Electro-optical Properties of Ultra Thin Organic films

Ping Yang Hodges

Thesis submitted to the faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
Master of Science
in
Chemical Engineering

APPROVED:

Ravi F. Saraf, Chair

David F. Cox

William B. Spillman, Jr.

April 23rd, 2001
Blacksburg, Virginia

Keywords: thin film; electric field; interferometry
Acknowledgment

Above all, I wish to express my sincere gratitude to my advisor, Professor Ravi F. Saraf for his continuous support and guidance throughout this challenging project.

I want to thank Yves Martin at IBM Yorktown research center for his valuable assistance with my interferometer setup. I also want to thank Judith Rubino at IBM for providing all my gold samples.

I also want to thank the staff of the chemical engineering department Riley Chan, Wendell Brown for their assistance during my research. I would also wish to acknowledge my thesis committee members: Professor William B. Spillman, and Professor David F. Cox.

I would like to thank the members of Dr. Saraf’s research group, especially Sanjun Niu, Eric Stumb and Jean Huie for their input and assistance on my sample characterization and analysis.

Finally, I am greatly indebted to my husband for his constant encouragement, support, help, and endless love.
Electro-optical Properties of Ultra Thin Organic Films

Ping Yang Hodges

ABSTRACT

Electro-optical properties of thin film are of great interest owing to the perpetual demand for miniaturization and higher speed devices for communication, electronic, and biomedical applications. The thickness of polymer films developed for these applications has decreased dramatically making interfacial effects significant. It is well documented that, in submicron thickness range, both film/substrate & film/air interface are critical. In this study, we probe the dynamics of electro-optical polymer thin films in the sub-micron thickness regime to understand interfacial effects. The polymer chain dynamics of Polypropylene oxide (PPO) under electric field are investigated in this study. The effects of electric field strength, frequency, and polymer molecular weight on the polymer chain dynamics under electric field are studied. Experimental results show that PPO exhibits both piezoelectric and electrorestrictive effects at significantly high frequencies (10^4Hz range). Conventional organic materials are responsive only at frequencies in $<1kHz$ range. A high signal-to-noise ratio differential interferometry is designed to quantitatively study the effects of film thickness, electric field frequency and amplitude on the dynamic properties of PPO thin films ranging from 30 nm to 400 nm. The interferometer can concurrently monitor the index of refraction, thickness change of polymer films, and birefringence due to the applied electrical field.
Table of contents

Chapter 1. Introduction ..1
1.1 Organic Thin Films ...1
1.2 Electro-Optical Studies ..3
1.3 A Brief Introduction to Interferometry ..9

Chapter 2. Interferometry ..10
References ...15

Chapter 3. Experimental and Analytical ...18
3.1. Experimental ..18
3.1.1 Differential Interferometer Setup ...18
3.1.2. AC Electrical Field Applying Device ...22
3.1.3. AFM Thickness Measurement ..22
3.1.4. Thin Film Thickness Measurement ...22
3.2. Materials and Sample Preparation ..26
3.2.1 Spin-casting Film Sample Preparation ..26
3.2.2. Gold Electrode Sample Preparation ..27
References ...30

Chapter 4. Heterodyne Interferometry Kinetics ..31
4.1 Film thickness measurement..31
4.2 Measurement of electric field effect ...36
References ...39

Chapter 5. Results and Discussion ..40
5.1. Nonlinear Optical Properties of Polymer Film ..40
5.2. PPO Electrical Properties ...43
5.3. Electric Field Frequency Effect on PPO Electrical Properties46
5.4. Electrical Field Intensity Effect on PPO Electrical Properties50
Chapter 6. Conclusions and Future Work ...64
6. 1. Conclusions ..64
6.2. Future Work ..65
6. 2.1 Birefringence study of polymer films ...65
6.2.2 Polymer Film Aging Under External Field ...65
References ...67

Vita ..68
List of Figures

Chapter 2
Figure 2.1 Schematic of Michelson Interferometer ..11
Figure 2.2 Fabry-Perot Interferometer ...12

Chapter 3
Figure 3.1 Differential Interferometer Setup ..19
Figure 3.2 0.9% Polystyrene (PS) Film Spin-casted on Silicon Wafer Sample 23
Figure 3.3 Laser Beam Focused on 0.9% PS Film Edge ..23
Figure 3.4 The Bragg Cell ..24
Figure 3.5 Apply AC Field to Polymer Film ..25
Figure 3.6 Flow-Chart of Sample Preparation ..27
Figure 3.7 Flow chart of a typical resist process ...28
Figure 3.8 Exposure and development of negative and positive photo-resists29
Figure 3.9 The gold line sample ...30

Chapter 4
Figure 4.1a The first reflection at the film surface ..32
Figure 4.1b The first reflection at the silicon ...32
Figure 4.1c The second reflection at the silicon ...32

Chapter 5
Figure 5.1 Tracing signal of spectrum analyzer with AC frequency at 24kHz for 3% PPO
2000 ..42
Figure 5.2a PPO Molecular Polar Structure ...44
Figure 5.2b PPO Chain Polar Structure ...45
Figure 5.3 The Change of (nZ) Due to the First Order Sidebands Versus Frequency at
220kV/cm. ..55
Figure 5.4 The Change of (nZ) Due to the Second Order Sidebands Versus Frequency at
220kV. ..56
Figure 5.5 The Change of \((nZ)\) Due to the First Order Sidebands Versus Electric Field Amplitude for 2\%PPO 2000. ...57

Figure 5.6 The Change of \((nZ)\) Due to the First Order Sidebands Versus Electrical Field at 12kHz. ..58

Figure 5.7 The Change of \((nZ)\) Due the First Order Sidebands Versus Electric Field at 24kHz. ...59

Figure 5.8 The Change of \((nZ)\) Due to the Second Order Sidebands Versus Electric Field at 12kHz. ..60

Figure 5.9 The Change of \((nZ)\) Due to the Second Order Sidebands Versus Electric Field at 24kHz. ...61

Figure 5.10 The change of \((nZ)\) due to the first order sidebands versus frequency at different field strength ...62

Chapter 6

Figure 6.1 The Electric Field of the Laser Parallel to the Applied Electric Field66

Figure 6.2 Electric Field of the Laser Perpendicular to the Applied Electric Field66
List of Tables

Chapter 1
Table 1.1 Comparision of Piezoelectric and Pyroelectric Polymers ...7

Chapter 5
Table 5.1 Film Thickness of Different Concentration and Different Molecular Weight PPO ...45
Table 5.2 Comparison of Maximum $\Delta(nd)$ at Certain Frequency Range for Different Thickness and Molecular Weight PPO Film ...49
Table 5.3 Total Refractive Index Times Thickness Change at 220kV/cm With and Without Polarizers ..63