Complexation of Block Copolysiloxanes with Cobalt Nanoparticles

by

Michael L. Vadala

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Chemistry

Approved by

Judy S. Riffle, Chair
James E. McGrath
Allan Shultz

April 2003
Blacksburg, Virginia

Keywords: polysiloxane, poly(methylvinylsiloxane), cobalt, magnetic, nanoparticle, polydimethylsiloxane

Copyright 2003, Michael L. Vadala
Complexation of Block Copolysiloxanes with Cobalt Nanoparticles

Michael L. Vadala

Abstract

Poly(dimethylsiloxane-b-methylvinylsiloxane) (PDMS-b-PMVS) diblock copolymers were synthesized via anionic living polymerization with controlled molecular weights and narrow molecular weight distributions. Targeted molecular weights agreed well with experimental values determined by 1H NMR, 29Si NMR, and GPC. Morphologies were investigated by DSC to analyze glass transition temperatures. Only one T_g was observed for each PDMS-b-PMVS block copolymer suggesting that the blocks were miscible in bulk. T_g’s ranged from approximately -126 to -128 °C and were between the T_g’s of the PDMS (-123 °C) and PMVS (-137 °C) homopolymers. The PMVS blocks were functionalized with trimethoxysilethyl or triethoxysilethyl pendent groups via hydrosilations to yield poly(dimethylsiloxane-b-[poly(methylvinyl)-co-(methyl-(2-trimethoxysilethyl)siloxane)] (PDMS-b-[PMVS-co-PMTMS]) or poly(dimethylsiloxane-b-[poly(methylvinyl)-co-(methyl-(2-triethoxysilethyl)siloxane)] (PDMS-b-[PMVS-co-PMTES]) copolymers, respectively. The PMVS blocks were either derivatized with the functional groups or half of the repeat units were functionalized. The fully hydrosilated materials were diblock copolymers, and the materials that were 50% hydrosilated had a random sequence of methylvinylsiloxane units and methyl-(trialkoxy)silethyl)siloxane units. The PDMS-b-[PMVS-co-PMTES] block copolymers had T_g’s ranging from -124 to -126 °C and only one T_g was observed. Surface tension
measurements suggested that PDMS-\(b\)-[PMVS-\(co\)-PMTES] copolymers formed aggregates in toluene.

Stable suspensions of superparamagnetic cobalt nanoparticles were prepared in toluene in the presence of PDMS-\(b\)-[PMVS-\(co\)-PMTMS] or PDMS-\(b\)-[PMVS-\(co\)-PMTES] copolymers via thermolysis of Co\(_2\)(CO)\(_8\). It is hypothesized that the block copolymers functioned as micellar templates for the cobalt nanoparticles. TEM micrographs showed non-aggregated cobalt nanoparticles coated with copolymers that had mean particle diameters ranging from \(\approx 10\) to \(15\) nm. Specific saturation magnetizations of these cobalt-copolymer complexes ranged from 90-110 emu g\(^{-1}\) Co, comparable to literature values for this particle size.
Acknowledgements

I would like to express my sincere gratitude and appreciation to my advisor Dr. Judy Riffle for her support, guidance, and encouragement throughout my education at Virginia Tech. I am honored to be advised by such a prominent and brilliant chemist. I also would like to thank my committee members, Dr. James E. McGrath and Dr. Allan Shultz. Thanks is also extended to Dr. Alan Esker and Sheila Gradwell for their tremendous and well-appreciated help with surface tension measurements and analyses of the copolymers in solution.

I would like to extend my deepest gratitude to Angie Flynn for her unselfish help. I would especially like to thank Tom Glass for help with obtaining NMR data, Mark Flynn for GPC, and Steven McCartney for TEM. I extend many thanks to my group members who helped me in polymer and magnetic fluid characterizations including Michael Sumner for DSC, Kristen Wilson for TEM, and Jon Goff for VSM. I also would like to thank the other members of Dr. Riffle’s group for their invaluable discussions and help.
Dedication

To Chris, for understanding, insight and inspiration. Thank you!

