EFFICIENCY ENHANCEMENT OF BASE STATION POWER AMPLIFIERS USING DOHERTY TECHNIQUE

Vani Viswanathan

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Master of Science
In Electrical Engineering

Charles W. Bostian, Chair
Sanjay Raman
Alex Q. Huang

February 3, 2004 Blacksburg, Virginia

Keywords: Doherty power amplifier, LDMOS, WCDMA, efficiency enhancement

Copyright 2004, Vani Viswanathan
EFFICIENCY ENHANCEMENT OF BASE STATION POWER AMPLIFIERS USING DOHERTY TECHNIQUE

By

Vani Viswanathan

ABSTRACT

The power amplifiers are typically the most power-consuming block in wireless communication systems. Spectrum is expensive, and newer technologies demand transmission of maximum amount of data with minimum spectrum usage. This requires sophisticated modulation techniques, leading to wide, dynamic signals that require linear amplification. Although linear amplification is achievable, it always comes at the expense of efficiency. Most of the modern wireless applications such as WCDMA use non-constant envelope modulation techniques with a high peak to average ratio. Linearity being a critical issue, power amplifiers implemented in such applications are forced to operate at a backed off region from saturation. Therefore, in order to overcome the battery lifetime limitation, a design of a high efficiency power amplifier that can maintain the efficiency for a wider range of radio frequency input signal is the obvious solution.

A new technique that improves the drain efficiency of a linear power amplifier such as Class A or AB, for a wider range of output power, has been investigated in this research. The Doherty technique consists of two amplifiers in parallel; in such a way that the combination enhances the power added efficiency of the main amplifier at 6dB back off from the maximum output power.
The classes of operation of power amplifier (A, AB,B, C etc), and the design techniques are presented. Design of a 2.14 GHz Doherty power amplifier has been provided in chapter 4. This technique shows a 15% increase in power added efficiency at 6 dB back off from the compression point. This PA can be implemented in WCDMA base station transmitter.
Acknowledgements

I wish to express my most sincere gratitude and appreciation to my advisor, Dr. Charles W. Bostian, for an outstanding experience here at Virginia Tech. It has been a great experience working with him, and the lessons I have learned will stay with me throughout my career. I would like to thank him for the constant inspiration and encouragement throughout my Masters program.

I would also like to thank my committee members Dr. Sanjay Raman and Dr. Alex Q. Huang for their review of my thesis and helpful comments. Special thanks to Dr. Cedric Cassan and Mr. Robert Kesseler of Motorola for help with the ADS design kits and reference materials.

I wish to acknowledge and give my appreciation to all the people of the Center for Wireless Telecommunications, Virginia Tech, without whom, this work as it stands, would not have been possible.

Lastly, I would like to thank my parents, Viswanathan and Shobhana and my sister, Vidhya for their patience, support, guidance and acceptance of my endeavors.
Table of Contents

Abstract... ii
Acknowledgements.. iv
Table of Contents.. v
List of Figures... viii
List of Tables.. xi
Glossary of Acronyms.. xii

1 INTRODUCTION... 1
 1.1 Background... 1
 1.2 Research Goals.. 2
 1.3 Report Organization.. 3

2 RF POWER AMPLIFIERS.. 4
 2.1 Classes of PA operation.. 4
 2.1.1 Class A... 5
 2.1.2 Class B... 6
 2.1.3 Class AB.. 7
 2.1.4 Class C... 8
 2.2 Characteristics of power amplifiers... 8
 2.2.1 Linearity... 8
 2.2.2 Measurement of Linearity.. 8
 2.2.2.1 1 dB Compression point... 9
 2.2.2.2 Intermodulation Distortion.. 10
 2.2.2.3 Third order Intercept point... 11
 2.2.3 Efficiency... 12
4.5.4 Input and Output matching .. 40
4.5.5 Biasing ... 41
4.5.6 Design of output combiner .. 42
4.6 Implementation .. 45
4.7 Conclusion .. 45

5 SIMULATION AND RESULTS ... 46
5.1 Introduction ... 46
5.2 Doherty Amplifier I ... 46
 5.2.1 Single tone simulations .. 47
 5.2.2 Two tone simulations ... 51
5.3 Doherty Amplifier II .. 53
5.4 Comparison of Doherty topologies 57
5.5 Significance of load modulation ... 58
5.6 Effect of main stage biasing on DPA 61
5.7 Effect of auxiliary stage biasing on DPA 63
5.8 Conclusion .. 67

6 SUMMARY AND CONCLUSION .. 68
6.1 Summary .. 68
6.2 Conclusion .. 69
6.3 Future Directions ... 69
References .. 70
List of Figures

Figure 2.1 Classes of operation of power amplifier... 5
Figure 2.2 Class A Transfer characteristics, Adapted from [1]......................... 5
Figure 2.3 Class B Transfer characteristics, Adapted from [1]......................... 6
Figure 2.4 Class AB Transfer characteristics, Adapted from [1]..................... 7
Figure 2.5 1 dB Compression point... 9
Figure 2.6 Frequency spectrum of a two-tone signal. 10
Figure 2.7 Third order intercept point... 11
Figure 2.8 Performance comparisons of LDMOS (Solid line) and BJT......... 13
Figure 3.1 Performance analyses of efficiency enhancement techniques........ 17
Figure 3.2 Doherty amplifier circuit using vaccum tubes, Adapted from [12]... 18
Figure 3.3 High efficiency configuration using Vacumm tubes...................... 19
Figure 3.4 Block diagram of Doherty power amplifier................................. 20
Figure 3.5 Active load-pull schematic.. 20
Figure 3.6 Two way Doherty Schematic... 22
Figure 3.7 Doherty Amplifier Circuit... 25
Figure 3.8 Block Diagram DPA... 27
Figure 3.9 Current and voltage characteristics of DPA................................. 28
Figure 3.10 Stage I – Operation of Doherty power Amplifier....................... 29
Figure 3.11 Stage II– Operation of Doherty power Amplifier....................... 30
Figure 3.12 Stage III– Operation of Doherty power Amplifier..................... 30
Figure 3.13 Ideal Efficiency plot of Doherty power amplifier...................... 32
Figure 4.1 Architecture of the Doherty amplifier... 35
Figure 4.2 Current and voltage characteristics of DPA............................... 36
Figure 4.3 Input and output matching of Main and Auxiliary amplifier......... 37
Figure 4.4 Transfer Characteristics of LDMOS FET…………………………………… 38
Figure 4.5 Output Characteristics of LDMOS FET…………………………………… 38
Figure 4.6 Simulated results of Load-pull analysis…………………………………… 39
Figure 4.7 Performance of the amplifier block……………………………………… 40
Figure 4.8 Output Matching………………………………………………………… 41
Figure 4.9 Output combiner………………………………………………………….. 43
Figure 4.10 Schematic of the Doherty power amplifier…………………………… 44
Figure 5.1 PAE plots of DPA I and Conventional Class AB PA…………………… 47
Figure 5.2 (i) Voltage variations of main and auxiliary stage for DPA …………… 49
Figure 5.2 (ii) Current variations of main and auxiliary stage for DPA ………… 49
Figure 5.3 Drain current waveforms of main and auxiliary stage of DPA I…… 50
Figure 5.4 Gain of DPA I and Conventional Class AB…………………………… 50
Figure 5.5 Input return loss (dB) of DPA I……………………………………….. 51
Figure 5.6 (i) IMD3 (dBc) of DPA I for a two-tone signal……………………….. 51
Figure 5.6 (ii) IMD5 (dBc) of DPA I for a two-tone signal……………………….. 52
Figure 5.7 IMD3 Comparison of DPA I and Conventional Class AB for a two-tone
signal………………………………………………………………………………….. 52
Figure 5.8 (i) PAE response of Doherty II PA for a single tone signal………….. 54
Figure 5.8 (ii) Gain response of Doherty II PA for a single tone signal…………. 54
Figure 5.8 (iii) 1 dB Compression point of Doherty II PA for a single tone signal. 55
Figure 5.9 (i) PAE Comparison of DPA II and Conventional Class B PA for a
single-tone signal…………………………………………………………………… 56
Figure 5.9 (ii) IMD3 (dBc) Comparison of DPA II and Conventional Class B PA for a
two-tone signal………………………………………………………………………. 56
Figure 5.10 (i) PAE (dBc) Comparison of DPA II and DPA II for a two-tone signal….. 57
Figure 5.10 (ii) IMD3 (dBc) Comparison of DPA I and DPA II for a two-tone signal….. 58
Figure 5.11 PAE plots of ideal DPA and DPA I…………………………………….. 59
Figure 5.12 (i) PAE response of Doherty topology with variation on main stage…… 61
Figure 5.12 (iii) Gain response of Doherty topology with variation of main stage bias… 63
Figure 5.13 (i) PAE response of DPA for a single-tone signal…………………… 64
Figure 5.13 (ii) Gain response of DPA for a single-tone signal…………………… 65
Figure 5.13 (iii) PAE response of Doherty topology with variation on main stage bias… 66
Figure 5.13 (iv) IMD3 response of DPA for two-tone signal………………………… 66
List of Tables

