Micromechanics of Granular Media: A Fundamental Study of Interphase Systems

Jianfeng Wang

Dissertation submitted to the faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Civil and Environmental Engineering

Joseph E. Dove, Chair
Marte S. Gutierrez, Co-Chair
George M. Filz
Matthew Mauldon
Ronald D. Kriz
Linbing Wang

April 2006
Blacksburg, Virginia

Keywords: Interphase system, Granular media, Micromechanical behavior, DEM modeling, Anisotropy, Interphase strength, Failure criterion
Micromechanics of Granular Media: A Fundamental Study of Interphase Systems

Jianfeng Wang

Abstract

The interphase is a localized region adjacent to a manufactured inclusion that is surrounded by granular soil. These regions are ubiquitous in civil infrastructure and often are components of large-scale composite systems. The interphase region influences load-deformation behavior of the entire composite system. However, mechanisms that control the mechanical behavior of the interphase region and, in turn, control the composite structure behavior, are not clearly understood. Few relationships exist for predicting interphase behavior from properties of granular materials and the inclusion surface that can be measured in the laboratory.

A two dimensional discrete element model of a general interphase system was developed and validated against laboratory data. Numerical experiments are conducted with varying soil to inclusion relative geometry. A new micromechanics-based approach, which utilizes microscopic quantities to explain the mechanics of granular media from a continuum point view, is adopted to investigate the mechanisms that underlie the interphase behavior.

It is shown that the grain to inclusion surface relative geometry controls the degree of granular media strength mobilization by controlling development of fabric and contact force anisotropy inside the interphase region. A unique bilinear relationship exists between the mobilized granular media strength and the principal direction of average contact force anisotropy at the interface between the particles touching the surface and the inclusion. These findings suggest the problem is one of contact and cannot be solved using purely geometric correlations, as past research presumed. A fundamental mechanism of behavior, long sought in geomechanics problems, is presented. Publications resulting from this research are significant and original contributions to the geoengineering, material science, geophysics and granular physics literature.
Acknowledgement

Foremost, I want to express my sincere gratitude to my major advisor, Dr. Joseph E. Dove, and my co-advisor, Dr. Marte S. Gutierrez, for your constant support and instructive guidance on the development of my dissertation during the past three years.

Dr. Dove, it is very fortunate for me to have the opportunity to work with you. You have exemplified what a real explorer and educator should be. I have been impressed by your brilliancy, diligence, and pedagogical excellence for which I will be longing all my life. Your guidance, patience, and selflessness during the development of this work are greatly appreciated. The experience working with you is an enjoyable time period and will become the unforgettable memory that I would cherish all my life.

Dr. Gutierrez, thank you so much for all your kind help, trust and appreciation ever since I came to Virginia Tech. It was you who introduced me to this research project and gave me the precious opportunity to make this great achievement. Your innovative ideas and unique insights into the project always benefited me and made me progress faster on my way towards success. I enjoy the happy experience working with you both as an instructor and a friend.

Specifically, I would like to thank my fellow lab mate, Dr. Xiaohai Wang, who provided invaluable help to the compiling of my computer program. Without you, I would not have completed my study so quickly.

I also want to express my gratitude to my committee members: Dr. George M. Filz, Dr. Matthew Mauldon, Dr. Ronald D. Kriz, and Dr. Linbing Wang. Thank you for your good comments and suggestions which help me to improve my understanding and broaden my vision.

Lastly, special thanks go to my beloved parents, who never stop giving me their immense support, encouragement and love. I’m proud to be your son!
Table of Contents

Abstract ... ii
Acknowledgement ... iii
List of Tables .. ix
List of Figures .. x

1. **Introduction** .. 1
 1.1. Dilative and Non-dilative Surfaces ... 2
 1.2. Basic Hypothesis and Approach ... 3
 1.3. Review of Previous Work .. 3
 1.3.1. Shear Behavior of Granular Soils ... 3
 1.3.2. Failure Criteria in Rock Mechanics .. 5
 1.3.3. Correlations for Interface Friction in Soil Mechanics 6
 1.3.4. Constitutive modeling for Interface behavior in Soil Mechanics............... 7
 1.4. Discrete Element Method .. 8
 1.4.1. Law of Motion .. 9
 1.4.2. Force-displacement Law ... 9
 1.5. Proposed Research Objectives ... 10
 1.6. Dissertation Organization .. 11

