An Ecotoxicological Evaluation of Active Coal Mining, Sedimentation and Acid Mine Drainage in Three Tributaries of the Leading Creek Watershed, Meigs County, Ohio

By

Henry A. Latimer II
Committee Chairman: Donald S. Cherry

Abstract

Three streams (Parker Run, Little Leading Creek and Thomas Fork) in the Leading Creek watershed, Meigs County, Ohio were impacted by active coal mining, agricultural and abandoned mined land sedimentation and acid mine drainage (AMD), respectively. An ecotoxicological evaluation was performed using physical (water chemistry and sediment depth analyses), toxicological (acute water column, chronic sediment and 35-day in situ toxicity tests) and ecological (benthic macroinvertebrate community sampling) parameters. Persistent acute toxicity (mean 48-hr LC50 of 30.3% to C. dubia) due to low pH (mean of 5.4) and high concentrations of dissolved metals (ex: Al ~ 10 mg/L) were responsible for the significantly depressed benthic macroinvertebrate community sampled in Thomas Fork. Heavy sedimentation (>30 inches), with no associated toxins, significantly decreased both abundance and diversity of benthic macroinvertebrates in Little Leading Creek. High concentrations of sodium (mean of 910 mg/L), TDS (mean of 3,470 mg/L), and periodic acute water column toxicity (mean C. dubia survival of 62% in 100% sample) were most likely responsible for the depressed benthic macroinvertebrate community observed in Parker Run. In ranking the severity of impacts, AMD was first followed by non-toxic sedimentation, and active coal mining ranked last.

A catastrophic coal slurry spill significantly impacted the benthic macroinvertebrate community in Parker Run in April 1997. Six sampling stations were established to monitor the recovery of the stream’s benthic community and evaluate any impact the active coal mine effluent had on the recovery time of the community. The effluent, characterized by high concentrations of TDS (~4,200 mg/L), significantly hindered benthic macroinvertebrate community recovery in Parker Run. The benthic community at the initial spill site, which was above the active mine effluent, recovered to levels measured at an upstream reference within 4-9 months. Benthic communities impacted by both the slurry spill and the effluent still had not recovered 16 months after the spill. Concentrations of TDS measured in the stream were significantly correlated (r = -0.765 and -0.649 respectively) with both EPT richness and percent C. dubia survival in water column toxicity tests.

Laboratory analysis of synthetic coal mine effluent, similar in composition to that of the Parker Run effluent, was performed to determine toxicity thresholds for sodium, sulfate, TDS and conductivity. Acute toxicity thresholds were found for sodium (between 900 and 1,000 mg/L), TDS (4,200 and 6,400 mg/L), and conductivity (5,000
and 6,200 µmhos/cm). It was also determined that any toxic contribution of sulfate in solution with high concentrations of sodium (~1,000 mg/L) and/or TDS (~4,200 – 6,400 mg/L) was secondary to that of the toxic effect of sodium or TDS in that solution.
Acknowledgements

The completion of this degree like many other endeavors in life, was not a solo effort. A number of people made contributions to my progress, through direct help in the laboratory and field or through personal support and encouragement.

The first person on this long, and not necessarily inclusive, list is Dr. Don Cherry, my major professor. He gave me opportunities to learn and experience things in this field that I doubt I would have received anywhere else. So, the first round of cheers goes to Don; without his teaching and guidance I would not be where I am now.

I am also grateful to the members of my committee, Dr. Dave Johnson, Dr. George Simmons, Jr., and Dr. Carl Zipper, for their time and dedication in assisting me with this degree.

Becky Currie, who finished her doctorate working in the Leading Creek watershed, spent many days with me in the field and made much of my sampling possible. She braved more than one dunking in my streams during rainstorms while assisting with my research. Dave Soucek, another member of the Cherry Lab, was invaluable as a sounding board for my research ideas and made numerous helpful suggestions to early drafts of this thesis.

Without the continual support, faith, and encouragement of my parents, this degree would have been considerably more difficult to complete. They have been instrumental in my educational and professional development from the beginning. Thanks, Mom, for letting me run wild in the creeks as I grew up, and for never getting too bent out of shape about having to hose me off on the back porch before letting me inside at the end of the day. Thanks, Dad, for taking me fishing; some of my happiest childhood memories are of swimming and fishing in the Shenandoah River.