To Bob for his unconditional motivation and encouragement during my graduate career. Thank you for the support, I’m finally here.

To Nikki, who made me believe I can succeed, for the continuous support, for the uncountable conversations by the steps, and for standing by me.

To my best friend Casey, for your undying blind faith that everything will work out and that my dreams are achievable. For always believing in me. Thank you from the bottom of my heart.

To my sisters and brother, Nicole, Lindsay, and Tim, for the constant laughs, support, and friendships. You are the greatest ever! I love you all.

To my parents, Lawrence and Patricia Vadala. I can’t say how much your love and support has meant to me over the years. I would not be here today if it weren’t for you two. Mom, thanks for believing in me and loving me for who I am. Dad, thank you for the inspiration and support. I finally did it and this thesis is living proof. I love you both!
Table of Contents

CHAPTER 1 Introduction... 1

CHAPTER 2 Literature Review.. 4
 2.1 Overview.. 4
 2.2 Introduction of polysiloxane synthesis ... 5
 2.2.1 Overview of polysiloxanes .. 5
 2.2.2 Preparation of cyclosiloxanes .. 10
 2.2.3 Ring-chain equilibria : Thermodynamic control ... 14
 2.2.4 Anionic polymerization : Kinetic control ... 18
 2.2.4.1 Introduction anionic polymerization .. 18
 2.2.4.2 Living anionic polymerization ... 24
 2.2.4.3 Living anionic polymerization of D₃ ... 25
 2.3 Preparation of block copolymers .. 28
 2.3.1 Siloxane-containing block copolymers ... 31
 2.3.2 Micelle Formation ... 33
 2.4 Sol-gel chemistry ... 38
 2.4.1 Introduction .. 38
 2.4.2 Acid- and base-catalyzed sol-gel reaction mechanisms ... 41
 2.4.2.1 Hydrolysis reactions .. 43
 2.4.2.2 Condensation reactions ... 46
 2.5 Magnetic materials and their properties ... 49
 2.5.1 Overview of magnetic materials ... 49
 2.5.2 Magnetic Fluids ... 54
 2.5.3 Magnetic fluid stabilization ... 55
 2.5.3.1 Particle interactions - attractive forces ... 56
 2.5.3.2 Particle interactions – repulsive forces ... 58
 2.6 Cobalt magnetic fluids ... 60
 2.6.1 Reduction of CoCl₂ .. 61
 2.6.2 Thermal decomposition of Co₂(CO)₈ .. 63

CHAPTER 3 Synthesis and characterization polysiloxane diblock copolymers.. 69
 3.1 Synopsis .. 69
 3.2 Experimental ... 71
 3.2.1 Synthesis of 1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane ... 72
 3.2.2 Characterization of 1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane .. 73
 3.2.2.1 ¹H NMR .. 73
 3.2.2.2 Gas Chromatography .. 73
 3.2.3 Synthesis of poly(dimethylsiloxane-₃-methylvinylsiloxane) (PDMS₃-PMVS) 73
 3.3 Molecular weight determination .. 75
 3.3.1 Nuclear Magnetic Resonance Spectroscopy .. 75
 3.3.1.1 ¹H NMR ... 75
 3.3.1.2 ²⁹Si NMR ... 76
3.3.2 Gel Permeation Chromatography .. 76
3.3.3 Differential Scanning Calorimetry 76
3.4 Results and Discussion .. 77
 3.4.1 Synthesis of 1,3,5-trimethyl-1,3,5-trivinylcyclotrisiloxane 77
 3.4.2 Synthesis of poly(dimethylsiloxane-b-methylvinylsiloxane) 81
 3.4.2.1 Characterization of PDMS-b-PMVS 85
 3.4.2.1.1 Molecular weight and molecular weight distribution 85
 3.4.2.2 Characterization of thermal properties 89

