Table of Contents

Abstract ii
Acknowledgements iv
List of Figures ix
List of Tables x

Chapter I Introduction and review of literature 1
- Need for new herbicide chemistries in corn 1
- Other corn herbicides 3
- Transgenic corn hybrids 6
- Carotenoid biosynthesis inhibitors 8
- RPA 201772 (or EXP 31130A) 11
- SC 0051 (or ICIA 0051) 15
- Mesotrione 18
- Literature Cited 21

Chapter II Mesotrione, acetochlor, and atrazine for weed management in corn (Zea mays) 33
- Abstract 33
- Introduction 34
- Methods and Materials 36
- Results and Discussion 39
- Acknowledgements 44
- Literature cited 45

Chapter III Mesotrione combinations in no-till corn (Zea mays) 54
- Abstract 54
- Introduction 55
- Methods and Materials 57
- Results and Discussion 59
- Acknowledgements 63
- Literature Cited 64

Chapter IV Mesotrione combinations in glyphosate-resistant corn (Zea 70
• Literature Cited 140

Chapter VIII Summary 153

Vita 155
List of Figures

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Figure</th>
<th>Title</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII</td>
<td>7.1</td>
<td>Movement of 14C mesotrione with COC plus UAN in bolting stage Canada thistle (left) and rosette stage Canada thistle (above) at 72 hours after treatment.</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td>The interrelationship between the HPPD inhibitor mesotrione and the PSII inhibitor atrazine.</td>
<td>152</td>
</tr>
<tr>
<td>Chapter</td>
<td>Table</td>
<td>Title</td>
<td>Page #</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>II 2.1</td>
<td>2.1</td>
<td>Rainfall at 7-day intervals for 28 days after preemergence applications in 1999, 2000, and 2001.</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>Corn injury, weed control, and corn yield from the pre-package mix of mesotrione plus acetochlor in 1999 and 2000.</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>Common ragweed control with preemergence and postemergence applications of mesotrione treatments in 1999, 2000, and 2001.</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td>Smooth pigweed and common lambsquarters control with preemergence and postemergence applications of mesotrione treatments in 1999 and 2001.</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>Morningglory species and giant foxtail control with preemergence and postemergence applications of mesotrione treatments in 1999, 2000, and 2001.</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>Corn injury and yields with preemergence and postemergence applications of mesotrione treatments in 1999, 2000 and 2001.</td>
<td>53</td>
</tr>
<tr>
<td>III 3.1</td>
<td>3.1</td>
<td>Cutleaf eveningprimrose, smooth pigweed, and common lambsquarters control with preemergence and postemergence mesotrione in no-till corn in 1999, 2000, and 2001.</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>Common ragweed and annual grass control and corn yields with preemergence and postemergence mesotrione in no-till corn in 1999, 2000, and 2001.</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>Evaluation of the mesotrione plus acetochlor pre-package mix applied preemergence for the control of field pansy, common ragweed, and ivyleaf morningglory and corn yields in no-till corn in 1999 and 2001.</td>
<td>69</td>
</tr>
<tr>
<td>IV 4.1</td>
<td>4.1</td>
<td>Glyphosate-resistant corn injury from postemergence mesotrione and mesotrione plus glyphosate treatments in 1999, 2000, and 2001.</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>Common ragweed, common lambsquarters, and smooth pigweed control from postemergence mesotrione and mesotrione plus</td>
<td>84</td>
</tr>
</tbody>
</table>

4.4 Injury, height, and shoot biomass reductions of glyphosate-resistant corn treated postemergence with mesotrione or mesotrione plus glyphosate in the greenhouse.

V 5.1 Common ragweed and common lambsquarters control from postemergence applications of mesotrione alone or in combinations with imazethapyr or imazethapyr plus imazapyr in 2000 and 2001.

5.2 Control of morningglory species and giant foxtail from postemergence applications of mesotrione alone and in combinations with imazethapyr and imazethapyr plus imazapyr in 1999 and 2001.

5.3 Injury and yields of corn treated postemergence with mesotrione alone or in combinations with imazethapyr or imazethapyr plus imazapyr in 1999, 2000, and 2001.

5.4 Injury, height, and biomass reductions of corn treated with postemergence mesotrione alone or in combinations with imazethapyr or imazethapyr plus imazapyr in the greenhouse.

VI 6.1 Horsenettle control from mesotrione alone and combinations of mesotrione with primisulfuron, dicamba, and 2,4-D 5 weeks after treatment at the Kranz Farm in 1999 and Mapp Farm in 2000 and 2001.

6.2 Horsenettle population counts, percent population reductions, and percent biomass reductions from mesotrione and mesotrione combinations with primisulfuron, dicamba, and 2,4-D at the Kranz Farm in 1999 and the Mapp Farm in 2000 and 2001.

6.3 Horsenettle control, and horsenettle population and biomass reductions data from mesotrione and standard herbicide treatments

6.4 Mesotrione combinations with primisulfuron, dicamba, and 2,4-D for horsenettle control in the greenhouse.

VII 7.1 Mesotrione alone and in combinations with atrazine and clopyralid compared to standard herbicide treatments for POST control of Canada thistle in 2000.

7.2 Postemergence mesotrione plus atrazine combinations for control and reductions of Canada thistle shoot regrowth heights and biomass in the greenhouse.

7.3 Postemergence mesotrione and atrazine combinations for height and biomass reductions of Canada thistle in the greenhouse.

7.4 Influence of atrazine, adjuvant, and growth stage on absorption of foliar applied 14C mesotrione in Canada thistle.

7.5 Influence of atrazine, adjuvant, and growth stage on absorption and translocation of foliar applied 14C mesotrione in Canada thistle at 72 hours after treatment.

7.6 Influence of atrazine, adjuvant, and growth stage on metabolism of foliar applied 14C mesotrione in the treated leaf and the foliage above the treated leaf of Canada thistle at 72 hours after treatment.

7.7 Influence of atrazine, adjuvant, and growth stage on metabolism of foliar applied 14C mesotrione in foliage below the treated leaf and the roots of Canada thistle at 72 hours after treatment.