Table 4.1 Gate bias Voltages corresponding to different classes of Operation 41
Table 5.1 Doherty amplifier I Bias points ... 47
Table 5.2 RF Performances of DPA I with variation in input power 48
Table 5.3 RF responses of DPA I and Class AB power amplifier 53
Table 5.4 Doherty amplifier II Bias points ... 53
Table 5.5 Output impedance of the main & auxiliary stages with variation in i/p power... 60
Table 5.6 Biasing Voltage range corresponding to each class of operation 61
Glossary of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3G</td>
<td>Third Generation Cellular Systems</td>
</tr>
<tr>
<td>ACI</td>
<td>Adjacent Channel Interference</td>
</tr>
<tr>
<td>ACPR</td>
<td>Adjacent Channel Power Ratio</td>
</tr>
<tr>
<td>BPSK</td>
<td>Binary Phase Shift Keying</td>
</tr>
<tr>
<td>CDMA</td>
<td>Code Division Multiple Access</td>
</tr>
<tr>
<td>DPA</td>
<td>Doherty Power Amplifier</td>
</tr>
<tr>
<td>EER</td>
<td>Envelope Elimination and Restoration</td>
</tr>
<tr>
<td>QAM</td>
<td>Quadrature Amplitude Modulation</td>
</tr>
<tr>
<td>EVM</td>
<td>Error Vector Magnitude</td>
</tr>
<tr>
<td>GMSK</td>
<td>Gaussian Minimum Shift Keying</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile Communications</td>
</tr>
<tr>
<td>IIP3</td>
<td>Third Order Intercept Point</td>
</tr>
<tr>
<td>LDMOS</td>
<td>Laterally Diffused Metal Oxide Semiconductor</td>
</tr>
<tr>
<td>LINC</td>
<td>Linear Amplification Using Non-linear Components</td>
</tr>
<tr>
<td>OIP3</td>
<td>Output Intercept Point</td>
</tr>
<tr>
<td>PAE</td>
<td>Power Added Efficiency</td>
</tr>
<tr>
<td>QPSK</td>
<td>Quadrature Phase Shift Keying</td>
</tr>
<tr>
<td>WCDMA</td>
<td>Wideband Code Division Multiple Access</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Background

High efficiency and good linearity are among the very important characteristics of a base station power amplifier used in majority of the modern applications such as IS-95, CDMA-2000 and WCDMA. Both the characteristics have always been conflicting requirements demanding innovative power amplifier design techniques. Maintaining the high efficiency attained, over a wide range of the power amplifier operation is an added requirement in these applications making power amplifier design a challenging task.

Spectrum is expensive, and newer technologies demand transmission of maximum amount of data using the minimum amount of spectrum. This requires sophisticated modulation techniques, leading to wide, dynamic signals that require linear amplification. Although linear amplification is achievable, it always comes at the expense of efficiency.
The modern wireless communication standards employ non-constant envelope modulation techniques such as quadrature phase shift keying (QPSK) for attaining high data rates and spectral efficiency. The RF power amplifiers implemented in such systems are ‘backed off’ from its saturation into their linear operating region in order to obtain a satisfactory linearity over the transmitter’s dynamic range. This drastically reduces the efficiency of the power amplifier decreasing the battery life of the handset. At present, a more routine approach to this issue is to design a high efficiency amplifier with a non-linear mode combined with a more complex linearity improvement technique.

1.2 Research Goals

In this research project, the different possible implementations of high efficiency power amplifiers using the Doherty topology are investigated without compromising on the stringent linearity requirement of the 3G WCDMA standards. The main goals of the research are listed here:

- Detailed analysis of the possible implementation techniques of modern Doherty amplifiers using solid state devices in comparison to the conventional design built using vacuum tubes
- A detailed methodology for the design of a two stage Doherty power amplifier using Motorola HV4_FET transistors
- Design and simulation of two different realizations of the Doherty power amplifier for WCDMA band with a center frequency of 2.14 GHz and bandwidth of 5 MHz using Motorola LDMOS transistors developed with HV4 process technology.
- Analysis of the effect of biasing of the main and auxiliary stages of the Doherty power amplifier on efficiency and linearity
- Literature review of implementation of techniques like derivative superposition on Doherty power amplifier for enhancement of linearity
1.3 Report Organization

This report has two major goals: first, to provide the reader with an introduction on the principle of a two stage Doherty power amplifier; and second, to discuss its performance in comparison with a classical power amplifier design. The format of this report will therefore follow the goals.

Chapter 2 discusses the common topologies used in Power Amplifier design, as well as briefly explains some common design parameters involved in the design of a power amplifier. Chapter 2 also mentions some of the important properties of an LDMOS transistor.

Chapter 3 contains the principle of Doherty technique with brief review on the history of Doherty power amplifiers built using vacuum tubes. A discussion on the working of an ideal Doherty power amplifier has also been provided.

Chapter 4 explains in detail the design and implementation of a two stage Doherty amplifier using LDMOS FETs.

Chapter 5 will discuss the simulation results that were obtained from two different realizations of the Doherty design. A comparative analysis on the performance of the proposed designs with the corresponding classical power amplifier design has also been provided. Finally, conclusions from this work will be presented in Chapter 6.
Chapter 2

RF Power Amplifiers

2.1 Classes of PA Operation

LDMOS power amplifiers used in transceiver circuits exhibit varying degrees of nonlinearity, depending on its class of operation. The output current’s harmonic content varies with the DC bias at the gate of the LDMOS device, while maintaining a constant RF input signal. In certain applications, it may be desirable to have the transistor conducting for only a certain portion of the input signal. The portion of the input RF signal for which there is an output current determines the class of operation of a power amplifier. This chapter discusses four classes of power amplifier operation, which are predominantly used in Doherty power amplifiers. Figure 2.1 shows the typical classes based on the transistor transfer characteristics.
2.1.1 Class A

Class A amplifiers are biased such that the variations in input signal occur within the limits of cutoff and saturation \([a]\). The collector current flows during the complete cycle (360 degrees) of the input signal.

![Figure 2.2 Class A Transfer characteristics [Grig00]](image)
As shown in Figure 2.1, the bias point is set closer to the center of the transistor’s range of operation also called as the active region. Class A operation provides the maximum linearity in comparison to any other class of operation.

2.1.2 Class B

The collector (drain) current flowing during one-half of the RF input signal signifies the class B operation. The dc operating point is set so that the base (gate) current is zero with no RF input signal. This is achieved by biasing the transistor at its cut-off voltage and any current through the device goes directly to the load. Precisely, the conduction angle of the class B amplifier operation remains 180 degrees, or one half the input cycle. Class B power amplifiers are often implemented using push-pull configuration, which uses two transistors in parallel; each amplifying one half of the RF input signal.

![Figure 2.3 Class B Transfer characteristics](image)

As a result, the efficiency of the class B amplifier is almost double than its equivalent class A amplifier. Although this architecture greatly improves the efficiency, it is
normally used in applications with less stringent linearity requirements. Usually, the current waveforms are heavily distorted and a large Q tank circuit is required to recover the sinusoid.

2.1.3 Class AB

The dc operating point of the class AB operation is set closer to the cutoff region. The collector current flows for more than 180 degrees but less than 360 degrees of the RF input signal. The linearity of a class AB power amplifier is closer to Class A operation and its efficiency closer to class B operation. This enables the selection of operating point of the class AB amplifier based on whether linearity or efficiency is the dominant requirement. The class AB operated amplifier is also commonly used as a push-pull amplifier to overcome a side effect of class B operation called crossover distortion.

![Class AB Transfer characteristics](image)

Figure 2.4 Class AB Transfer characteristics [Grig00]
2.1.4 Class C

In class C operation, drain current flows for less than one half cycle of the input signal. The Class C operation is achieved by setting the dc operating point below cutoff and thereby, allowing conduction on only the portion of the input signal that overcomes the reverse bias of the source gate junction. Although linearity is the worst, the efficiency of class C is the highest of the four classes of amplifier operations discussed.

2.1.5 Other High Efficiency classes

There are other high efficiency classes of operation such as Class D, E and F. These classes of operation are more suited for applications using constant envelope modulation techniques with linearity being a less stringent requirement. Doherty technique involves the implementation of an efficiency enhancement on a linear power amplifier circuit such as Class A or AB.

