Analysis of Alcohol and Alkylphenol Polyethers via Packed Column Supercritical Fluid Chromatography

by

Brian Jeffrey Hoffman

Dissertation submitted to the Graduate Faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Chemistry

Approved:

Larry T. Taylor, Chairman David G.I. Kingston
Gary L. Long Harold M. McNair
James F. Wolfe

May 4th, 2004
Blacksburg, Virginia

Key words: Supercritical Fluid Chromatography, Derivatization, Mass Spectrometry
Analysis of Alcohol and Alkylphenol Polyethers via Packed Column Supercritical Fluid Chromatography

Brian Jeffrey Hoffman

ABSTRACT

Alkylphenol ethoxylates (APEOs), alcohol ethoxylates (AEOs), and alcohol propoxylates (APOs) are non-ionic surfactants used in daily care products and detergents. They are formed as an oligomeric series with a varying distribution, which determines their commercial application. The goal of the research performed was the development of sample characterization methods for non-ionic surfactants utilizing supercritical fluid chromatography (SFC) under mild instrument operating conditions. The aryl group present in APEOs allowed ultraviolet (UV) detection, with an equal molar response for oligomers, allowing average molar oligomer values to be calculated. APEOs were separated by ethoxylate unit via SFC-UV as well as normal phase HPLC-UV employing packed columns. Stationary phase and column length were varied in the SFC setup to produce the most favorable separation conditions. Fractions from SFC runs of APEOs were collected and analyzed by flow injection analysis electrospray ionization mass spectrometry (FIA-ESI-MS) to identify fraction composition. SFC provided shorter retention times with similar resolution as HPLC for separation of APEOs and consumed a smaller amount of organic solvent.

AEOs and APOs lack functionality capable of absorbing UV light outside the UV cut-off of normal organic solvents. SFC was able to separate AEOs and APOs derivatized as trimethylsilyl ethers (TMS) with pure CO₂ with detection at 195 nm. The
instrumental conditions, however, needed for separation necessitated high temperature
and high CO₂ pressure. Derivatization of alcohol polyether samples with an UV
absorbing agent was achieved with phenylated disilazane-chlorosilane mixtures forming
phenylsilylethers detected at 215 nm. Use of an organic solvent-modified CO₂ mobile
phase afforded lower pressure and temperature conditions for oligomer separation.
The use of polar embedded alkyl phases combined with use of organic modified CO₂
produced good resolution between oligomers. Better peak shape and shorter retention
times were realized with methanol-modified CO₂ than acetonitrile-modified CO₂.

Peak assignments were made via SFC coupled with ESI-MS detection in the
positive ion mode. SFC-UV and SFC-ESI-MS data were jointly used for calculation of
average molar oligomer values. Proton nuclear magnetic resonance (¹H-NMR) analysis
of non-derivatized samples was performed to determine average molar oligomer values
and was used for comparison with values calculated from SFC-UV data.
Personal Acknowledgements

I would like to thank my family for their support through my entire education. My thesis advisor, Dr. Larry T. Taylor, and my doctoral committee have been very helpful in my research endeavors at Virginia Tech. The Taylor research group has also been helpful during my graduate career at Virginia Tech.
Acknowledgement of Funding

The Author would like to recognize several individuals and companies for financial and research support. J. David Pinkston and The Procter and Gamble Company for financial support and collaboration in research. Stephen Rumbelow, Larry Goff and Uniqema for financial support and collaboration in research. Bruce Richter and Ruthann Kiser from Dionex for chromatography supplies and useful chromatography information. Tom Henderson, Keith Duff, and Shawn Wyatt from Supelco for chromatography supplies and useful chromatography information. Terry Berger from Mettler-Toledo Autochem Berger Instruments for chromatography supplies and useful chromatography information. The Graduate Student Association of Virginia Tech for financial support for travel to scientific conferences. The National Science Foundation for financial support for travel to scientific conferences. The American Chemical Society’s Division of Analytical Chemistry for financial support for travel to scientific conferences.
Table of Contents