Many thanks also go to my friends. Their confidence caused me to question their judgement at times, but they have always been in my corner. And finally, Karen Andruszkiewicz, whose attitude and capacity for beauty has enriched my life.
Table of Contents

Abstract ... ii
Acknowledgements ... iv
Table of Contents .. v
List of Tables ... vi
List of Figures .. viii

Introduction ... 1
 Literature Cited ... 67

Chapter One: ... 4
 Introduction ... 5
 Methods ... 7
 Results .. 11
 Discussion ... 20
 Conclusions ... 26
 Literature Cited .. 68

Chapter Two: ... 27
 Introduction .. 28
 Methods ... 30
 Results .. 33
 Discussion ... 49
 Conclusions ... 55
 Literature Cited .. 74

Chapter Three: ... 56
 Introduction .. 57
 Methods ... 59
 Results .. 61
 Discussion ... 64
 Conclusions ... 66
 Literature Cited .. 78

Curriculum Vitae .. 80
List of Tables

Chapter One:

Table 1. Mean benthic macroinvertebrate total abundance and taxon richness values measured in each stream .. 11
Table 2. Mean benthic macroinvertebrate EPT abundance, EPT abundance as % of total abundance and EPT richness values measured in each stream ... 11
Table 3. Mean mayfly abundance and % of total abundance as mayflies measured in each stream ... 12
Table 4. Mean abundance of chironomids and chironomids as % of total abundance measured in each stream 12
Table 5. Mean biomass of periphyton as chlorophyll a 13
Table 6. Summary of non-metallic water chemistry data 14
Table 7. Summary of water column metals data.......................... 15
Table 8. Summary of mean Ceriodaphnia dubia 48-hr survival . 18
Table 9. Summary of mean Daphnia magna survival and reproduction in 10-day chronic sediment tests ... 19
Table 10. Summary of mean Chironomus tentans survival and growth in 10-day chronic sediment tests ... 19
Table 11. Summary of mean survival and growth of Corbicula fluminea from 35-day in situ toxicity tests... 19

Chapter Two:

Table 1. Summary of non-metallic water chemistry data 38
Table 2. Summary of water column metals data....................... 39
Table 3. Mean survival and reproduction of Daphnia magna and mean survival and growth of Chironomus tentans from April 1997, 10-day chronic sediment tests .. 41
Table 4. Mean survival and reproduction of Daphnia magna and mean survival and growth of Chironomus tentans from August 1997, 10-day chronic sediment tests 41
Table 5. Mean survival and reproduction of Daphnia magna and mean survival and growth of Chironomus tentans from January 1998, 10-day chronic sediment tests .. 42
Table 6. Mean survival and reproduction of Daphnia magna and mean survival and growth of Chironomus tentans from June 1998, 10-day chronic sediment tests ... 43
Table 7. Mean survival and reproduction of Daphnia magna and mean survival and growth of Chironomus tentans from June 1998, 10-day chronic sediment tests using site specific overlying water 43
Table 8. Summary of 48-hr water column toxicity to Ceriodaphnia dubia ... 44
Table 9. Summary of simple linear regression analysis performed on data collected summer 1998.. 48
Chapter Three:
 Table 1. Summary of concentration of each salt used to create synthetic coal mine effluents ... 59
 Table 2. Summary of *Ceriodaphnia dubia* 48-hr LC$_{50}$ values for conductivity, TDS, sodium and sulfate for each of the four synthetic effluents tested... 61
List of Figures

Chapter One:

Figure 1A-D. Mean levels of conductivity and mean concentrations of sodium, sulfate and chloride measured in each stream 16
Figure 2A-D. Mean pH and concentrations of manganese, aluminum, and iron .. 17
Figure 3. Sediment depths measured in each stream 18

Chapter Two:

Figure 1. Mean values of benthic macroinvertebrate community total abundance, EPT abundance, taxon richness and EPT richness values measured in April 1997, immediately following coal slurry spill ... 34
Figure 2. Mean values of benthic macroinvertebrate community total abundance, EPT abundance, taxon richness and EPT richness values measured in July 1997 ... 34
Figure 3. Mean values of benthic macroinvertebrate community total abundance, EPT abundance, taxon richness and EPT richness values measured in January 1998 ... 35
Figure 4. Mean values of benthic macroinvertebrate community total abundance, EPT abundance, taxon richness and EPT richness values measured in July 1998 ... 35
Figure 5A-D. Mean levels of conductivity and mean concentrations of TDS, sulfate and sodium measured in Parker Run 40
Figure 6A-D. Mean survival and growth of Corbicula fluminea in 35-day in situ toxicity tests conducted in July 1997, July and August 1998 ... 45
Figure 7. Mean Corbicula fluminea survival and growth from all 35-day in situ testing conducted in Parker Run 46
Figure 8. Mean Corbicula fluminea survival and growth from 35-day in situ toxicity tests conducted above and below mine effluent 47

Chapter Three:

Figure 1A-D. Mean Ceriodaphnia dubia 48-hr LC_{50} values to conductivity, TDS, sodium and sulfate in each of the four synthetic mine effluents tested .. 63