Adaptive Arrays and Diversity Antenna Configurations for Handheld Wireless Communication Terminals

Carl B. Dietrich, Jr.

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Warren L. Stutzman, Chair
William A. Davis
Jeffrey H. Reed
Dennis G. Sweeney
Harry H. Robertshaw

February 15, 2000
Blacksburg, Virginia

Keywords: Adaptive Arrays, Smart Antennas, Diversity

Copyright 2000, Carl B. Dietrich, Jr.
Adaptive Arrays and Diversity Antenna Configurations for Handheld Wireless Communication Terminals

Carl B. Dietrich, Jr.

(ABSTRACT)

This dissertation reports results of an investigation into the performance of adaptive beamforming and diversity combining using antenna arrays that can be mounted on handheld radios. Handheld arrays show great promise for improving the coverage, capacity, and power efficiency of wireless communication systems.

Diversity experiments using a handheld antenna array testbed (HAAT) are reported here. These experiments indicate that signals received by the antennas in two-element handheld antenna arrays with spacing of 0.15 wavelength or greater can be combined to provide 7-9 dB diversity gain against fading at the 99% reliability level in non line-of-sight multipath channels. Thus, peer-to-peer systems of handheld transceivers that use antenna arrays can achieve reliability comparable to systems of single-antenna handheld units, with only one-fifth the transmitter power, resulting in lower overall power consumption and increased battery life. Similar gains were observed for spatial, polarization, and pattern diversity.

Adaptive beamforming with single- and multi-polarized four-element arrays of closely spaced elements was investigated by experiment using the HAAT, and by computer simulation using a polarization-sensitive vector multipath propagation simulator developed for this purpose. Small and handheld adaptive arrays were shown to provide 25 to 40 dB or more of interference rejection in the presence of a single interferer in rural, suburban, and urban channels including line-of-sight and non line-of-sight cases. In multipath channels, these performance levels were achieved even when there was no separation between the transmitters in azimuth angle as seen from the receiver, and no difference in the orientations of the two transmitting antennas. This interference rejection capability potentially allows two separate spatial channels to coexist in the same time/frequency channel, doubling system capacity.
Acknowledgements

Above all, I thank God for this life and for the promise of salvation in Jesus Christ, for the many people I have met and experiences I have had during my time at Virginia Tech, and for the opportunity to learn by doing this work. I am grateful to my wife Cecile who has seen me through this work and has made my last few years the best and happiest so far. Thanks also to my late father Carl, Sr., my mother Nancy, my brother John, my mother and father in law Edith and Rufino Cachaper, my sister in law Kathy, my Uncle Chuck, my aunts Sr. Mary Jude and Sr. Barbara Sitter, and all the Dietrichs and Sitters for their love and support.

I appreciate the contributions of time and effort made by the members of my committee. My advisor, Prof. Warren Stutzman, has been particularly helpful in guiding my research as well as in finding interesting funded projects on which I could work, most recently in cooperation with Prof. Jeff Reed. Thanks also to Profs. Davis, Sweeney, and Robertshaw for their help with this research, and with my professional development in general. Thanks to Randall Nealy for his help in developing the concept of the handheld antenna array testbed, for designing and building the associated hardware, and for discussions on measurement techniques and a wide variety of other topics. Kai Dietze provided extensive help with performing the diversity and adaptive beamforming experiments and helped develop the VMPS software, and Byung-Ki Kim and Koichiro Takamizawa helped with diversity combining and antenna pattern measurements.

I also thank the following people: Ali Abur, Rafiq Ahmed, Stephanie Askew, Mike Barts, Lara Beisgen, Ted Belay, Ray Bittner, James Boissenin, Carey Buxton, Eric Caswell, Graciela Cerezo, Peter Chow, Cahil Converse, Charlie Cottingham, Fr. Jim Cowles, Nathan Cummings, Boris Davidson, Fabienne Doucet, Stratford Douglas, Rich Ertel, Rob Fentress, Victor Fung, Fr. Jim Griffin, Mark Gibson, Rong He, Anne Hillery, Minh-Chau Huynh, Chantal Kabwe, Mike Keitz, Joe Kestel, Donna and Kevin Krizman, Jim LaPean, Joe Liberti, Mike Marrocco, Mike Martin, Todd Martin, Pete McCourt, Peter Menegay, Kevin Mescher, Melba Morrozoff, Raqib Mostafa, John Musson, Micki O’Brien, Renee Pedrazzani, Paul Petrus, Tim Pratt, Andrew Predoehl, Jeff Snyder, John Spall, Nancy Shealor, Mun-Ling Shum, Dave Stedman, Lisa Stull, Seong-Youp Suh, Paul Werntz, and A.J. Zwiesler, and to the many teachers, professors, and others who encouraged me through the years.