<table>
<thead>
<tr>
<th>Personal Acknowledgements</th>
<th>iv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement of Funding</td>
<td>v</td>
</tr>
<tr>
<td>List of Figures</td>
<td>ix</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xii</td>
</tr>
</tbody>
</table>

I. Introduction 1

II. A Study of Alkylphenols Ethoxylates by Packed Column Supercritical Fluid Chromatography

1.0 Introduction 13

2.0 Experimental
 - 2.1 Packed column SFC 15
 - 2.2 Normal phase HPLC 16
 - 2.3 Flow injection analysis mass spectrometer 16
 - 2.4 Alkylphenol ethoxylate Samples 17
 - 2.5 Semi-preparative SFC 17
 - 2.6 FIA-ESI-MS method 19
 - 2.7 HPLC method 19

3.0 Results and Discussion 20

4.0 Summary 37

III. Separation of Derivatized Alcohol Ethoxylates and Propoxylates by Low Temperature Packed Column Supercritical Fluid Chromatography using UV detection

1.0 Introduction 39

2.0 Experimental
 - 2.1 Packed-Column SFC 42
 - 2.1.1 Pure Carbon Dioxide System 43
 - 2.1.2 Acetonitrile-Modified Carbon Dioxide System 43
 - 2.1.3 SFC-ESI-MS System 44
 - 2.2 Surfactant Samples and Derivatizing Reagents 44
 - 2.3 Spectroscopy of Derivatized Samples 45

3.0 Results and Discussion
 - 3.1 Derivatization 46
 - 3.2 Preliminary Study with Pure Carbon Dioxide 53
 - 3.3 Acetonitrile Modified Carbon Dioxide 57
 - 3.4 Average Molar Oligomer Values 63

4.0 Summary 64
IV. Determination of Alcohol Polyether Average Molar Oligomer Value/Distribution via Supercritical Fluid Chromatography Coupled with UV and MS Detection

1.0 Introduction 67

2.0 Experimental
 2.1 Surfactant Samples and Derivatizing Reagents 68
 2.2 Packed-Column SFC-UV System 69
 2.3 Packed-Column SFC-ESI-MS System 71
 2.4 Spectroscopy of Derivatized Samples 71

3.0 Results and Discussion
 3.1 Derivatization 72
 3.2 Modifier Effect 77
 3.3 Stationary Phase 78
 3.4 Identification of Oligomers 87
 3.5 Calculation of Average Molar Oligomer Values
 3.5.1 1H-NMR of Non-Derivatized Samples 89
 3.5.2 SFC-UV of Derivatized Samples 95
 3.6 Method Reproducibility 99

4.0 Summary 102

V. Increasing Detection Sensitivity for the Chromatographic Analysis of Alcohol Polyethers

1.0 Introduction 104

2.0 Experimental
 2.1 Surfactant samples and derivatizing reagents 105
 2.2 Packed-column SFC-UV system 106
 2.3 SFC-ESI-MS system 106
 2.4 Spectrometry of derivatized samples 107

3.0 Results and Discussion
 3.1 Derivatization 107
 3.2 Calculation of Average Molar Oligomer Value 108
 3.3 SFC-ESI-MS Analysis 109
 3.4 Effect of Derivative 119
 3.5 Method reproducibility 129