2.2 Characteristics of Power Amplifiers

2.2.1 Linearity

The RF power amplifiers are inherently non-linear and are the main contributors for distortion products in a transceiver chain. Power amplifiers effect the utilization of the spectrum through nonlinear performance. Non-linearity is typically caused due to the compression behavior of the power amplifier, which occurs when the RF transistor operates in its saturation region due to a certain high input level.

2.2.2 Measurement of Linearity

The non-linearity of a power amplifier can be attributed mainly to gain compression and harmonic distortions resulting in imperfect reproduction of the amplified signal. It is characterized by various techniques depending upon specific modulation and application. Some of the widely used figures for quantifying linearity are the
2.2.3 1 dB Compression point (P_{1dB})

Non-linear response appears in a power amplifier when the output is driven to a point closer to saturation. As the input level approaches this saturation point, the amplifier gain falls off, or compresses. The output 1 dB compression point (P_{out,1dB}) can be expressed as the output level at which the gain compresses by 1 dB from its linear value. Figure 1.5 shows the relationship between the input and output power of a typical power amplifier.

\[P_{in,db} \] at the 1 dB compression point is related to corresponding output power, \(P_{out,1db} \) by

\[P_{in,db} (dBm) = P_{out,db} (dBm) + G_{1,db} (dB) \] \hspace{1cm} (2.1)

where \(G_{1,db} \) is the gain at the compression point.

Figure 2.5 Output power vs. Input power, 1 dB compression point
2.2.4 Intermodulation Distortion

Intermodulation Distortion is a phenomenon of generation of undesirable mixing products, which distort the fundamental tones and gives rise to intermodulation products. The third order intermodulation products have the maximum effect on the signal, as they are the closest to the fundamental tone. The unwanted spectral components, such as the harmonics, can be filtered out. But the filtering does not work with the third order intermodulation products, as they are too close to the fundamental tone. Figure 2.6 shows the frequency domain representation of the intermodulation distortion caused due to a two-tone signal.

![Frequency spectrum of a two-tone signal](image)

Figure 2.6 Frequency spectrum of a two-tone signal

As seen from the above figure, the magnitude of intermodulation distortion can be given by

\[
IMD(dBc) = P_{out,1dB} - P_{out,IMD}
\]

(2.2)

where \(P_{out,IMD} \) represents the output power of the third order intermodulation product.
2.2.5 Third order Intercept point

The other important parameter to characterize linearity is the intercept point. It is defined as the point where the linear extension of the particular distortion component intersects the linear extension of the input vs. output line. Figure 2.7 represents the third order intercept point (IP3) in a plot of input power versus the output power. This parameter plays a major role in the analysis of device performance, because higher the IP3, lower is the distortion at higher power levels.

The magnitude if the output intercept point is given as

\[OIP3 = P_{OUT} + \frac{P_{out.IMD}}{2} \]

(2.3)

The input intercept point (IIP3) can be represented in terms of OIP3 as follows

\[IIP3 = OIP3 - Gain \]

(2.4)

Figure 2.7 Third order intercept point
2.2.6 Efficiency

Efficiency in power amplifiers is expressed as the part of the dc power that is converted to RF power, and there are three definitions of efficiency that are commonly used. Drain efficiency is the ratio of the RF-output power to the dc input power.

\[\eta = \frac{P_{\text{OUT}}}{P_{\text{dc}}} \]

(2.5)

Power-added efficiency (PAE), however, takes the power of the input signal into account and can be expressed by

\[\text{PAE} = \frac{P_{\text{OUT}} - P_{\text{IN}}}{P_{\text{dc}}} \]

PAE is generally used for analyzing PA performance when the gain is high. Finally, the overall efficiency is represented as

\[P_{\text{overall}} = \frac{P_{\text{OUT}}}{P_{\text{dc}} + P_{\text{IN}}} \]

(2.7)

and this form of efficiency is usable for all kinds of performance evaluations.

2.2.7 Noise

Noise is of very little importance in design of power amplifiers. The formula for the noise factor of a cascaded system is given by

\[F_{\text{tot}} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1G_2} + \cdots + \frac{F_N - 1}{G_1G_2\cdots G_{N-1}} \]

(2.8)

As can be seen from the above formula, the noise factor basically depends on the first few stages. The power amplifier usually being the last component of the transmitter chain has very little impact on the overall noise figure.
2.3 LDMOS Power Transistors

Laterally Diffused Metal-Oxide-Semiconductor (LDMOS) devices are enhancement mode N-channel MOSFETs. The device cross section is designed for high voltage operation with low parasitic capacitance to enable high frequency operation. The length of the channel usually determines the high frequency properties of the LDMOS transistors. The shorter channel length improves the linearity. LDMOS technology is intended to replace bipolar transistors in many high-power telecommunication applications. It had been engineered to achieve better gain, lower third order intermodulation distortion and higher operating efficiencies over a large dynamic range. These features of the LDMOS device enable fewer gain stages in RF power amplifiers and better efficiency. Figure 2.8 provides a performance comparison between the LDMOS and Bipolar transistors [Phil00].

Figure 2.8 Performance comparisons of LDMOS (Solid line) and BJT (dotted line) (Gain and linearity plots of a class AB PA) [Phil00]
The exceptional linearity of the LDMOS transistors makes them the best fit to meet the stringent linearity requirements of the 3G standards. LDMOS devices significantly reduce power consumption and thermal issues in state-of-the-art 3G base stations achieving a 50% higher power density, a 6-8% higher WCDMA efficiency and a 2dB higher power gain than previous 0.8um technologies [Phil00].

2.4 Conclusion

The performance of a transceiver in mobile communications depends primarily on the performance of the power amplifier. High gain, high linearity, stability and high efficiency are the characteristics of a well-designed power amplifier. The objective of this research, as stated earlier, is to design a highly efficient power amplifier for the WCDMA (2.11 – 2.17 GHz) band using the Doherty topology without compromising on the linearity requirements. The following chapters will provide a detailed analysis of the Doherty technique, with the simulated designs and results.
Chapter 3

Doherty Power Amplifiers

3.1 Introduction

The most efficient operation of a power amplifier is near compression. This is one of the well-known advantages of standards like GSM, which employs constant envelope modulation technique like GMSK. Such modulation techniques ensure that the envelope of the transmitted signal is constant. This enables the power amplifier of the mobile system to operate near saturation without distortion. On the other hand, modern standards like EDGE with more efficient data rates use modulation techniques like BPSK, QPSK, and QAM. These techniques produce non-constant envelope signals, which require the power amplifier to operate in the linear region, 3 to 6 dB backed off from compression. This prevents spectrum splatter of sideband components that might cause Adjacent Channel Interference (ACI), thereby making high efficiency hard to achieve.

Power amplification of amplitude-modulated signals has two main drawbacks. Firstly, the modulating signal gets distorted when the power amplifier is used at its full rated RF power level. Secondly, maximum efficiency is attained only at one single power level, usually closer to the maximum rated power of the device. An implementation of efficiency enhancement
technique that results in a very high efficiency in the linear region of operation of the power amplifier is the solution for the both the above issues.

Several efficiency enhancement techniques have been suggested to date. The Doherty power amplifier is considered the best choice because other efficiency enhancing techniques like Kahn (Envelope Elimination and Restoration), dynamic envelope tracking, or the Linear amplification using Non-linear components (LINC) Technique degrade linearity, raise cost and provide narrow bandwidth.

Envelope elimination and restoration (EER) techniques use a combination of highly efficient envelope amplifier and a non-linear amplifier to provide a highly efficient and linear power amplifier. Such an amplifier typically consists of a limiter that eliminates the envelope and a highly efficient non-linear PA like Class C or Class D for the amplification of the resulting constant amplitude phase modulated carrier. A constant envelope enables the non-linear amplifier to operate near compression without any distortion, enhancing its efficiency. Finally, amplitude modulation of a highly linear PA restores the envelope of the phase-modulated signal. Envelope tracking is a method similar to the EER technique. It uses a dynamically varying supply voltage that conserves power while allowing the PA to operate in linear mode. The RF drive power contains both amplitude and phase information, and the burden of linearity lies entirely on the final power amplifier. Though the performance of envelope tracking is better than a linear amplifier, it is not as good as the Kahn or EER technique. Figure 2.1 represents the efficiency plots of the well-known efficiency enhancement techniques. Though EER and LINC technique provide a better performance, as can be seen from the plots, their corresponding architectures are more complex and involve a tedious tuning process, which is very hard to realize. The Doherty technique is the most probable high efficiency amplifier topology that will appear in the immediate future because of the simplicity of its realization [Raab01].

This chapter details various aspects of Doherty power amplifier design with modern transistors in comparison to the conventional design using vacuum tubes. The Doherty operation has been explained in three stages with reference to the active load pull technique, which is the
underlying principle of Doherty power amplifiers. For better understanding, all the derivations in this chapter correspond to ideal behavior of Doherty technique.