Thanks to DARPA, Astron, Allen Telecom, and BNR for funding my research.
TABLE OF CONTENTS

Abstract ... ii
Acknowledgements .. iii

CHAPTER 1 INTRODUCTION .. 1

CHAPTER 2 OVERVIEW OF MOBILE COMMUNICATION SYSTEMS ... 7
2.1 The Wireless Communication Link ... 7
2.2 Types of Systems .. 8
2.3 Mobile Radio Channels ... 11
 2.3.1 Large scale path loss ... 11
 2.3.2 Shadowing ... 11
 2.3.3 Multipath effects: fading, intersymbol interference, and Doppler Spread 12
2.4 Polarization ... 13
 2.4.1 Polarization states .. 14
 2.4.2 Polarization in a multipath channel ... 15
2.5 Modulation .. 16
 2.5.1 Analog modulation ... 16
 2.5.2 Digital modulation ... 16
 2.5.3 Spread spectrum and ultra wideband .. 17
2.6 Multiple Access Techniques and Frequency Reuse .. 18
 2.6.1 Capacity of a band-limited AWGN channel .. 18
 2.6.2 Multiple access .. 19
 2.6.2.1 Frequency division multiple access (FDMA) ... 20
 2.6.2.2 Time division multiple access (TDMA) .. 20
 2.6.3 Frequency reuse strategies ... 21
 2.6.3.1 Cellular frequency reuse .. 22
 2.6.3.2 Code division multiple access (CDMA) .. 24
 2.6.3.3 Spatial division multiple access (SDMA) ... 26
 2.6.3.4 Polarization Reuse .. 27
 2.7 Conclusion .. 28

CHAPTER 3 ANTENNA ARRAYS AND BEAMFORMING ... 29
3.1 Pattern of a Generalized Array .. 29
 3.1.1 Array factor .. 30
 3.1.2 Array pattern ... 31
3.2 Phase and Time Scanning .. 31
 3.2.1 Phase scanning .. 32
 3.2.2 Time scanning .. 34
3.3 Fixed Beam Forming Techniques ... 35
 3.3.1 Butler matrix ... 35
 3.3.2 Blass matrix .. 36
 3.3.3 Wullenweber array ... 37
 3.3.4 Other fixed beamforming techniques .. 38
3.4 Optimum Beamforming .. 38
8.5 Conclusions ... 168