4.0 Summary 130

VI. Conclusions 131

References 135

Appendices

Appendix A Evaluation of Sample Clean-up for 2Ph Derivatized Alcohol Polyethers 142
Appendix B Separation of Mixed Alkyl Alcohol Polyethers 151
Appendix C Future Work 157
VITA 158
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Structure of selected non-ionic surfactants.</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Formation of fatty alcohols from triglycerides.</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>General alcohol ethoxylation equations.</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Efficiency as a function of mobile phase velocity.</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Schematic diagram of SFC system with collection.</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>Packed column supercritical fluid chromatograms using stacked diol columns.</td>
<td>21</td>
</tr>
<tr>
<td>7</td>
<td>HPLC and SFC chromatograms of POE-(4)-NP.</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td>HPLC and SFC chromatograms of Triton N-101.</td>
<td>23</td>
</tr>
<tr>
<td>9</td>
<td>HPLC and SFC chromatograms of POE (5) tert-OP.</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>Packed column supercritical fluid chromatograms using single columns of different polar packing material.</td>
<td>28</td>
</tr>
<tr>
<td>11</td>
<td>Packed column supercritical fluid chromatograms using stacked columns of different polar stationary phases.</td>
<td>29</td>
</tr>
<tr>
<td>12</td>
<td>Supercritical fluid chromatograms of collected POE (4) nonylphenol fractions.</td>
<td>31</td>
</tr>
<tr>
<td>13</td>
<td>Supercritical fluid chromatograms of collected POE (5) tert-octylphenol fractions.</td>
<td>32</td>
</tr>
<tr>
<td>14</td>
<td>Positive ion FIA-ESI-MS of POE (4) nonylphenol fractions.</td>
<td>33</td>
</tr>
<tr>
<td>15</td>
<td>Positive ion FIA-ESI-MS of POE (5) tert-octylphenol fractions.</td>
<td>34</td>
</tr>
<tr>
<td>16</td>
<td>Proposed Mechanism for derivatization of primary and secondary alcohols to silylethers using a disilazane-chlorosilane mixture.</td>
<td>48</td>
</tr>
<tr>
<td>17</td>
<td>IR spectrum ammonium chloride and reaction precipitate.</td>
<td>51</td>
</tr>
<tr>
<td>18</td>
<td>SFC of non-derivatized C\textsubscript{18}EO\textsubscript{10}.</td>
<td>55</td>
</tr>
<tr>
<td>19</td>
<td>SFC of TMS and 1Ph derivatized C\textsubscript{18}EO\textsubscript{10}.</td>
<td>56</td>
</tr>
</tbody>
</table>
Comparison of an alkyl and an amide-embedded alkyl stationary phase by SFC of 1Ph derivatized C18PO15.

Comparison of an alkyl and an amide-embedded alkyl stationary phase by SFC of 1Ph derivatized C18EO10.

13C-NMR of non-derivatized C18PO15 in CDCl$_3$.

SFC-ESI-MS instrument diagram.

Structures of chromatographic stationary phases.

Comparison of acetonitrile and methanol-modified CO$_2$.

SFC-UV separation of C18EO$_{10}$ 1Ph derivative.

SFC-UV separation of C18PO$_{15}$ 1Ph derivative.

SFC-UV separation of C16EO$_{20}$ 1Ph derivative.

Extracted ion and UV chromatograms of 1Ph derivatized C18EO$_2$.

1H-NMR spectrum of non-derivatized C18EO$_{10}$ in CDCl$_3$.

1H-NMR spectrum of non-derivatized C16EO$_{20}$ in CDCl$_3$.

1H-NMR spectrum of non-derivatized C18PO$_{15}$ in CDCl$_3$.

IR spectrum of 1Ph ppt, 2Ph ppt, and ammonium chloride.

SFC-ESI-MS contour plot of 1Ph derivatived C18EO$_2$.

Enlarged SFC-ESI-MS contour plot of 1Ph derivatived C16EO$_{20}$.

Extracted ion and UV chromatograms of 1Ph derivatized C18EO$_{10}$.

Extracted ion and UV chromatograms of 2Ph derivatized C18EO$_{10}$.

Extracted ion and UV chromatograms of 2Ph derivatized C16EO$_{20}$.

SFC-ESI-MS contour plot of 2Ph derivatized C18EO$_{10}$.

SFC-UV chromatograms of 1Ph and 2Ph derivatized C18EO$_{10}$.