Notation .. 12
References ... 13

2. **Model Development and Calibration** ... 22
 2.1. Numerical Model and Sample Preparation .. 23
 2.1.1. Model description ... 23
 2.1.2. Hertz-Mindlin contact model ... 24
 2.1.3. Model physical parameters ... 25
 2.2. Influence of Model Variables .. 25
 2.2.1. Length of frictionless, non-dilative zone .. 30
 2.2.2. Boundary friction ... 30
4. Discrete-continuum Analysis of Shear Banding in the Direct Shear Test

4.1. Introduction ... 91
 4.1.1. Previous research work on constitutive behavior of granular soils 91
 4.1.2. Primary work of the current paper 92
4.2. Theoretical Framework .. 92
 4.2.1. Stress tensor and shear-induced anisotropy 92
 4.2.2. Strain tensors ... 95
 4.2.3. Stress-dilatancy relationship ... 96
 4.2.4. Plane strain and direct shear angles of friction 97
4.3. Numerical Analysis of Direct Shear Box 98
 4.3.1. DEM model of direct shear box ... 98
 4.3.2. Numerical experiments ... 99
 4.3.3. Stress-displacement relation .. 100
 4.3.4. Strength and dilatancy behavior 101
 4.3.5. Shear induced anisotropy ... 101
 4.3.6. Strain localization inside the shear band 103
 4.3.7. Verification of extended Rowe/Davis framework 104
4.4. Conclusions ... 106
Acknowledgement .. 106
Notation ... 107
References .. 109

5. Determining Particulate – Solid Interphase Strength using Shear-Induced Anisotropy ... 125
5.1. Introduction ... 125
5.2. Methods ... 127
5.2.1. Numerical experiments .. 127
5.2.2. Calculation of anisotropy parameters and principal directions 129
5.2.3. Average stress components ... 131
5.3. Results .. 132
 5.3.1. Control of contact force anisotropy on interphase strength 132
 5.3.2. Effects of particle to surface friction .. 134
5.4. Conclusions .. 135
Acknowledgements .. 136
Notation .. 136
References ... 137

6. Anisotropy-based Failure Criterion for an Interphase System 147
6.1. Introduction .. 148
 6.1.1. Background ... 148
 6.1.2. Primary work of the current paper .. 149
6.2. Experimental Methods ... 149
 6.2.1. Granular material ... 150
 6.2.2. Parametric study ... 150
 6.2.3. Global model parameters ... 151
6.3. Representation of Discrete Data .. 151
6.4. Results .. 152
 6.4.1. Mechanism for shear strength mobilized inside the interphase 152
 6.4.2. Correlation based on \(R_n \) ... 154
 6.4.3. Failure criterion for interphase systems 155
 6.4.4. Use of the failure criterion ... 156
 6.4.5. Criterion based on efficiency parameter 157
 6.4.6. Verification of failure criterion ... 157
6.5. Conclusions ... 158
Acknowledgements .. 159
Notations ... 159
References ... 160
7. Conclusions ... 173

7.1. Conclusions regarding model development .. 174
7.2. Conclusions regarding micromechanics-based framework ... 175
7.3. Conclusions regarding direct shear test simulations .. 175
7.4. Conclusions regarding interphase shear banding behavior ... 176
7.5. Conclusions regarding interphase strength behavior .. 177
7.6. Conclusions regarding interphase failure criterion .. 177
7.7. Recommendations for future research ... 178

Appendix A Derivation of Stress-dilatancy Relationship ... 179
Appendix B Plane Strain and Direct Shear Angles of Friction ... 182
Appendix C Simulation Data of Parametric Study ... 184
List of Tables

Table 2.1. Model variables divided into two categories... 26
Table 2.2. Influence of Model Physical Variables-Summary.. 27
Table 2.3. Influence of Model Behavioral Variables-Summary.. 29
Table 3.1. Variables, constants of surface asperities and their values used in the Experimental Groups 1, 2 and 3.. 63
Table 3.2. Average observed and theoretical orientations for S2 shear band................................. 71
Table 3.3. Average observed and theoretical orientations for S1 shear band at the right end of the surface.. 71
Table 4.1. Values of variables used in the numerical experiments.. 99
Table 4.2. Peak and critical state strength ratios and dilation angles from simulation boundary measurements.. 102
Table 4.3. Peak and critical state strength ratios and dilation angles measured inside the sampling window.. 102
Table 4.4. Laboratory direct shear test data on Ottawa 20/30 sand, C-33 Concrete Sand and 0.7 mm glass beads (Dove & Jarrett, 2002) ... 105
Table 4.5. Orientation of shear band predicted by Mohr-Coulomb and Roscoe’s solution 105
Table 5.1. Variables, constants of surface asperities and their values used in the Experimental Groups 1, 2 and 3.. 127
Table 5.2. Values of A_u, A_r and R_{max} used in Experimental Group 4.. 128
Table 6.1. Variables and Constants for Experimental Groups 1, 2 and 3....................................... 150
Table 6.2. Values of A_u, A_r and R_{max} used in Experimental Group 4....................................... 151
List of Figures