<table>
<thead>
<tr>
<th>CHAPTER 9 ADAPTIVE BEAMFORMING MEASUREMENTS AND SIMULATIONS</th>
<th>172</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction ...</td>
<td>172</td>
</tr>
<tr>
<td>9.2 HAAT Verification Tests ..</td>
<td>173</td>
</tr>
<tr>
<td>9.3 Controlled Adaptive Beamforming Measurements Using the Linear Positioner</td>
<td>177</td>
</tr>
<tr>
<td>9.4 Simulation of Array Operation in Free-Space ..</td>
<td>180</td>
</tr>
<tr>
<td>9.4.1 Free-space simulation with first transmitter having fixed vertical polarization, varying polarization of second transmitter ...</td>
<td>182</td>
</tr>
<tr>
<td>9.4.2 Free-space simulation with first transmitter having fixed 45° linear polarization, varying polarization of second transmitter ...</td>
<td>184</td>
</tr>
<tr>
<td>9.4.3 Free-space simulations with both transmitters having fixed vertical polarization, varying azimuth separation between transmitters ..</td>
<td>186</td>
</tr>
<tr>
<td>9.4.4 Free-space simulations with both transmitters having fixed -45° polarization, varying azimuth separation between transmitters ..</td>
<td>188</td>
</tr>
<tr>
<td>9.5 Simulation of Array Operation in a Rural, Line-of-Sight Channel with Multipath Propagation ...</td>
<td>190</td>
</tr>
<tr>
<td>9.5.1 Rural LOS multipath channel simulations with first transmitter having fixed -45° linear polarization, varying polarization of second transmitter ...</td>
<td>191</td>
</tr>
<tr>
<td>9.5.2 Rural LOS multipath channel simulations with both transmitters having fixed -45° linear polarization, varying azimuth separation between transmitters ...</td>
<td>194</td>
</tr>
<tr>
<td>9.6 Experiments in a Rural, Line-of-Sight Channel (Site 1) ..</td>
<td>196</td>
</tr>
<tr>
<td>9.6.1 Rural line-of-sight measurements with both transmitters having fixed -45° polarization, varying azimuth separation between transmitters ...</td>
<td>198</td>
</tr>
<tr>
<td>9.6.2 Rural line-of-sight measurements with first transmitter having fixed -45° polarization, varying polarization of second transmitter ...</td>
<td>201</td>
</tr>
<tr>
<td>9.7 Experiments in a Suburban, Line-of-Sight Channel (Site 2)</td>
<td>203</td>
</tr>
<tr>
<td>9.7.1 Suburban line-of-sight measurements with two transmitters having fixed vertical polarization, varying azimuth separation between transmitters ...</td>
<td>205</td>
</tr>
<tr>
<td>9.7.2 Suburban line-of-sight measurements with the first transmitter having fixed vertical polarization, varying the polarization of the second transmitter</td>
<td>207</td>
</tr>
<tr>
<td>9.8 Experiments in Urban Line-of-Sight and non Line-of-Sight Channels (Site 3)</td>
<td>209</td>
</tr>
<tr>
<td>9.8.1 Line-of-sight, co-polarized measurements ...</td>
<td>210</td>
</tr>
<tr>
<td>9.8.2 Line-of-sight, cross-polarized measurements ...</td>
<td>210</td>
</tr>
<tr>
<td>9.8.3 Line-of-sight/non line-of-sight, co-polarized measurements</td>
<td>210</td>
</tr>
<tr>
<td>9.9 Handheld Adaptive Array Measurements ...</td>
<td>212</td>
</tr>
<tr>
<td>9.9.1 Peer-to-peer scenario (Site 2) ..</td>
<td>213</td>
</tr>
<tr>
<td>9.9.2 Microcell scenario ...</td>
<td>216</td>
</tr>
<tr>
<td>9.10 Conclusions ..</td>
<td>219</td>
</tr>
</tbody>
</table>

CHAPTER 10 CONCLUSIONS AND FUTURE WORK ..	221
10.1 Conclusions ...	221
10.2 Future Work ..	227

<p>| APPENDIX A APPROACH FOR EVALUATION OF DIVERSITY AND ADAPTIVE BEAMFORMING TECHNIQUES | 229 |</p>
<table>
<thead>
<tr>
<th>APPENDIX B PROGRAMS USED IN POLARIZATION-SENSITIVE PROPAGATION MODELING</th>
<th>238</th>
</tr>
</thead>
<tbody>
<tr>
<td>VITA</td>
<td>248</td>
</tr>
</tbody>
</table>
List of Figures