![Graph showing efficiency enhancement techniques](image)

Figure 3.1 Performance analyses of efficiency enhancement techniques

3.2 History of the Doherty Power Amplifier

The Doherty power amplifier was the conception of William H. Doherty of Bell Laboratories, which was originally designed using vacuum tubes. Unlike modern transistors, vacuum tubes have extra grids that make transconductances easy to control. The Doherty circuit was first reported in May 1936, at the annual convention of the Institute of Radio Engineers. The first commercial transmitter to employ the circuit was the 50 kilowatt equipment installed in 1938 at WHAS in Louisville, Kentucky. Figure 3.2 depicts the schematic of a Doherty power amplifier using vacuum tubes from a magazine published during the early 1940s [Phil00].
3.3 Conventional DPA using Vacuum tubes

Vacuum tubes deliver maximum efficiency when maximum voltage is applied to the load. Power amplifier built using vacuum tubes could be supplied with maximum voltage levels only during occasional momentary modulation peaks, keeping the average efficiency of the amplifiers around 33%. The amplitude of the radio frequency voltage was too small most of the time for the conventional method of amplification, and in order to improve the situation it was necessary to devise a system in which larger amplitude was employed [Dohe00].

The solution to this issue was to devise a technique that could increase the output power by simultaneously maintaining a high constant alternating plate voltage and thereby a high efficiency. Thus, it was first required to raise the alternating voltage to a high level and then maintain the high voltage level with increasing input power. The Doherty circuit was a solution to this issue.

The circuit was implemented using the Doherty principle, whereby one vacuum tube was used to deliver the carrier power at high radio frequency voltage, and thereby providing high efficiency and the second tube was used to provide the additional voltage during modulation peaks. Precisely, if TUBE1, as in Figure 3.2, was delivering maximum voltage to the load, TUBE2, which was parallel to TUBE1, provided the extra voltage required during modulation peaks.
Figure 3.3 represents the Doherty circuit with an impedance-inverting network, the role of which will be explained in detail in the following section.

3.4 The Modern Doherty Amplifier

The simplest configuration of a Doherty circuit consists of two amplifiers, namely the “main” and the “auxiliary”. The amplifiers are connected in parallel with their outputs joined by a quarter-wave transmission line, which performs impedance transformation. The auxiliary amplifier delivers current as the main amplifier saturates, thereby reducing the impedance seen at the output of the main amplifier. Thus, the main amplifier delivers more current to the load while it is saturated because of the “load-pulling” effect. Since the main amplifier remains closer to saturation for a range of 6 dB backed off from the maximum input power, the total efficiency of the system remains high over that range. The following sections explain in detail the load pull technique, the role of quarter wave transmission line and the working principles of the Doherty power amplifier [Stev01].
3.5 Active Load Pull Technique

The active load pull technique is based on the principle that applying current from a second, phase coherent source can vary the resistance or reactance of a RF load. This defies the usual understanding that RF loads are physically passive entities. The following analysis explains the concept as presented by Cripps in [Stev00]. According to circuit theory, generator 1 sees a load resistance of R when generator 2 is set to supply zero current.

If generator 2 starts to supply current as well as generator 1, the voltage appearing across the load resistor can be given as

\[V = I_2 R \]
\[V_L = R \left[I_1 + I_2 \right] \] (3.1)

With the addition of supply current to the load resistance from second generator, the resistance seen by generator 1 now becomes

\[R_1 = R \left[\frac{I_1 + I_2}{I_1} \right] \] (3.2)

Likewise, the resistance seen by generator 2 can be represented as

\[R_2 = R \left[\frac{I_1 + I_2}{I_2} \right] \] (3.3)

The above concept can be extended to ac circuits by using complex notation for representing the magnitude and the phase of the currents and voltages and the resistive and reactive components. Thus, equation 3.3 can be represented as

\[Z_1 = R \left(1 + \frac{I_1}{I_2} \right) \] (3.4)

\(Z_1 \) can be transformed to higher value if \(I_2 \) is made in phase with \(I_1 \) and to a smaller value if \(I_2 \) is made antiphase with \(I_1 \).

The concept of load pull technique can be implemented with transistors if the generators are replaced by the output transconductances of the RF transistors. Thus, when two transistors are connected in parallel, one can modify the impedance seen by the other through proper biasing. This concept extended to the combination of two unlike devices with different periphery and biasing results in the Doherty configuration.
3.6 Quarter Wave Transformer

As shown in Figure 3.4, Doherty amplifier configuration needs an impedance inverter between the main amplifier and the load, R for the proper implementation of the load modulation and most of the designs use quarter wave transmission lines for the same.

![Impedance Inverter, Z](image)

Figure 3.6 2-way DPA schematic

The impedance matrix of a quarter wave transmission line in Figure 3.6 can be represented as follows [Stev01]

\[
\begin{bmatrix}
V_p \\
I_1
\end{bmatrix} =
\begin{bmatrix}
0 & jZ \\
1/jZ & 0
\end{bmatrix}
\begin{bmatrix}
V_m \\
I_m
\end{bmatrix}
\]

(3.5)

Expanding the matrix,

\[
V_p = jZ I_m
\]

(3.6)

From Figure 3.6, it is clear that V_p is same as the final output voltage, which depends on the main current. Thus, the linearity of the entire setup depends only on the main device characteristics. The peaking device simply maintains the level of the main voltage below the clipping level.
This can be represented using the equations as follows.

\[I_1 = \frac{1}{jZ_0} V_m \]

(3.7)

Where \(I_1 \) is related to \(I_p \) by

\[jI_p = \frac{V_p}{R} + I_1 \]

(3.8)

Thus, the action of the peaking amplifier on the main amplifier can be consolidated using the equation

\[V_m = Z \left[\frac{Z}{R} I_m - I_p \right] \]

(3.9)

The role of the quarter wave transmission line can be appreciated more once the working principle of DPA is explained. It enables the decrease of the impedance seen by the main amplifier once the main voltage reaches saturation, thereby increasing the flow of the current and thus maintaining the efficiency.

3.7 Characteristic impedance calculation

As discussed earlier, the main concept behind the Doherty technique is to enhance the efficiency of a power amplifier for a wider range of input signals as compared to the standard case where maximum efficiency is attained only at peak power. This is achieved by the premature saturation of the main amplifier, which in turn is achieved by making it see very high
impedance by the action of the quarter wave transformer and using the peaking amplifier to reduce the high impedance seen by the main amplifier, thereby maintaining the maximum voltage of the main amplifier. This concept will be explained in detail in the next section.

Before proceeding to the working principle of Doherty power amplifier, it is imperative to analyze the characteristic impedance, Z_{TL}, of the quarter wave transmission line with respect to the load, Z_{load}, of the power amplifier module as shown in Figure 3.7. Figure 3.9 shows the ideal characteristics of current and voltage of the main and auxiliary amplifier and it can be seen that the main output voltage, V_m, remains constant for a range of 6dB backed off from maximum voltage, V_{max}. Assuming ‘n’ represents the 6dB backed off range with a value ranging from 0 to 1, a 1 corresponding to the maximum value of input power, it can be concluded that V_m is independent of ‘n’ by viewing the characteristic plots.

Applying load pull technique to the system in Figure 3.7,

$$Z_0 = Z_{\text{load}} \left(1 + \frac{I_2}{I_0}\right)$$

(3.10)

$$Z_2 = Z_{\text{load}} \left(1 + \frac{I_0}{I_2}\right)$$

(3.11)

The quarter wave transmission line in Figure 3.7 can be represented as

$$Z_{\text{TL}} = \sqrt{Z_1 Z_0}$$

(3.12)

$$Z_{\text{TL}}^2 = \frac{V_1}{I_1} \cdot \frac{V_2}{I_0}$$

(3.13)

As $V_1 I_1 = V_2 I_0$,
Substituting I_0 in (3.10)

$$Z_0 = Z_{load} \left(1 + \frac{I_2 Z_{TL}}{V_1} \right)$$ \hspace{1cm} (3.15)

Substituting Z_0 in (3.12)

$$Z_1 = \frac{Z_{TL}^2}{Z_{load} \left(1 + \frac{I_2 Z_{TL}}{V_1} \right)}$$ \hspace{1cm} (3.16)

The main output voltage, V_1 can now be expressed as

$$V_1 = I_1 Z_1$$ \hspace{1cm} (3.17)

Combining the equations,
\[V_1 = \frac{I_1 Z_{TL}^2}{Z_{load} \left(1 + \frac{I_2 Z_{TL}}{V_1} \right)} \] (3.18)

From the characteristic plot as shown in Figure 3.9, the currents can be related to the value ‘n’ for the 6dB backed off range in terms of the maximum current ‘I_{max}/2’ as

\[I_1 = \frac{I_{max}}{4} (1 + n) \] (3.19)

\[I_2 = \frac{I_{max}}{2} n \] (3.20)

Substituting the values of current,

\[V_1 = \frac{I_{max} (1 + n) Z_{TL}^2}{4 Z_{load} \left(1 + \frac{I_{max} n Z_{TL}}{2 V_1} \right)} \] (3.21)

Simplifying the above equation,

\[V_1 = \frac{I_{max} Z_{TL}}{4 Z_{load} \left(Z_{TL} + n(Z_{TL} - 2 Z_{load}) \right)} \] (3.22)
As stated earlier, efficiency enhancement is attained in the 6dB backed off range if \(V_1 \) remains constant, and thus needs to be independent of the factor ‘n’. Thus from the above equation, it can be inferred that

\[
Z_{\text{TL}} = 2Z_{\text{load}} \quad (3.23)
\]

Thus for the optimum operation of the Doherty configuration, the characteristic impedance of the quarter wave transmission line needs to be twice the resistive load. This enables the main amplifier to view twice the output impedance enabling it to reach the maximum voltage when the current is only half the maximum value.

