figg Bridge Engineers, Inc. She is married and is blessed with a son.