Figure 2-1. Block diagram of a wireless communication link .. 8
Figure 2-2. Mobile radio systems .. 10
Figure 2-3. A left-hand circularly polarized plane wave ... 14
Figure 2-4. The polarization ellipse showing parameters ε, τ, and γ ... 15
Figure 2-5. Multiple access techniques .. 19
Figure 2-6. A TDMA frame .. 20
Figure 2-7. Multiple coexisting channels that use the same frequency and code at the same time, but are separated in space .. 21
Figure 2-8. Frequency reuse in geographically separated cells ... 22
Figure 2-9. Spatial division multiple access (SDMA) using adaptive antennas 26
Figure 2-10. Polarization reuse .. 27
Figure 3-1. An arbitrary three dimensional array .. 30
Figure 3-2. (a) a phase scanned linear array (b) a time-scanned linear array 32
Figure 3-3. Array factor of 8-element phase-scanned linear array .. 33
Figure 3-4 Array factor of 8-element time-scanned linear array ... 35
Figure 3-5. An 8x8 Butler matrix feeding an 8-element array ... 36
Figure 3-6. A Blass matrix ... 37
Figure 3-7. A Wullenweber array ... 38
Figure 3-8. An adaptive antenna array .. 39
Figure 3-9. Diversity combining techniques ... 50
Figure 4-1. Range extension using an adaptive antenna .. 55
Figure 4-2. Interference reduction using adaptive antennas ... 59
Figure 4-3. Spatial division multiple access (SDMA) using adaptive antennas 63
Figure 4-4. Top view of vehicle-mounted array configurations ... 69
Figure 4-5. Paths of evolution for European digital cellular/PCS systems 71
Figure 4-6. Paths of evolution from AMPS for rural North American cellular systems 72
Figure 4-7. Paths of evolution from AMPS for urban North American cellular systems 73
Figure 5-1. Polarization diversity .. 78
Figure 5-2. A multi-polarized adaptive array ... 82
Figure 5-3. The multi-polarized array used in [5.2] ... 83
Figure 5-4. The “tripole” array .. 84
Figure 5-5. The multi-polarized adaptive array investigated in [5.9] 86
Figure 6-1. High level system block diagram of the Handheld Antenna Array Testbed (HAAT) ... 97
Figure 6-2. Block diagram of the two-channel HAAT receiver/data logger and data processing system ... 98
Figure 6-3. Block diagram of a HAAT transmitter .. 99
Figure 6-4. Positioning system for controlled tests ... 100
Figure 6-5. Receiver architecture block diagram ... 101
Figure 6-6. Block diagram of the 4-channel HAAT receiver ... 103
Figure 6-7. Block diagram of the equipment configuration used for receiver calibration...... 104
Figure 6-8. Data processing software modules for diversity measurements 110
Figure 6-9. Local means of measured envelopes in urban, non line-of-sight channel for different demeaning window lengths .. 113
Figure 6-10. Signal envelopes vs. position in an indoor, non line-of-sight channel. 115
Figure 6-11. CDF of signal envelope with best fit Ricean CDF, $K=1.5$. 117
Figure 6-12. Cumulative distribution function of signals before and after diversity combining, showing diversity gain, for an urban, non line-of-sight measurement with antenna spacing $d=0.5\lambda$. 118
Figure 6-13. Data processing software modules for adaptive beamforming measurements. 121
Figure 6-14. Plots of SINR from adaptive beamforming measurements. 122
Figure 6-15. Cumulative probability distributions showing diversity gain for: (a) maximal ratio combining and (b) LSCMA beamformer. 124
Figure 7-1. Ring of scatterers model. 128
Figure 7-2. Geometrically-based single-bounce circular model. 128
Figure 7-3. Geometrically-based single-bounce elliptical model. 129
Figure 7-4. Reflection and transmission of polarized wave. 130
Figure 7-5. Coordinate systems for modeling transmission and reception of polarized waves. 132
Figure 7-6. Sampled 3-dimensional pattern of a vertical half-wave dipole. 133
Figure 7-7. A three step rotation procedure that provides the ability to point the antenna in an arbitrary direction. 133
Figure 7-8. Pattern of a half-wave dipole that has been rotated by 20° from vertical. 136
Figure 7-9. Geometry of link with multipath reflection for VMPS. 142
Figure 7-10. Main screen of VMPS user interface. 143
Figure 7-11. Diversity Simulation, location of transmitter, receiver, and scatterers. 144
Figure 7-12. Fading envelopes of the signals before and after maximal ratio combining. 145
Figure 7-13. Cumulative probability distribution and diversity gain. 146
Figure 8-1. Three “dimensions” of antenna diversity. 150
Figure 8-2. Overview of the Handheld Antenna Array Testbed (HAAT). 154
Figure 8-3. Diversity antenna configurations: (a) spatial, (b) polarization, (c) pattern. 156
Figure 8-4. Effects of mutual coupling. 158
Figure 8-5. Envelope correlations vs. antenna spacing for line-of-sight, non line-of-sight, urban canyon, and outdoor-to-indoor/indoor channels. 162
Figure 8-6. Branch power imbalance vs. antenna spacing. 163
Figure 8-7. Diversity gain vs. antenna spacing without demeaning. 165
Figure 8-9. Currents and patterns of a vertically oriented dipole and a horizontally oriented big wheel antenna. 174
Figure 8-10. SINR of signal 1 in Measurement 2 before and after beamforming with linear array of four half-wave dipoles with 0.17 wavelength spacing. 176
Figure 8-11. Array configurations used in controlled adaptive beamforming measurements. 179
Figure 8-12. Angles used in simulations and measurements. 181
Figure 8-13. Results of simulated operation in free space (azimuth angle varied). 183
Figure 8-14. Results of simulated operation in free space (polarization angle varied). 185
Figure 8-15. Results of simulated operation in free space (polarization angle varied). 187
Figure 8-16. Results of simulated operation in free space (azimuth angle varied). 189
Figure 8-17. Channel geometry for simulations reported in this section. 191
Figure 8-18. Results of simulated operation in the rural LOS multipath channel (polarization angle varied). 193
Figure 9-11. Results of simulated operation in rural LOS multipath channel (azimuth angle varied).. 195
Figure 9-12. Rural Line-of-Sight Channel (Boley Fields in the Jefferson National Forest)..... 197
Figure 9-13. Results of interference rejection measurements in rural environment (azimuth angle varied).. 200
Figure 9-14. Results of interference rejection measurements in rural environment (polarization angle varied).. 202
Figure 9-15. Suburban measurement location (field outside EE graduate student offices, Virginia Tech campus).. 204
Figure 9-16. Results of interference rejection measurements in suburban environment (azimuth angle varied).. 206
Figure 9-17. Results of interference rejection measurements in suburban environment (polarization angle varied).. 208
Figure 9-18. Urban measurement area (between Whittemore and Hancock Halls, Virginia Tech campus).. 209
Figure 9-19. Mean SINR after beamforming in an urban environment for three cases of line-of-sight conditions and polarization.. 211
Figure 9-20. Four-element handheld antenna arrays (single- and multi-polarized).. 212
Figure 9-21. Geometry of measurement Site 2 used for peer-to-peer handheld adaptive beamforming measurements .. 213
Figure 9-22. Microcell scenario showing transmitter and measurement locations .. 218
Figure A1. Diversity gain measured from cumulative distribution functions.. 232
List of Tables

