let not your mind run wild
for I have dedicated this to thee, my brother

let not your heart swell with pride
for thy did obtain it, only in the absence of my significant other!
ACKNOWLEDGEMENTS

This thesis is the culmination of the research that I have been involved with in the last 15 months or so. This work is by no means mine alone, and in fact a large part of it is due to the sincere effort of my teachers, friends and colleagues. I express my sincere and heartfelt gratitude to the many people who played an important role in finishing this M.S Thesis of mine.

First and foremost, I would like to thank Dr. Hanif D. Sherali for his valuable guidance and help rendered in the last two years that I have known him. He has been an inspiring person, and it’s been a pleasure working with him. I would also like to thank my co-Chair, Dr. Hesham Rakha for all the help rendered as part of this research effort. A grateful thanks to my Committee member, Dr.Subhash C. Sarin, for being so understanding and supportive in the course of my M.S.

An overwhelming thanks to my elder brother, Vishwakarma Desai, for all the love and affection that he has showered on me during my stay in the US. He has been a constant source of support, and I have always found him to be full of life and joy. Thanks Anna! I thank my mom and dad for their advice, and love that they exhibit despite being 25000 miles away. A special thanks to my cousin Sanju and his wife Sandhya for their hospitality, and making me feel at home in the US.

Last but not the least come my friends at Virginia Tech, without whose presence I might have completed this thesis in a year instead of 15 months! I thank my roommate, Styly,
for his diligent help at home and for having indulged me in several entertaining conversations. I thank Pramod for having instilled in me a sense of confidence and pride, and furthering me into pursuing my goals.

A special word of mention to my dear Aparna, for being at my side through all those days of hard work. Of particular mention is the wonderful, piping hot tea that awaited me when I got back late in the night. Thanks Apsy!

I’d like to mention Dr. Barbara Fraticelli (Barb) for the many witty conversations that we’ve had, and for making things so pleasant in that familiar OR corridor. Finally, I thank all my other teachers at VT, Lovedia Cole, Marty Simpson, and the rest of the staff in the Grado department of Industrial & Systems Engineering, Virginia Tech for making my stay so comfortable.
CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
</tr>
<tr>
<td>PROBLEM DESCRIPTION</td>
<td>1</td>
</tr>
<tr>
<td>▪ Introduction</td>
<td>1</td>
</tr>
<tr>
<td>▪ Research Objectives and Purpose</td>
<td>4</td>
</tr>
<tr>
<td>▪ Current Problem Under Consideration</td>
<td>6</td>
</tr>
<tr>
<td>▪ Reader Location Problem</td>
<td>11</td>
</tr>
<tr>
<td>▪ Overview and Organization of this Thesis</td>
<td>17</td>
</tr>
<tr>
<td>LITERATURE REVIEW</td>
<td>21</td>
</tr>
<tr>
<td>▪ LITERATURE REVIEW- PART 1</td>
<td>21</td>
</tr>
<tr>
<td>▪ Overview</td>
<td>21</td>
</tr>
<tr>
<td>▪ Surveillance Technologies</td>
<td>24</td>
</tr>
<tr>
<td>▪ Data Sources</td>
<td>29</td>
</tr>
<tr>
<td>▪ LITERATURE REVIEW – PART 2</td>
<td></td>
</tr>
<tr>
<td>▪ Preface</td>
<td>34</td>
</tr>
<tr>
<td>▪ Review of Optimization Techniques</td>
<td>35</td>
</tr>
<tr>
<td>MODELING AND ANALYSIS</td>
<td>42</td>
</tr>
<tr>
<td>▪ Quantification of Typical Travel Time Variability</td>
<td>43</td>
</tr>
<tr>
<td>▪ Determination of Benefit Factors</td>
<td>43</td>
</tr>
</tbody>
</table>
- Derivation of a Composite Benefit Factor Function 72
- Reformulation of the Reader Location problem 75
- Semidefinite Cut Generation Scheme 81

RESULTS 85
- Sample Problem Description 85
- Computations 89
- Comparison of Results for Variations of the Reader Location Problem 94
- Problem Results 97

SUMMARY AND CONCLUSIONS 105
- Summary 105
- Future Research 109

APPENDIX A 111
APPENDIX A.1 121
APPENDIX A.2 133
APPENDIX A.3 145
APPENDIX B 157
APPENDIX C 186
BIBLIOGRAPHY 198
LIST OF FIGURES

• **Figure 1.** Conceptual Overview of San Antonio Vehicle Identification System

 10

• **Figure 2(a).** Sample Transportation Network

 12

• **Figure 2(b).** Graph $G(N, A)$

 12

• **Figure 3.** Flowchart Representation of the Current Research Effort

 19

• **Figure 4(a).** Output Signals for a Loop Detector

 26

• **Figure 4(b).** Speed Estimate Comparison Between Single and Dual Loop Detectors

 29

• **Figure 5.** On-Ramp Section

 45

• **Figure 6.** Off-Ramp Section

 46

• **Figure 7.** Weaving Section

 46

• **Figure 8.** Bottleneck Section

 47

• **Figure 9.** Model of On-Ramp Section

 50

• **Figure 10.** Freeway Average Travel Time for an On-Ramp Section with an Acceleration Lane Length of 50m

 52

• **Figure 11.** Freeway Travel Time COV for an On-Ramp Section with an Acceleration Lane Length of 50m

 54

• **Figure 12.** Model of an Off-Ramp Section

 56

• **Figure 13.** Freeway Average Travel Time for an Off-Ramp Section with an Acceleration Lane Length of 50m

 58
• Figure 14. Freeway Travel Time COV for an Off-Ramp Section with an Acceleration Lane Length of 50m 60

• Figure 15. Model of a Weaving Section 61

• Figure 16. Freeway Average Travel Time for a Weaving Section having a Weave Length of 100m and $V/C_{freeway} = 0.2$ 65

• Figure 17. Freeway Travel Time COV for a Weaving Section having a Weave Length of 100m and $V/C_{freeway} = 0.2$ 66

• Figure 18. Model of a Bottleneck Section 68

• Figure 19. Average Travel Time for a Bottleneck Section 70

• Figure 20. Travel Time COV for a Bottleneck Section 71

• Figure 21(a). Schematic Diagram of a Typical Freeway Section 87

• Figure 21(b). Interstate – 35 North 88

• Figure 21(c). Optimal Location of Readers 95

• Figure 22. Optimal Location of Readers on Graph $G(N, A)$ 96

LIST OF TABLES

• Table 1. Average Traffic Data for Interstate – 35 North 89

• Table 2. Benefit Factor Matrix for a Freeway Section 90

• Table 3. Site – Specific Cost Matrix for the Reader Locations 91