SFC-UV chromatograms of 1Ph and 2Ph derivatized C18PO$_{15}$.
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>SFC-UV chromatograms of 2Ph C${18}$EO${10}$ on a C18 and Amide-embedded alkyl phase.</td>
</tr>
<tr>
<td>43</td>
<td>SFC-UV chromatograms of 2Ph C${18}$PO${15}$ on a C18 and Amide-embedded alkyl phase.</td>
</tr>
<tr>
<td>44</td>
<td>SPE cleanup of 2Ph C${18}$EO${10}$ on bonded silica.</td>
</tr>
<tr>
<td>45</td>
<td>SPE cleanup of 2Ph C${18}$EO${10}$ on silica method A.</td>
</tr>
<tr>
<td>46</td>
<td>SPE cleanup of 2Ph C${18}$EO${10}$ on silica method B.</td>
</tr>
<tr>
<td>47</td>
<td>SFC-UV chromatogram of 1Ph derivatized C${13/15}$EO${7}$ on Acclaim PA C16.</td>
</tr>
<tr>
<td>48</td>
<td>SFC-ESI-MS Contour plot of C${13/15}$EO${7}$ on Acclaim PA C16.</td>
</tr>
<tr>
<td>49</td>
<td>SFC-UV chromatogram of 1Ph derivatized C${13/15}$EO${7}$ on Berger Silica.</td>
</tr>
<tr>
<td>50</td>
<td>SFC-ESI-MS Contour plot of C${13/15}$EO${7}$ on Berger Silica.</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Chromatographic peak retention times of POE (4) nonylphenol and Triton N-101 (NPEOs).</td>
<td>24</td>
</tr>
<tr>
<td>II</td>
<td>Chromatographic peak retention times of POE (5) tert-octylphenol (OPEOs).</td>
<td>26</td>
</tr>
<tr>
<td>III</td>
<td>DPTMDS to C\textsubscript{18}PO\textsubscript{15} reagent molar ratio study.</td>
<td>52</td>
</tr>
<tr>
<td>IV</td>
<td>Sample molecular weight comparison and molar ratio between surfactant and reagent.</td>
<td>74</td>
</tr>
<tr>
<td>V</td>
<td>Surfactant concentration data.</td>
<td>76</td>
</tr>
<tr>
<td>VI</td>
<td>Peak asymmetry and resolution data for 1Ph derivatized C\textsubscript{18}EO\textsubscript{10} on Acclaim PA C16 and Discovery C18 + RP-AmideC16.</td>
<td>82</td>
</tr>
<tr>
<td>VII</td>
<td>Peak asymmetry data for 1Ph derivatized C\textsubscript{18}PO\textsubscript{15} on Acclaim PA C16 and Discovery C18 + RP-AmideC16.</td>
<td>85</td>
</tr>
<tr>
<td>VIII</td>
<td>Comparison of average molar oligomer values via 1H-NMR and SFC-UV.</td>
<td>94</td>
</tr>
<tr>
<td>IX</td>
<td>SFC-UV peak data for 1Ph derivatized C\textsubscript{18}EO\textsubscript{10}.</td>
<td>96</td>
</tr>
<tr>
<td>X</td>
<td>SFC-UV peak data for 1Ph derivatized C\textsubscript{18}PO\textsubscript{15}.</td>
<td>97</td>
</tr>
<tr>
<td>XI</td>
<td>SFC-UV peak data for 1Ph derivatized C\textsubscript{16}EO\textsubscript{20}.</td>
<td>98</td>
</tr>
<tr>
<td>XII</td>
<td>SFC-UV peak data for 1Ph derivatized C\textsubscript{18}EO\textsubscript{2}.</td>
<td>101</td>
</tr>
<tr>
<td>XIII</td>
<td>C\textsubscript{18}EO\textsubscript{10} 2Ph Oligomer Distribution.</td>
<td>123</td>
</tr>
<tr>
<td>XIV</td>
<td>C\textsubscript{16}EO\textsubscript{20} 2Ph Oligomer Distribution.</td>
<td>125</td>
</tr>
<tr>
<td>XV</td>
<td>Peak area distribution of 1Ph and 2Ph derivatized C\textsubscript{18}PO\textsubscript{15}.</td>
<td>128</td>
</tr>
</tbody>
</table>