Table 2.1 Polarization parameters and their definitions .. 15
Table 3-1 Summary of adaptive beamforming algorithms ... 46
Table 5-1 Reuse and Diversity Mechanisms .. 81
Table 5-2 Summary of multi-polarized adaptive array and cross-polarized interference
cancellation literature .. 91
Table 6-1. Major Transmitter Components .. 99
Table 6-2. Major Positioning System Components ... 100
Table 6-3. Major Two-Channel Receiver Components .. 101
Table 6-4. Link Budget for the Two-Channel HAAT Receiver 102
Table 6-4. Link budget for the 4-channel HAAT receiver 105
Table 6-5 Power and Phase Balance Between Channels of the 4-channel HAAT Receiver 106
Table 6-6. Correlation of local means of envelopes for different demeaning windows 114
Table 7-1. List of m-files for polarization-sensitive propagation modeling (VMPS) 142
Table 8-1 Description of diversity experiment locations including line-of-sight (LOS) and non
one-line-of-sight (NLOS) channels .. 159
Table 8-2. Categories of measurement sets with statistics of the measurement set mean values. G_{div} is the diversity gain at the 99% reliability level with maximal ratio combining. 161
Table 8-3. Statistics for each measurement location (data processed without demeaning) 167
Table 8-4. Statistics for spatial diversity measurement with and without operator’s head present,
vertical dipoles with d=0.25\lambda ... 168
Table 9-1. SINR improvement in indoor interference rejection measurements using a uniform
linear array of four vertically oriented dipoles spaced 0.17\lambda apart 177
Table 9-2 List of measurement sets ... 180
Table 9-3. Results of peer-to-peer handheld measurements 215
Table 9-4. Results of microcell handheld measure .. 217
Table B1. Parameters for “leescatt” .. 238
Table B2. Parameters for “aoadist” .. 238
Table B3. Parameters for “reflect” ... 239
Table B4. Parameters for “frescoef” ... 239
Table B5. Parameters for “spsig” ... 240
Table B6. Parameters for “getazpat” ... 240
Table B7. Parameters for “ap” ... 241
Table B8. Parameters for “isovert” ... 241
Table B9. Parameters for “sdipole” .. 242
Table B10. Parameters for “halfwave” ... 242
Table B11. Parameters for “dirantv” ... 243
Table B12. Parameters for “gain” ... 243
Table B13. Parameters for “phipat” .. 244
Table B14. Parameters for “thetapat” .. 244
Table B15. Parameters for “threepat” ... 244
Table B16. Parameters for “rotapath” ... 245
Table B17. Parameters for “rotate2” ... 246
Table B18. Parameters for “resample” .. 246
Table B19. Parameters for “polarize” .. 247