Figure 1.1. The interphase region ... 20
Figure 1.2. Calculation cycle in DEM (From PFC2D manual) 21
Figure 2.1. Numerical model composed of densely packed spheres in contact with a rough saw-tooth surface: (a) geometry of saw-tooth surface; (b) DEM model of plane strain direct interface shear test ... 42
Figure 2.2. Two-dimensional packings of monosized spheres giving the maximum and minimum porosity: (a) simple square (corresponding to simple cubic in three dimensional case) with maximum porosity of 0.215; (b) tetrahedral with minimum porosity of 0.093 43
Figure 2.3. Stress-displacement relationships for different model types: (a) Model type 1 without frictionless zone; (b) Model type 2 with 20 mm long frictionless zones at each end of the box; (c) Model type 3 with 43 mm long frictionless zones at each end of the box 44
Figure 2.4. Stress-displacement relationships in different boundary friction cases: (a) particle to boundary friction coefficient 0.9; (b) particle to boundary friction coefficient 0.05 45
Figure 2.5. Distributions of particle velocity vectors at 1 mm shear displacement in different boundary friction cases: (a) particle to boundary friction coefficient 0.9; (b) particle to boundary friction coefficient 0.05 ... 46
Figure 2.6. Variations of vertical displacement of top wall with shear displacement in different boundary friction cases ... 47
Figure 2.7. Stress-displacement relationships for different model heights: (a) 7 mm high model; (b) 14 mm high model; (c) 28 mm high model; (d) 35 mm high model 48
Figure 2.8. Initial fabrics (contact normal distributions) resulting from different interparticle frictions during consolidation: (a) interparticle friction coefficient 0.0 during consolidation; (b) interparticle friction coefficient 0.5 during consolidation 49
Figure 2.9. Stress-displacement relationships for different initial fabrics: (a) interparticle friction coefficient 0.05 during consolidation resulting in isotropic initial fabric; (b) interparticle friction coefficient 0.5 during consolidation resulting in anisotropic initial fabric 50
Figure 2.10. Direct shear test model with typical internal deformation at 10 mm shear displacement

Figure 2.11. Comparison of stress-displacement curves from a direct shear test simulation and a similar laboratory test

Figure 2.12. Comparisons of stress-displacement relationships for rolling resistance and free rolling cases: (a) 20 degree asperity slope; (b) 30 degree asperity slope; (c) 45 degree asperity slope

Figure 2.13. Distributions of voids inside the sample for rolling resistance and free rolling cases: (a) rolling resistance; (b) free rolling

Figure 2.14. Variations of vertical displacement of top wall with shear displacement for rolling resistance and free rolling cases: (a) 20 degree asperity slope; (b) 30 degree asperity slope; (c) 45 degree asperity slope

Figure 2.15. Shear strain distributions inside the sample for rolling resistance and free rolling cases: (a) and (c) rolling resistance, recorded at 2 mm and 5 mm shear displacement respectively; (b) and (d) free rolling, recorded at 2 mm and 5 mm shear displacement respectively

Figure 3.1. Schematic diagram of the new meshfree method: (a) association of a grid point with certain particle; (b) displacement of grid point and its associated particle

Figure 3.2. DEM model of direct interface shear box: (a) interphase composed of granular spheres in contact with a rough surface; (b) particle columns pre-selected to identify interphase deformation

Figure 3.3. (a) Surface geometry used Groups 1, 2 and 3; (b) Group 4. Note extreme roughness of surface

Figure 3.4. Macroscopic interface behavior of Simulation A: (a) stress-displacement relationship; (b) volume change-displacement relationship

Figure 3.5. Deformed particle columns inside the shear box from Simulation A: (a) at peak, 1 mm displacement; (b) at post-peak, 2 mm displacement; (c) at steady state, 6.3 mm displacement