3.8 Working Principle

The operating principle of the Doherty amplifier can be best explained in three stages namely, low, medium and high power levels. Figure 3.8 represents the block diagram of DPA. The quarter-wave transformer in front of the peaking amplifier compensates for the phase inversion caused by the impedance inverter in front of the main amplifier [Mamc00].

![Figure 3.8 Block Diagram of DPA](image)

Figure 3.8 Block Diagram of DPA
Figure 3.9 shows the ideal characteristics of the voltage and current waveforms of the main and auxiliary amplifier for the entire range of input signal. The working principle has been explained based on the transition point, P, which is the turn on point of the auxiliary amplifier, A2.

3.8.1 Stage I

Low level output signals (Pout<P)

During low levels of input power, the auxiliary amplifier is turned off. The total input signal is received by the main amplifier, which acts as a controlled current source. As shown in Figure 3.10, the auxiliary amplifier sees infinite impedance, thereby enabling the main amplifier to see twice the optimum resistance. The high output impedance leads to premature saturation of the main amplifier while the current has reached only half of its maximum value. Since the voltage has reached its maximum value, the system works with maximum efficiency though it does not deliver the maximum power [Cass00].
3.8.2 Stage II

Medium level output signals (P_{out} = P)

As soon as the main amplifier saturates, suitable biasing enables the auxiliary amplifier to turn on, resulting in the flow of auxiliary current. The auxiliary amplifier now acts as a controlled current source and the main amplifier acts as a controlled voltage source. According to the active load pull technique, the increase in the auxiliary current increases the impedance, R_{OUT}, shown in Figure 3.8, seen by the quarter wave transmission line. The characteristic impedance of the output quarter wavelength line is

\[R_{TL} = \sqrt{R_{IN} \cdot R_{OUT}} \]

(3.24)

Hence increase in R_{OUT} results in decrease of R_{IN}, the impedance seen by the main amplifier. This cause the main amplifier output voltage to remain constant without getting into saturation and increasing the output current from the main amplifier as shown in the plot on Figure 3.9. The increase in the output current increases the resultant output power.
Figure 3.11 Stage II– Operation of Doherty power Amplifier

The efficiency stays close to the maximum, as the voltage level remains closer to saturation. As the input level increases, the output impedance of the auxiliary keeps decreasing and that of the main amplifier with the quarter wave transmission line keeps increasing.

3.8.3 Stage III

High level output Signals (T < Pout < Pmax)

Figure 3.12 Stage III– Operation of Doherty power Amplifier
As the input level increases, the load power keeps increasing until the auxiliary amplifier saturates. Once the maximum level is reached, both the main and the auxiliary amplifier see an optimum resistance, R_{opt} equal to the characteristic impedance of the quarter wave transmission line as shown in Figure 3.12. The main current reaches the maximum point at this level and hence the output power delivered by the configuration during this stage is largest. Thus, the peaking amplifier modulates the load during the signal peaks in order to prevent the main amplifier from getting into saturation there by maintaining the maximum efficiency.

3.9 Performance of Doherty Configuration

The Doherty amplifier has a maximum PAE at the transition point, T and at full power. Figure 3.13 shows the ideal power added efficiency plot. The small dip in the upper 6 dB of the efficiency plot is due to the lower efficiency of the auxiliary amplifier. Assuming the main amplifier operates as a class B amplifier, the Doherty configuration is capable of producing an efficiency of 78.5% over the upper 6 dB power range. The efficiency of a two way Doherty power amplifier has been derived by Raab [Raab00].

\[
\eta = \frac{\pi}{2} \left(\frac{V_{in}}{V_{max}} \right)^2 \left(\frac{V_{in}}{V_{max}} \right)^{3/2} - 1
\]

(3.25)

The above function when evaluated for different values of input voltage results in the following plot. Thus, Doherty configuration fits best to modulation systems with non-constant envelope and with peak to average ratios of around 6 to 10 dB.
3.10 Advantages and Disadvantages

The advantages and disadvantages of the Doherty power amplifier have been discussed in many previous reports [Yang02]. The following section briefly highlights the issues in comparison with the other efficiency enhancement methods.

The well known advantages are

- **High efficiency**: Doherty power amplifiers based on load pull technique, using quarter-wave transmission line can deliver efficiency better than the other well known methods such as EER. These power amplifiers can be used in their linear area where the distortions are low, as they exhibit high PAE in the 6 dB backed off range of the output power.

- **Implementation of linearization methods**: Because of the less complicated setup, conventional linearity methods like feed-forward and pre-distortion can be easily implemented with the Doherty amplifier.

- **Simplicity**: Doherty technique utilizes simple RF techniques like load pull techniques and does not involve any complex envelope control circuits as used in envelope elimination and restoration and envelope tracking.
The Doherty configuration also has few disadvantages such as gain degradation, poor intermodulation distortion and narrow bandwidth. The narrow bandwidth is caused due to the use of quarter-wave transmission line. Since modern wireless communications utilize a very narrow bandwidth, this is not a serious drawback. Similar is the gain degradation caused due to the peaking amplifier. This degradation can be kept low due to the high gain of the carrier amplifier at low power levels. Another major drawback is the intermodulation distortion, which is due to the low biasing of the peaking amplifier. A solution to this issue has been suggested [Iwam00] which involves suitable biasing of the main amplifier leading to the cancellation of the non-linear products. N-way configuration is also a solution, which will be discussed in depth in the following chapters. Another well-known issue that can be seen from the configuration of a Doherty system is the resistive load matching. A solution has also been published for these issues [Yang02] where transmission lines with offset have been used to load modulate reactive termination.

3.11 Conclusion

Although ideal behavior of Doherty technique had been explained, the practical implementation requires main and peaking amplifiers that behave though not exactly, but closer to the ideal characteristics. Different classes of operation of power amplifier that best matches the ideal performance of the main and peaking amplifier needs to be optimized for better efficiency and linearity. The following chapters discuss the performance of different combination of amplifiers in Doherty configuration and possible methods of improving its performance. A detailed design procedure and performance analysis of a two way Doherty power amplifier using LDMOS transistors at 2.14 GHz has been provided and linearity enhancements techniques like derivation superposition and adaptive bias has been discussed and possible methods of implementation have been suggested.
Chapter 4

Design and Implementation

4.1 Introduction

The basic principle and operation of the Doherty topology has been explained in the previous chapter. This section explains its design and implementation in a detailed manner. The choice of class of operation of the power amplifier that closely matches the operation of the main and auxiliary stages of the ideal Doherty power amplifier is analyzed and its performance is compared with the corresponding conventional power amplifier. This section provides a detailed design procedure of a two stage Doherty topology and its performance evaluation in the UMTS band. It features DC simulation, bias point selection, S-parameter simulation, matching circuit design, load pull characterization and optimization.

4.2 WCDMA Specifications

As stated earlier, the goal of this project is to study and realize a Doherty power amplifier for WCDMA applications. The WCDMA specification is called Universal Mobile Telecommunications System and was developed by the third generation partnership project (3GPP). The standard has been introduced to cater specifically to high data rate applications.
requiring spectrally efficient modulation scheme. The peak to average ratio depends on the number of data channels being used. Hence, higher data rates results in very high peak to average ratio. WCDMA offers variable data rates of up to 2 Mbps. The crest factor (peak-to average power ratio) is closer to 6 dB, which is higher than even that of QPSK modulation. Base station power amplifiers operate at a power level reduced from saturation where efficiency is much lower. This calls for the implementation of an efficiency enhancement topology that would compensate for the battery loss at backed off power.