CHAPTER 4 Functionalization and characterization of poly(dimethylsiloxane)-b-poly(methylvinylsiloxane) .. 92
4.1 Synopsis .. 92
4.2 Experimental ... 93
 4.2.1 Synthesis of poly[(dimethylsiloxane–b-poly(methyl-(2-triethoxysilethyl)siloxane)] (PDMS-b-PMTES) via hydrosilation ... 93
 4.2.2 Synthesis of poly(dimethylsiloxane)-b-[poly(methylvinylsiloxane)-co-poly(methyl-(2-triethoxysilethyl)siloxane)] (PDMS-b-[PMVS-co-PMTMS]) via hydrosilation ... 94
 4.2.2.1 Characterization .. 94
 4.2.2.1.1 1H NMR .. 94
 4.2.2.1.2 Differential Scannig Calorimetry 95
 4.2.2.1.3 Surface Tension Analysis 95
 4.3 Results and Discussion .. 96
 4.3.1 Functionalization of the PMVS blocks with trimethoxysilane or triethoxysilane .. 96
 4.3.2 Thermal Characterization .. 102
 4.3.3 Solution Characterization ... 105

CHAPTER 5 Sol-gel reactions with functionalized copolyisiloxanes 107
5.1 Synopsis .. 107
5.2 Experimental .. 108
 5.2.1 Hydrolysis and condensation of poly(dimethylsiloxane)-b-
 [poly(methylvinylsiloxane)-co-poly(methyl-(2-triethoxysilethyl)siloxane)] copolymer with acetic acid and water ... 108
 5.2.2 Hydrolysis and condensation of poly(dimethylsiloxane)-b-
 [poly(methylvinylsiloxane)-co-poly(methyl-(2-triethoxysilethyl)siloxane)] (PDMS-b-[PMVS-co-PMTES]) copolymers with dichloroacetic acid and water ... 109
 5.2.3 Hydrolysis and condensation of poly[dimethylsiloxane-b-(methyl-
 (2-triethoxysilethyl)siloxane)] (PDMS-b-PMTMS) 109
5.2.4 Hydrolysis and condensation of poly(dimethylsiloxane)-b-
[poly(methylvinylsiloxane)-co-poly(methyl-(2-
trimethoxysilethyl)siloxane] (PDMS-b-[PMVS-co-PMTMS])
copolymer with water...110

5.3 Characterization...111
5.3.1 ^1H NMR..111

5.4 Results and Discussion..111
5.4.1 Hydrolysis and condensation reactions of PDMS-b-PMTMS.....111
5.4.2 Hydrolysis and condensation of poly(dimethylsiloxane)-b-
[poly(methylvinylsiloxane)-co-poly(methyl-(2-
triethoxysilethyl)siloxane] (PDMS-b-[PMVS-co-PMTES])......117

CHAPTER 6 Synthesis and characterization of polysiloxane-cobalt complexes........122
6.1 Synopsis..122
6.2 Experimental...124
6.2.1 Synthesis of a cobalt fluid in the presence of a PDMS-b-[PMVS-
c-o-PMTES] diblock copolymer...124
6.2.2 Synthesis of a cobalt nanoparticle fluid stabilized with a diblock
PDMS-b-PMTES copolymer..124
6.2.3 Synthesis of a cobalt fluid stabilized with a diblock PDMS-b-
[PMVS-co-PMTMS] polymer..125
6.2.4 Synthesis of a cobalt fluid stabilized with a diblock PDMS-b-
PMTMS] copolymer...126
6.2.5 Characterization of magnetic fluids.......................................126

6.3 Results and Discussion..127
6.3.1 Synthesis of cobalt magnetic fluid in the presence of trialkoxyxisylyl
functionalized polysiloxane diblock copolymers......................127