Figure 3.6. Evolution of strain localization and rupture bands in Simulation A: (a) at pre-peak, 0.5 mm displacement; (b) at pre-peak, 0.7 mm displacement; (c) at peak, 1 mm
displacement; (d) at post-peak, 2 mm displacement; (e) at steady state, 6.3 mm displacement

Figure 3.7. Evolution of strain localization in Simulation A calculated using O’Sullivan’s method: (a) at peak, 1 mm displacement; (b) at post-peak, 2 mm displacement; (c) at steady state, 6.3 mm displacement

Figure 3.8. Horizontal displacement profiles for selected sample heights, Column 9, Simulation A: (a) 1 mm shear displacement; (b) 2 mm shear displacement

Figure 3.9. Shear strain distribution and rupture bands at peak state in Simulation B to G: (a) Simulation B; (b) Simulation C; (c) Simulation D; (d) Simulation E; (e) Simulation F; (f) Simulation G

Figure 3.10. Shear strain distribution and rupture bands at steady state in Simulation B to G: (a) Simulation B; (b) Simulation C; (c) Simulation D; (d) Simulation E; (e) Simulation F; (f) Simulation G

Figure 3.11. Profiles of surface geometry in Simulation B to G: (a) Simulation B; (b) Simulation C; (c) Simulation D; (d) Simulation E; (e) Simulation F; (f) Simulation G

Figure 3.12. Horizontal displacements of particles in Column 9 at 2 mm displacement in Simulation A to G

Figure 3.13. Comparison of particle horizontal displacements from simulations with laboratory data

Figure 4.1. \(k \)-th contact point between two particles

Figure 4.2. Schematic diagram of the meshfree method: (a) Association of a grid point with certain particle; (b) displacement of grid point and its associated particle

Figure 4.3. Mohr’s circles: (a) stress; (b) incremental strain

Figure 4.4. DEM model of a direct shear box

Figure 4.5. Deformed columns inside the shear box, Experiment D, 5mm shear displacement. (Bold solid line: shear box; Bold dashed line: window for stress and strain analysis)

Figure 4.6. Typical stress-displacement relationships for dense and medium dense well-graded sample

Figure 4.7. Variation of peak strength ratios and dilation angles against initial relative density and normal pressure. Solid and open symbols represent \(D_{\text{max}}/D_{\text{min}} \) of 3.0 and 1.1,
respectively. Bubble size represents normal stress, with the largest bubble size equal to 300 KPa.

Figure 4.8. Evolution of anisotropies of contact normal, contact normal force and contact shear force inside the shear zone during the shear process (Experiment D): (a) Before shear, 0 mm displacement; (b) At peak state, 2.3mm displacement; (c) At steady state, 10mm displacement.

Figure 4.9. Contact force chains inside the shear box (Experiment D): (a) At peak state, 2.3 mm displacement; (b) At critical state, 10 mm displacement.

Figure 4.10. Evolution of magnitudes and orientations of anisotropies during shear.

Figure 4.11. Evolution of strain localization during shear (Experiment D).

Figure 4.12. Shear band formation inside the medium dense sample: (a) Experiment J, at peak (2.4 mm displacement); (b) Experiment J, post peak (5 mm displacement); (c) Experiment K, at peak (2 mm displacement); (d) Experiment K, post peak (5 mm displacement).

Figure 4.13. Peak and steady state data from numerical simulations and laboratory tests.

Figure 5.1. (a) Sketch of 2D simulation direct interface shear box (left half only); (b) Force chain network within the entire shear box at peak stress state for a regular roughened surface with 45-degree asperity slopes and asperity height to median particle diameter ratio (R_t/D) of 1.0.

Figure 5.2. Sketches for regular and irregular triangular surface asperities: (a) For a regular triangular asperity, the geometry is determined by three parameters, R_t, S_w and S_r; (b) The basic shape of an irregular triangular surface asperity is “unit asperity segment” defined by A_u and A_r.