4.3 Design Architecture

The circuit under consideration consists of two LDMOS power amplifiers combined in a Doherty topology. The input of the transistor has been matched to 50 ohms. The parallel amplifier blocs are combined using an output combiner and phase compensation is done at the input. A 90 degree hybrid splitter has been used at the input to split the input signal with good isolation. The following sections explain in detail the design of the individual blocks.
4.4 Choice of Class of Operation

The focus of the present analysis is to explore the range of possible classes of operation of power amplifiers that would closely match the ideal behavior of the main and auxiliary stages of the Doherty amplifier design. Figure 4.2 shows the voltage and current plots of the ideal Doherty amplifier.

![Current and Voltage Characteristics of DPA](image)

As stated in the previous chapter, both the amplifiers are designed to deliver maximum power with optimum efficiency at a specified load, R. Analysis of different classes of power amplifier shows that the required performance of the carrier amplifier can be very closely achieved by biasing the transistor in Class A, AB or B mode of operation. The peak amplifier is made active only during the peaks of the input signal and hence is designed to only amplify signals that cross a minimum threshold. This is achieved by biasing the device below its pinch-off voltage for operation similar to class C. Thus, the auxiliary amplifier gets turned on when the main amplifier reaches a level closer to saturation.
4.5 Design Process

4.5.1 Design of Amplifier Block

The design of the main and auxiliary amplifier is very similar to a conventional one. The basic design of the amplifier block first involves the determination of the optimum load resistance that would enable the transistor to operate with maximum power and optimum efficiency. The next step is to design the matching network that would force the transistor to see the required load impedance. The final step is to design the biasing network that would provide the amplifier with a stable operating point.

![Figure 4.3 Input and output matching of Main and Auxiliary amplifier](image)

The following sections describe in detail, the design of the Doherty power amplifier with Class AB main stage and Class C auxiliary stage using LDMOS FETs for the UMTS band centering 2.14 GHz and a bandwidth of 5 MHz. A performance comparison of this Doherty design with a conventional class AB power amplifier design has been provided.

4.5.2 DC Analysis

Before proceeding with the design of the main and auxiliary stages of the Doherty power amplifier, an analysis of the transfer characteristics of the LDMOS FET under consideration will be necessary. The operating points of the FET corresponding to the different classes of operation can be easily judged from the transfer characteristics as shown in Figure 4.4.
The plot represents the range of gate voltages and the corresponding mode of operation with a drain voltage of 26V. Figure 4.5 shows the output characteristics of the LDMOS FET.

Figure 4.4 Transfer Characteristics of LDMOS FET

Figure 4.5 Output Characteristics of LDMOS FET
4.5.3 Determination of Optimum load resistance

The optimum load resistance that the LDMOS transistor needs to see was determined using the load-pull analysis. As explained earlier, the power and efficiency contours of the load pull analysis need not necessarily be aligned. Hence, the maximum power and maximum efficiency do not occur for the same load impedance. As a result of this trade off, the load impedance that would enable the transistor to operate at maximum efficiency was taken into consideration. Figure 4.6 presents the simulated results of the load pull analysis corresponding to the maximum power added efficiency.

![Simulated Load Reflection Coefficients](image)

Figure 4.6 Simulated results of Load-pull analysis

Figure 4.7 shows the performance of the amplifier bloc with an output impedance of 8.6+ j19.1 in the UMTS band. The input was pre-matched to 50 ohms.
4.5.4 Input and Output Matching

The results of the load pull analysis from the previous section shows that the LDMOS transistor needs to see an output impedance of 8.61+j19.1 for its optimum performance. The imaginary part of the output impedance at the desired frequency needs to be cancelled as the imaginary power at the output is wasted. This ensures that the load is resistive and the entire output signal at the fundamental frequency is converted into real power. The simplest way to cancel the imaginary part is to create a resonance at the frequency of interest. Hence, the output was matched with a shunt inductor of 2nH in order to make the output impedance real. This will also facilitate the impedance transformation with the quarter wave line. As stated earlier, the input impedance was pre-matched to 50 ohms.

Figure 4.7 Performance of the amplifier block
4.5.5 Biasing

The Doherty configuration requires two different biasing for the main and auxiliary stages. The main stage needs to be biased above the threshold, as the choice of the class AB topology mandates. The auxiliary stage biasing was well below the pinch-off voltage for achieving class C operation. A voltage divider circuit was incorporated in order to realize flexibility in biasing. The output node of the transistor is biased at the power supply VDD through an inductor, often an RF Choke for AC isolation at the frequencies of interest. Although the present design has been explained with the main and auxiliary amplifiers operating in Class AB and Class C modes of operation respectively, the forthcoming sections present the results of different possible combinations of main and auxiliary stages such as Class B and Class C. Table 4.1 summarizes the biasing voltages for the main and auxiliary stages.

<table>
<thead>
<tr>
<th>Class of Operation</th>
<th>Bias Voltages</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5.7V</td>
</tr>
<tr>
<td>AB</td>
<td>3.7V – 5.6V</td>
</tr>
<tr>
<td>B</td>
<td>3.8V</td>
</tr>
<tr>
<td>C</td>
<td>Less than 3.8 V</td>
</tr>
</tbody>
</table>

Table 4.1 Gate bias Voltages corresponding to different classes of Operation
4.5.6 Design of output combiner

The topology used of the output combiner is the quarter-wave impedance transformer. Figure 4.9 shows the output circuit constitution with an added impedance transformer. The output combiner is designed as per the Doherty technique explained in the previous chapter. As explained with a load-pull analysis, an output impedance of 64 Ohms in front of the quarter-wave transformer allows the main amplifier to have an optimum performance. The value of RL is determined by the number of amplifier blocks in parallel N, and the value of output impedance to be presented at the output of the amplifier block for having its optimum performances.

\[R_L = \frac{R_{\text{OPT}}}{N} \]
(4.1)

For a design of a 2-way Doherty amplifier,

\[R_L = \frac{R_{\text{OPT}}}{2} \]
(4.2)

For an output impedance of 64 ohms,

\[R_L = \frac{64}{2} = 32\,\Omega \]
(4.3)

For a 2 way configuration, R1 is same as Ropt

\[R_1 = 64\,\Omega \]
(4.4)
Another quarter-wave length line, R2 has been added at the output in order to match RL with 50 ohms. The characteristic impedance of line R2 would be

\[R_2 = \sqrt{\frac{64}{2}} \times 50 = 40\Omega \] \hspace{1cm} (4.5)

The initial design has been implemented using ideal transmission lines, which can be later replaced with the chosen printed circuit substrate.
Figure 4.10 Schematic of the Doherty power amplifier
4.6 Implementation

Figure 4.10 shows the schematic diagram of the Doherty amplifier with the parallel combination of main and auxiliary amplifier blocs. Identical devices (LDMOS FETs) are used for the design of both carrier and peaking amplifiers. The output of both the main and auxiliary amplifier is matched to 64 ohms to have a load impedance of $8.61 + 19.1$. A 64 ohm quarter-wave length line is used for a load-pull operation and a 40 ohm quarter-wave length line is used for matching the combined two 64 ohm lines to 50 ohms. The input signal is split into two quadrature (90 degrees phase difference) components by the hybrid divider. These two signal components are applied to two stages, the main and auxiliary, which are identical except for their gate bias levels. The main is connected to the in-phase (0 degree) and the auxiliary is connected to the quadrature (-90 degrees) output. This compensates for the phase mismatch caused due to the quarter-wave line at the output of the main stage. The biasing of the individual stages can be done by choosing appropriate resistor values for the voltage divider.

4.7 Conclusion

The complete schematic of the two stage Doherty power amplifier for the UMTS band has been implemented. The performance of the Doherty topology depends mainly on the class of operation of the two amplifier blocs. There are numerous possible ways of combinations and every design has its own trade off with another. The following chapter presents an analysis of possible combinations of the main and auxiliary stages and optimization of the simulation results.
Chapter 5
Simulation and Results

5.1 Introduction

The performance analysis of the designed Doherty topology was done using Agilent’s Advanced Design System 2003. The chapter provides the single tone and two tone simulation results of two different realizations of Doherty Power amplifiers. Both the designs have been compared with the corresponding conventional power amplifiers. The chapter also provides the effects of biasing on the main and auxiliary stages in order to optimize the design with the best efficiency versus linearity characteristics. Finally, a literary study has been furnished on the possible methods of improving the linearity performance of the Doherty topology.

5.2 Doherty amplifier I

Doherty amplifier I is a combination of Class AB main stage and Class C auxiliary stage. The bias points were set based on the transfer characteristics of the LDMOS transistors used, as presented in Figure 4.4. Table 5.1 shows the chosen bias point, as there could be a range of possible operating points for the operation of both class AB and class C.
5.2.1 Single Tone Simulations

Single tone measurements were made on the proposed Doherty I topology for a 2.14 GHz CW single tone signal and a supply voltage of 26V. Figure 5.1 provides a PAE response of the Doherty amplifier I in comparison with that of the conventional class AB PA. The Doherty amplifier I has higher PAE over a wide range of output power than the conventional Class AB power amplifier of same power capability. There is a 15% increase in the PAE at 6dB back off the maximum output power when compared to the conventional class AB, which is a very good improvement in terms of battery power for a system with non constant envelope modulation. Table 5.2 shows the DC power consumption corresponding to different input power levels.