CHAPTER 7 Conclusions and Recommendations for Further Investigations.....136

Bibliography ...138

Vita ..144
Abbreviations

D₃ 1,1,3,3,5,5-hexamethylcyclotrisiloxane
D₃ ¹ 1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane
D₄ octamethylcyclotetrasiloxane
DMVS dichlorovinylmethysilane
DMSO dimethylsulfoxide
TEA triethylamine
T₉ glass transition temperature
Tₘ crystalline melting point
DSC differential scanning calorimetry
NMR nuclear magnetic resonance spectroscopy
FT-IR fourier transform infrared spectroscopy
GPC gel permeation chromatography
CMC critical micelle concentration
Mₙ number average molecular weight
VSM vibrating sample magnetometry
TEM transmission electron microscopy
PDMS polydimethysiloxane
PMVS polymethylvinylsiloxane
PMTES poly[methyl(triethoxysilylethylsiloxane)]
PMTMS poly[methyl(trimethoxysilylethylsiloxane)]
THF tetrahydrofuran
List of Figures

Figure 1.1 Chemical structure of PMDS-PMVS diblock copolymers.........................1
Figure 1.2 Chemical structure of PDMS-PMVS-PMTMS...2
Figure 1.3 Cobalt nanoparticles stabilized with PDMS-PMVS-PMTMS copolymer......3
Figure 2.1 PDMS chains indicating bond angles of the siloxane backbone...............9
Figure 2.2 Hydrolysis of dichloromethylsilane to produce linear PDMS and dimethylsiloxane cyclics...11

Figure 2.3 Preparation of hexamethylycyclotrisiloxane......................................13
Figure 2.4 Preparation of 1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane..............14
Figure 2.5 Equilibration reaction of siloxanes..15
Figure 2.6 End-blocking disiloxanes...17
Figure 2.7 Preparation of aminopropyl terminated polydimethylsiloxane via an end-block procedure...18
Figure 2.8 Anionic polymerization mechanism of cyclosiloxanes.......................20
Figure 2.9 Specific redistribution mechanism..21
Figure 2.10 Rate law of anionic polymerization of cyclosiloxanes......................21
Figure 2.11 Ionic Species present during polymerization.................................22
Figure 2.12 Crytate [2,2,1] where m=n=2 and p=1...23
Figure 2.12 Variation of molecular weight with conversion for living anionic polymerizations...25

Figure 2.13 Living anionic polymerization of D3...26
Figure 2.14 Triblock and diblock copolymer architectures..................................29
Figure 2.15 Sequential polymerization of styrene and 1,3 butadiene....................30
Figure 2.16 Sequential copolymerization of D₃ and D₃

Figure 2.17 Increasing concentration of surfactant in solution

Figure 2.18 Micellar morphology as concentration of surfactant increases

Figure 2.19 PDMS-PCPMS-PDMS triblock copolymer

Figure 2.20 Exchange reactions in the hydrolytic polycondensation of alkoxy silanes

Figure 2.21 Processing for the TEOS-ethanol-water system

Figure 2.22 Acid-catalyzed hydrolysis mechanism

Figure 2.23 Base-catalyzed hydrolysis mechanism

Figure 2.24 Base-catalyzed condensation mechanism

Figure 2.25 Acid-catalyzed condensation mechanism

Figure 2.26 Superparamagnetic fluid properties

Figure 2.27 Dipolar interaction energy E between two spheres of equal magnetic moment. Attractive interaction is experienced

Figure 2.28 Electrostatic stabilization

Figure 2.29 Steric repulsion

Figure 2.30 Decomposition of Co₂(CO)₈ below 90 °C

Figure 3.1 Diblock copolymers were formed by anionic polymerization of D₃ (1a.) followed by living anionic polymerization of D₃ (1b.), then termination with trimethylchlorosilane

Figure 3.2 Synthesis of D₃

Figure 3.3 Gas chromatogram of D₃ obtained after purification

Figure 3.4 Gas chromatogram of the D₃ reaction

Figure 3.5 Comparison of the ¹H NMR spectra of the D₃ monomer (1) to the standard (2)

Figure 3.6 Anionic block copolymerization to obtain diblock PDMS-PMVS copolymers
Figure 3.7 The living anionic polymerization of D₃ and the formation of PDMS blocks was monitored by ¹H NMR. ..84