Figure 5.3. Surface profiles of manufactured and natural surfaces used in this study: (a) High Density Polyethylene textured geomembrane surface No. 1; (b) High Density Polyethylene textured geomembrane surface No. 2; (c) High Density Polyethylene textured geomembrane surface No. 3; (d) Wood surface; (e) Stone surface; (f) Concrete surface. Polymer surfaces were manufactured using a coextrusion process.
Figure 5.4. Polar distributions of anisotropy and principal directions for the first row of particles touching the surface with $\tan \phi_\mu = 0.05$. Top – contact normal, middle – contact normal force, bottom – contact resultant force. Roman numerals identify quadrants. Shaded areas are the density distributions and the unshaded areas are the Fourier series approximations to the density distributions. Arrows indicate principal directions. (a) regular triangular asperities with 45-degree slope and asperity height to median particle diameter ratio of 1.0; (b) Randomly generated surface…………………………………… 143

Figure 5.5. Control of principal directions of contact normal force (θ_n) and resultant force anisotropy (θ_r) on peak stress ratio: (a) and (b) peak stress ratios measured at the surface (τ/σ); (c) and (d) average stress ratio measured in the sampling region, (τ/σ_{ave}). The figures indicate that the same mechanism controls stress ratio regardless of measurement location…………………………………………………………………………………………… 144

Figure 5.6. Mobilization of interface friction coefficient between particles and surfaces: (a) $R_t/D_{S0} = 1$, Group 1; (b) $A_u/D_{S0} = 4$ and $A_r = 2$, Group 4; (c) coextruded geomembrane surface, Group 5………………………………………………………………………………………… 145

Figure 5.7. Relationships between of principal directions θ_n and θ_r under different ϕ_μ values: (a) $\tan \phi_\mu = 0.05$; (b) $\tan \phi_\mu = 0.2$; (c) $\tan \phi_\mu = 0.5$. Principal directions deviate from one another at high particle to surface friction coefficients and for surfaces causing low mobilization of granular material strength. As the surface mobilizes full granular material strength there is no difference between the average normal force and resultant force principal directions………………………………………………………………………………………… 146

Figure 6.1. Surface geometry used in numerical experiments: (a) Groups 1, 2 and 3; (b) Group 4, Note extreme roughness of surface; (c) Example profile of concrete surface used in simulations…………………………………………………………………………………………… 163

Figure 6.2. Contact force network inside the simulated interface shear device: (a) 45-degree asperity slope with $R_t/D_{S0} = 1.0$, Group 1; (b) Coextruded geomembrane. Figures are at slightly different scales, therefore thicknesses of force chains are not comparable…………………………………………………………………………………………… 164
Figure 6.3. Relationship between the peak stress ratio measured at the surface and principal directions of average contact normal force (θ_a) and resultant force anisotropy (θ_r) along the surface (a) and (b). Same relationships for average stress ratio measured in the sampling region (c) and (d) 165

Figure 6.4. Physical meaning of θ_r at the surface and in the granular assemblage: (a) θ_r measured at the surface is the resultant angle from the sum of the normal and shear forces acting on the asperities; (b) In the interphase, θ_r corresponds to the orientation of the major principal stress .. 166

Figure 6.5. Simulation and experiment data correlating peak interface stress ratio and peak efficiency with $R_{nc(D_n)}$. Simulation data are based on well graded material and interface friction coefficient is 0.05... 167

Figure 6.6. Density distributions of surface normals based on profile of particle centroid trace: (a) $R/D_{50} = 1.0$, Group 1; (b) $S_r/D_{50} = 1.0$, Group 2; (c) Experiment C, Group 4; (d) Geomembrane surface, Group 5. Inset figure is a key sketch of quadrant locations ... 168

Figure 6.7. Peak stress ratio variation with principal direction of surface normal distribution (θ_a). Data are based on well-graded material. All surface normals included (a), (c) and (e). Normals less than 92 degrees filtered from the average (b), (d) and (f) 169

Figure 6.8. Correlations between θ_a and θ_r measured at the asperities at peak state for various particle to surface friction coefficients. Data are for well-graded material 170

Figure 6.9. Correlation to determine θ_r from computed θ_a value for surfaces with high proportion of horizontal segments. θ_a is calculated based on surface normals with normal angle \geq 90 degrees from horizontal; Note: θ_a on horizontal axis is referenced counterclockwise from the horizontal in this figure ... 171

Figure 6.10. (a) Failure criterion in terms of efficiency and based on θ_r; (b) Laboratory data compared with all simulations with uniformly graded particles and $\tan \phi = 0.05$; (c) and (d) Predicted versus measured peak efficiency of glass beads ($\tan \phi = 0.1$) and Ottawa 20/30 sand ($\tan \phi = 0.2$). Profiles of surfaces used in laboratory tests and simulations are the same .. 172