<table>
<thead>
<tr>
<th>Class of Operation</th>
<th>Main stage</th>
<th>Auxiliary Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate Voltage</td>
<td>3.80</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Table 5.1 Doherty amplifier I Bias points

Figure 5.1 PAE plots of DPA I and Conventional Class AB PA
Table 5.2 RF Performances of DPA I with variation in input power.

The current and voltage levels at the output of the main and the auxiliary amplifiers with respect to the total output power are shown in Figure 5.2 (i) and (ii). It can be seen that main amplifier undergoes pre-matured saturation due to the deep bias of the auxiliary amplifier. Although theory predicts the output voltage of the main amplifier to be constant for a range of 6 dB back off the maximum output power, a slight drop in the voltage level can be seen as shown in Figure 5.2(i). This is due to the leakage of power from the main amplifier to the auxiliary amplifier. Turning on the peaking amplifier can control the saturation response of the main amplifier.
Figure 5.2(i) Voltage variations of main and auxiliary stage for DPA I

Figure 5.2(ii) Current variations of main and auxiliary stage for DPA I

The drain current waveforms of the main and the auxiliary amplifier are shown in Figure 5.3. Although this does not clearly indicate the class of operation assumed, it was considered insignificant as the current levels of the main and auxiliary amplifier, as shown in Figure 5.2(ii) agrees with the Doherty principle.
Figure 5.3 Drain current waveforms of main and auxiliary stage of DPA I

Figure 5.4 shows the gain plots of the Doherty amplifier I and conventional Class AB PA. Although the gain shape and P1dB are similar, there is a slight drop in the gain as compared to the conventional one. Since the auxiliary amplifier is biased in class C, it is typically difficult to match the gain of this amplifier to be greater than the main amplifier unless the overall gain is sacrificed. This situation could be overcome by delivering higher power to the auxiliary amplifier than the main amplifier [Iwam00].

Figure 5.4 Gain of DPA I and Conventional Class AB
Figure 5.5 gives the measured return-loss performance of DPA I. The input return loss is greater than 13 dB across the entire range of input power.

5.2.2 Two Tone Simulations

Two tone simulations were performed with a center frequency of 2.14 GHz and a tone spacing of 1MHz. The simulated IMD3 and IMD5 response of the proposed topology as a function of the input power have been provided in Figure 5.6 (i) and (ii).

Figure 5.6(i) IMD3 (dBc) of DPA I for a two-tone signal
Figure 5.6(ii) IMD5 (dBc) of DPA I for a two-tone signal

Figure 5.7 shows the IMD3 distortion power of the conventional class AB and Doherty PA with the variation in the output power. It can be seen that the Doherty topology has a poor intermodulation distortion performance. This is due to the low biasing conditions of the peaking amplifiers, which cause distortions. The bias optimization is very important for proper cancellation of the intermodulation terms generated by the carrier and the auxiliary amplifier.

Figure 5.7 IMD3 Comparison of DPA I and Conventional Class AB for a two-tone signal
Table 5.3 summarizes the comparison of performances between the conventional class AB power amplifier and the proposed Doherty I power amplifier. The proposed Doherty topology shows improvement in PAE response without any appreciable change in other RF characteristics in comparison with a class AB PA design.

<table>
<thead>
<tr>
<th></th>
<th>Conventional Class AB</th>
<th>Doherty PA I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage, V</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Drain Current, mA</td>
<td>90</td>
<td>98</td>
</tr>
<tr>
<td>Gain @ 2.14 GHz</td>
<td>18.5</td>
<td>17</td>
</tr>
<tr>
<td>IMD3 dBm @ Pout = 20dBm</td>
<td>-48</td>
<td>-45</td>
</tr>
<tr>
<td>Output IP3 (dBm)</td>
<td>44</td>
<td>41</td>
</tr>
</tbody>
</table>

Table 5.3 RF responses of DPA I and Class AB power amplifier

5.3 Doherty II (Class B + Class C)

The possibility of improving the PAE response of Doherty I topology was investigated and adapting a class B operation for the main stage was an obvious choice. Doherty amplifier II is a parallel combination of class B and Class C amplifiers. The design procedure is very similar to that of Doherty I amplifier Table 5.4 summarizes the biasing voltages for the main and auxiliary stages. It can be noted that a deeper class C bias of 2.3V was used for the auxiliary stage of DPA II.

<table>
<thead>
<tr>
<th>Class of Operation</th>
<th>Main stage Class B</th>
<th>Auxiliary Stage Class C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate Voltage</td>
<td>3.60 V</td>
<td>2.30 V</td>
</tr>
</tbody>
</table>

Table 5.4 Doherty amplifier II Bias points
Unlike DPA I, the PAE response of DPA II exhibits a noticeable peak at the back off power. It is depicted by ‘m2’ in Figure 5.8(i). This initial peak in PAE at 54.8% occurs at an output power of 34 dBm. The P1dB is at 40 dBm with a PAE of 68%. Though the major reason for this behavior is the class B bias of the main stage, the deeper bias of the auxiliary stage also plays a significant role. The bias level of the auxiliary stage was optimized for a better saturation response of the main amplifier.

Figure 5.8(i) PAE response of Doherty II PA for a single tone signal.

Figure 5.8(ii) Gain response of Doherty II PA for a single tone signal.
As seen in Figure 5.8(ii), the linearity of the gain response deteriorates due to the generation of excessive intermodulation terms by the peaking amplifier. Tuning the saturation response of the main amplifier linearized it. The 1dB compression point of DPA II has been provided in Figure 5.8(iii), which also represents a flattened gain response.

![Graph showing 1 dB Compression point of Doherty II PA for a single tone signal.]

Figure 5.8(iii) 1 dB Compression point of Doherty II PA for a single tone signal.

The DPA II responses have also been compared with the conventional Class B PA in figure 5.9(i) and (ii). The Doherty II topology provides a 25% increase in PAE at 6 dB back off power, in comparison with the class B PA. The third order intermodulation distortion plots remain comparatively the same for a wide range of output power.
Figure 5.9 (i) PAE Comparison of DPA II and Conventional Class B PA for a single-tone signal

Figure 5.9 (ii) IMD3 (dBc) Comparison of DPA II and Conventional Class B PA for a two-tone signal
5.4 Comparison of Doherty Topologies

The Performance comparison between Doherty I amplifier and Doherty II amplifiers were performed. Figure 5.10(i) shows the PAE of the two topologies versus output power for a 2.14 GHz single-tone signal. The Doherty II amplifier shows a significantly improved efficiency for the entire range of output power. The comparison of IMD3 is presented in Figure 5.10(ii). Although the IMD3 of DPA I and DPA II are similar at higher power levels, the former shows a much better performance at lower power levels.

Figure 5.10 (i) PAE (dBc) Comparison of DPA II and DPA II for a two-tone signal
5.5 Significance of Load Modulation

The characteristic behavior of the Doherty amplifier is that the PAE response reaches an initial peak at a back off power and remains high until peak power is reached. The initial peak is attained when the main amplifier saturates and the auxiliary amplifier turns on. Figure 5.11 shows the comparison of the PAE response of a theoretical Doherty amplifier with the designed one. The efficiency of the designed amplifier is a little lower than the expected efficiency of the theoretical Doherty amplifier. The reason for such a variation is that, theory supposes both the main and auxiliary amplifiers to be ideal. The carrier amplifier needs to act as an ideal controlled current source below the transition point (6 dB backed off from the maximum output power) and as a controlled voltage source above the transition point. The peaking amplifier is expected to act as an open circuit below the transition point and as a controlled current source above the transition point. Hence, the auxiliary amplifier does not perturb the carrier below the transition point, and thereby having a maximum PAE at that point.
In reality, the transistors suited for auxiliary stage of the Doherty power amplifiers have large shunt and feedback capacitances, which render strongly reactive output impedance with low resistance. This causes power leaks from the main amplifier to the auxiliary amplifier which in turn causes improper load modulation. Hence, the S22 of the peaking amplifier is not a perfect open at the transition point. Table 5.5 summarizes the output impedance of the auxiliary stage for a range of input power. At 6dB back off the maximum output power, the output impedance of the peaking amplifier is closer to 400 Ohms, which can easily disturb the performance of the main stage at low power.
Table 5.5 Output impedance of the main and auxiliary stages with variation of the input power

The leakage of power from the main to the auxiliary stage causes efficiency degradation. The complex output impedance of the auxiliary stage due to the parasitic feedback and shunt capacitance makes pure resistive load modulation harder to achieve. This also causes an improper power match. Many methods have been suggested to overcome this situation [Yang02]. The most common approach is to use power matching circuits and offset lines for the auxiliary amplifier in order to transform its output impedance closer to an open circuit.
5.6 Effect of Main Stage Biasing on DPA

The simulated results of DPA I and DPA II reveal the significance of the class of operation of the main and auxiliary stages of the Doherty topology. This section presents an analysis on the influence of biasing on the main stage of the first Doherty amplifier. Table 5.6 provides the bias voltage values and their corresponding class of operation considered for the analysis. The auxiliary stage was maintained at a constant bias of Class C (Vgc= 3.00 V).