Figure 3.8 ¹H NMR spectrum of a PDMS-b-PMVS diblock copolymer86

Figure 3.9 ²⁹Si NMR of a PDMS-b-PMVS diblock copolymer87

Figure 3.10 Gel permeation chromatogram of a PDMS-b-PMVS diblock copolymer ...88

Figure 3.11 DSC thermograms of PDMS-b-PMVS diblock copolymers; a.) 5000 g mol⁻¹ PDMS-b-2000 g mol⁻¹ PMVS, b.) 10000 g mol⁻¹ PDMS-b-2000 g mol⁻¹ PMVS, c.) 13,000 g mol⁻¹ PDMS-b-2000 g mol⁻¹ PMVS, d.) 16,000 g mol⁻¹ PDMS-b-2000 g mol⁻¹ PMVS, e.) 18000 g mol⁻¹ PDMS-b-2000 g mol⁻¹ PMVS ...90

Figure 3.12 DSC thermogram of a 1000 g mol⁻¹ PMVS homopolymer91

Figure 4.1 PDMS-b-PMVS copolymers were quantitatively hydrosilated with triethoxysilane or trimethoxysilane to yield PDMS-b-PMTES or PDMS-b-PMTMS, respectively ...97

Figure 4.2 Partial hydrosilation of PDMS-b-PMVS diblock copolymers with trimethoxysilane or triethoxysilane to form PDMS-b-[PMVS-co-PMTMS] and PDMS-b-[PMVS-co-PMTES], respectively ...98

Figure 4.3 Karstedt’s catalyst ..99

Figure 4.4 Reaction progress of a functionalization reaction via ¹H NMR100

Figure 4.5 β and α addition products ..101

Figure 4.6 ¹H NMR α and β addition peak assignments101

Figure 4.7 T₉’s of PMTES and PMVS homopolymers103

Figure 4.8 DSC scan of PDMS-PMTES diblock copolymer; a.) 5000 g mol⁻¹ PDMS-b-3900 g mol⁻¹ [PMVS-co-PMTES], b.) 10,000 g mol⁻¹ PDMS-b-3900 g mol⁻¹ [PMVS-co-PMTES], c.) 16000 g mol⁻¹ PDMS-b-3900 g mol⁻¹ [PMVS-co-PMTES] ..104

Figure 4.9 Surface tension of a 5000 g mol⁻¹ PDMS-b-3900 g mol⁻¹ [PMVS-co-PMTES] copolymer ...106

Figure 4.10 Surface tension of a 16,000 g mol⁻¹ PDMS-b-3900 g mol⁻¹ [PMVS-co-PMTES] copolymer ...106
Figure 5.1 Hydrolysis and condensation of trimethoxysilane with varying concentrations of water.

Figure 5.2 1H NMR reaction progress of the hydrolysis of trimethoxysilane (0.05 g mL$^{-1}$) at 95 °C in toluene with four times the stoichiometric concentration of water. (top: initial reaction mixture; bottom: reaction mixture after 2 h.)

Figure 5.3 Hydrolysis and condensation of a PDMS-b-[PMVS-co-PMTMS] copolymer with varying concentrations of water.

Figure 5.4 1H NMR of the hydrolysis and condensation of trimethoxysilyl groups pendent on the polysiloxane backbone. Four times the stoichiometric concentration of water was used.

Figure 5.5 Biosynthesis of acetyl CoA.

Figure 5.6 Hydrolysis mechanism of triethoxysilyl functional groups pendent on the siloxane backbone.

Figure 5.7 Condensation of pendent triethoxysilyl groups on the siloxane backbone.

Figure 5.8 Hydrolysis of triethoxysilyl groups on PDMS-b-[PMVS-co-PMTES] (0.06 g mL$^{-1}$) at room temperature with dichloroacetic acid and stoichiometric concentrations of water.

Figure 6.1 Thermolysis of dicobalt octacarbonyl in toluene in the presence of PDMS-b-[PMVS-co-PMTMS] or PDMS-b-[PMVS-co-PMTES] diblock copolymers.

Figure 6.2 Pentablock copolymers were investigated as steric dispersion stabilizers for cobalt nanoparticles. The nitrile containing central block functioned as the anchor block to bind to cobalt; PDMS tail blocks provided dispersion stability; PMTES blocks were precursors for sol-gel reactions to form “silica-like” shells around the nanoparticles.

Figure 6.3 Thermolysis of dicobalt octacarbonyl: a.) initial reaction mixture showing peaks 2020, 2050, and 2070 cm$^{-1}$ corresponding to terminal CO and 1860 cm$^{-1}$ attributed to bridging CO; b.) a spectrum representing the intermediate reaction stage showing new peaks at 2065 and 2055 cm$^{-1}$ corresponding to Co$_4$(CO)$_{12}$.

Figure 6.4 Cobalt fluids comprised of 1.) 16,000 g mol$^{-1}$ PDMS-b-3400 g mol$^{-1}$ [PMVS-co-PMTMS], 2.) 5000 g mol$^{-1}$ PDMS-b-3400 g mol$^{-1}$ [PMVS-co-PMTMS] 2.) 16,000 g mol$^{-1}$ PDMS-b-3900 g mol$^{-1}$ [PMVS-co-PMTES].

Figure 6.5 Specific magnetization curves for cobalt-polymer complexes prepared with 1.) 5000 g mol$^{-1}$ PDMS-b-3900 g mol$^{-1}$ PMVS-co-PMTES], and 2.) 16,000 g mol$^{-1}$ PDMS-b-3400 g mol$^{-1}$ [PMVS-co-PMTES].
List of Tables

Table 2.1 Structural Units of Polysiloxanes ... 5

Table 2.2 Silicones and their applications ... 6

Table 2.3 Unique Properties of Polysiloxanes .. 7

Table 2.4 Silicon Isotope Abundance ... 7

Table 2.5 Mean bond energies in kJ/mol of several bonds of carbon and silicon 8

Table 2.6 Silicon and Carbon Rotational Barriers 9

Table 2.7 Yields of linear polymers in undiluted equilibrates of siloxanes 16

Table 2.8 Reaction conditions and their influence on equilibrium position 16

Table 2.9 Polymerization of D$_3$ initiated by n-BuLi, in benzene at room temperature 27

Table 2.10 Classification of magnetic materials based on magnetic properties 53

Table 2.11 Common surfactants and carrier fluids 54

Table 2.12 Common carbonyls and decomposition temperatures 64

Table 2.13 Cobalt thermolysis in the presence of polymer stabilizers in toluene .. 65

Table 2.14 Common classes of solvents for cobalt carbonyl thermolysis 67

Table 2.15 Colloidal stability influenced by commercial surfactants for the thermolysis of Co$_2$(CO)$_8$ in toluene ... 68

Table 3.1 Concentrations of initiator, monomer, and endcapping reagent utilized to synthesize a series of diblock PDMS-PMVS copolymers with systematically varied block lengths. ... 75

Table 3.2 Comparisons of targeted vs. experimental number average molecular weights (M_n) of the PDMS-PMVS diblock copolymers determined via 1H NMR 85

Table 3.3 Targeted M_n’s of the PDMS-b-PMVS diblock copolymers as compared to experimental values ... 87

Table 3.4 M_n’s and molecular weight distributions of PDMS-b-PMVS diblock copolymers ... 88
Table 3.5 Glass transition temperatures of a PDMS-\textit{b}-PMVS series............................91

Table 4.1 Diblock copolymer T_g’s before and after functionalization with triethoxysilyl groups...104

Table 5.1 Conversion of trimethoxysilane groups as a function of water concentration and temperature...114

Table 5.2 Results for the hydrolysis and condensation reactions of pendent trimethoxysilyl groups as a function of water concentration and temperature..........115

Table 5.3 Hydrolysis and condensation reactions with PMTES blocks with acid.......120

Table 6.1 Specific magnetization of the cobalt nanoparticle-polymer complexes......134