<table>
<thead>
<tr>
<th>Class of Operation</th>
<th>Bias Voltages</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB-</td>
<td>3.7V – 4.7 V</td>
</tr>
<tr>
<td>AB</td>
<td>4.8V</td>
</tr>
<tr>
<td>AB+</td>
<td>4.9V – 5.6V</td>
</tr>
<tr>
<td>A</td>
<td>5.7V</td>
</tr>
</tbody>
</table>

Table 5.6 Biasing Voltage range corresponding to each class of operation

![Graph showing PAE response of Doherty topology with variation of main stage bias](image)

Figure 5.12 (i) PAE response of Doherty topology with variation of main stage bias (Vgc varied from 3.8 V to 4.7V)
Figure 5.12 (i) represent the simulated plots of PAE for main stage biasing voltage varying from 3.8 V to 4.7 V. It can be inferred that there is a sharp drop in efficiency, especially in the backoff power range, with the drop in the gate voltage (closer to class A operation) of the main stage. The class C operation of the auxiliary stage enables the DPA to maintain the efficiency at the maximum output power. Figure 5.12(ii) represents the gain response for main stage biasing voltage varying from 4.8 V to 5.7 V.

Figure 5.12 (ii) PAE response of Doherty topology with variation of main stage bias
(Vgc varied from 4.8 V to 5.7V)
Figure 5.12 (iii) Gain response of Doherty topology with variation of main stage bias
(Vgc varied from 4.8 V to 5.7V)

The trade off that exists between the efficiency and the gain of the Doherty power amplifier is evident from the results provided. Therefore, the choice of operation of the main stage depends primarily on the requirement of the application. As the main intend of the Doherty topology is to provide high efficiency, the common approach is to opt for class AB or B operation for the main stage although there is a minor drop in the gain.

5.7 Effect of auxiliary Stage Biasing on DPA

The performance of the Doherty amplifier is mainly determined by the load impedance presented to the active device. As explained earlier, the auxiliary stage acts as an active load for the main amplifier. It begins to conduct and modify the load presented to the main amplifier as the input power increases. In other words, the auxiliary current must increase to change the load impedance when the main stage undergoes compression. In such conditions, when operating the auxiliary stage in class C, the load value cannot reach the theoretical maximum value and hence the total output power is reduced. Due to these drawbacks, class B or AB biasing for the auxiliary stage is being analyzed.
The main stage was driven with a constant class AB bias and the performance of the topology was analyzed varying the gate bias the auxiliary stage. It was driven in Class AB, B and C modes of operation. Figure 5.13(i) shows the PAE response corresponding to different modes of operation of the auxiliary stage. For an auxiliary stage operating in class C, the PAE is over 55% at 6 dB back off. Whereas, it only reaches 30% and 50 % at the same back off point when the auxiliary stage was operated with Class AB and class B respectively. Thus, the maximum efficiency is attained at the 6dB back off point auxiliary stage is operated in deep class C mode.
Figure 5.13(ii) Gain response of DPA for a single-tone signal

(Vgp varied from 4.00 V to 2.5 V)

Figure 5.13(iii) shows the comparison of the maximum output power that can be attained with the variation on the gate bias of the auxiliary stage. It can be observed that the bias level corresponding to class C mode of operation generates a much less output power in comparison to class B. There is also a slight increase in the IMD3 exhibiting the degradation of linearity with bias getting closer to class C mode. Figure 5.13 (iv) shows the IMD3 (dBc) comparison of three modes of operation (Class AB, B and C) of the auxiliary stage.
Figure 5.13(iii) Output power versus the input power of DPA for a single-tone signal

(Vgp varied from 4.00 V to 2.5 V)

Figure 5.13(iv) IMD3 response of DPA for two-tone signal

(Vgp varied from 4.00 V to 2.5 V)
From the above results, it can be observed that better linearity performance and high output power is acquired through higher bias levels of the auxiliary stage. Whereas, this reduces the range of load modulation and the efficiency improvement of the Doherty power amplifier. By contrast, Figure 5.13(i) shows that a decrease in bias level results in improvement of back off efficiency with constant deterioration in linearity. Thus for the design of a base station Doherty power amplifier, an optimized bias level corresponding to the best efficiency versus linearity characteristics should be considered. Incase of high efficiency applications, the Doherty power amplifier needs to be used with a linearization system in order to recover the same linearity as that of a conventional amplifier.

5.8 Conclusion

In this section, two different configurations of Doherty PA were realized and a detailed comparison analysis between the two was provided. Simulation results for these two power amplifiers were discussed as well, with a peak efficiency of 65% obtained for the peak output power level of 10W. The RF performances for a range of input signal levels have been presented and the power added efficiency of the designed amplifier was found to be closer to 55% at 6dB back off power, which is a 15% increase, compared to the corresponding conventional PAs. Finally, various combinations of main and auxiliary bias levels were analyzed for the optimization of linearity and efficiency.
Chapter 6

Summary and Conclusion

6.1 Summary

This research has investigated the design and implementation of a two-stage Doherty Power amplifier using LDMOS transistors for a base station transceiver system built to meet the WCDMA standard. It was intended to realize a Doherty topology, with possibly improving its characteristics as compared to the existing conventional power amplifiers and other efficiency enhancement techniques.

In the course of this dissertation, the most common conventional PAs such as the class AB, B and C were reviewed, as well as the currently available methods that could be used to enhance the efficiency of a power amplifier. A detailed discussion on the theory of the Doherty topology was provided with citations to the amplifiers built using the Vacuum tubes. Based on the concept, an attempt was made to design two different topologies of 2.14 GHz Doherty power amplifier for the UMTS band using LDMOS transistors that agreed with the theory. The designs were simulated and the results were compared with that of the theoretical Doherty amplifier as well as the corresponding conventional PAs. The influence of the main and auxiliary stage biasing on the overall performance was also analyzed and the bias voltages were adjusted for better cancellation of the harmonics generated by the main and auxiliary amplifiers.
Finally, adjusting the gate bias of the main and the auxiliary stage did optimization of linearity with minimum reduction in the improved efficiency.

6.2 Conclusion

The research has proven the feasibility of the proposed two-stage Doherty power amplifier design in maintaining an high efficiency at the 6 dB back off power, while maintaining a reasonable linearity performance in comparison with the conventional PA design. The key contributions of this work can be stated as follows

- A detailed design and implementation of two different realizations of a 2.14 GHz two stage Doherty power amplifier for the WCDMA standard. It exhibits a PAE of 55% in the 6dB back off from the 1dB compression point of 40.2 dBm.
- Bias optimization of the main and auxiliary stages for the best linearity versus efficiency characteristics.

6.3 Future Directions

This project cannot be considered exhaustively explored and the following directions may be noted for its expansion

- Implementation of a linearization method like feed-forward or digital predistortion on the proposed Doherty topology, as it was seen to be exhibiting a deteriorated linearity performance in comparison to the other PA topologies.
- Further improvement in linearity could be achieved by derivative superposition principle that would involve a design of an N-way Doherty topology [Yang01]. This would attempt in canceling the coefficients of intermodulation distortions caused by the main amplifier by the multiple auxiliary stages.
References

[Cass00] Cedric Cassan, “Efficiency enhancement techniques for power amplifier”, Motorola confidential propriety

[Phil00] *Product news from Philips semiconductors*, ”LDMOS devices to boost base station efficiency,” 7 Nov 2003

[West00] *Western Electric Transmitters publication*, “A development of Bell Telephone Laboratories - The Doherty Amplifier”

Vita

Vani Viswanathan received her M.S.E.E. in 2004 from Virginia Tech and B.E in Electronics and Instrumentation Engineering from the University of Madras in Chennai, India, in 2001. During the course of her graduate studies, she was a research assistant at Virginia Tech’s Center for Wireless Telecommunications. She joined Panasonic Mobile Communications Development Corporation in February 2004, where she now serves as a RF Design Engineer involved in the design and testing of the RF transmitter and receiver sections of wireless handsets. Her research interest includes wireless communications and high efficiency power amplifier designs.