Using Maturity to Predict Girder Camber

by

Stephen M. Bert

Thesis submitted to the faculty of the

Virginia Polytechnic Institute and State University

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

IN

CIVIL ENGINEERING

APPROVED:

______________________________ ______________________________
Carin Roberts-Wollmann Richard E. Weyers

______________________________ ______________________________
Thomas E. Cousins Richard E. Weyers

May 2005
Blacksburg, Virginia

Keywords: Maturity, Camber, Modulus of Elasticity
Using Maturity to Predict Girder Camber

by

Stephen M. Bert

(ABSTRACT)

The objective of this research was to determine if differential camber of prestressed concrete girders could be reduced by accurate prediction of initial camber at release of prestress. Maturity at prestress transfer was used to calculate modulus of elasticity for predicting camber at release. The research consists of a literature review of maturity methods, testing of a standard concrete mix to determine strength and modulus functions and measurement of girder camber and maturity.

Both the Nurse-Saul and the Arrhenius maturity models were evaluated. Maturity relationships were developed for concrete mixes containing Type II and Type III cements. A relationship of modulus as a function of maturity was developed. Seven girders were tested. Camber predictions within 0 to ¼ in. of actual camber were obtained using modulus of elasticity calculated from a maturity based function. Comparison was made between maturity based modulus and standard strength based modulus models. Camber predictions based on modulus calculated based on field cured cylinder strengths were within 0 to ½ in.
Acknowledgements

I would like to thank Dr. Carin Roberts-Wollmann for serving as my committee chair as well as for her guidance and patience throughout the research project. I would also like to thank Dr. Thomas Cousins and Dr. Richard Weyers for serving on my committee. I would also like to thank Dan Cabello and Chad Saunders of Bayshore Concrete Product for their dedication and tireless efforts in assisting me in testing.
Table of Contents

Chapter 1- Background

1.1- Project Overview and Scope

1.2- Project Objectives

1.3- Project Organization

Chapter 2- Literature Review

2.1- Camber in Pretensioned Concrete Beams

2.1.1- Differential Camber

2.1.2- Modulus Calculation Models

2.2- Maturity Method for Estimating In-Place Strength

2.2.1- Theory, History and Models

2.2.2- Maturity Measuring Equipment

2.3- Significance of Research

Chapter 3- Test Procedures

3.1- Introduction

3.2- Estimating Concrete Strength Using The Maturity Method

3.2.1- Materials

3.2.2- Determining Rate Constants

3.2.2.1- Preparing Mortar Batches

3.2.2.2- Curing Mortar Cubes

3.2.2.3- Mortar Cube Strength Tests

3.2.3- Development of Strength versus Maturity Curves

3.2.3.1- Preparing Concrete Batches

3.2.3.2- Curing Concrete Cylinders

3.2.3.3- Concrete Cylinder Strength Tests

3.2.3.4- Concrete Cylinder Modulus Tests

3.3- Girder Tests

3.3.1- Maturity Measurement

3.3.2- Camber Measurement
Table of Contents

Chapter 4- Background

- 4.1- Introduction .. 24
- 4.2- Maturity Method Strength Estimates 24
 - 4.2.1- Maturity Function Constants 24
 - 4.2.2- Maturity Models .. 27
 - 4.2.2.1- Strength Models ... 27
 - 4.2.2.2- Modulus Models .. 31
- 4.2.3- Girder Maturity Measurements 35
- 4.3- Girder Camber .. 36
 - 4.3.1- Calculation Models and Results 37
 - 4.3.2- Comparison Between Calculated and Actual Camber 38

Chapter 5- Conclusions and Recommendations........................ 41

- 5.1- Using Maturity to Eliminate Differential Camber 41
- 5.2- Advantages of Using Maturity in a Precast Environment 41
- 5.3- Disadvantages of the Maturity Method 42
- 5.4- Additional Study Required ... 42
 - 5.4.1- Affect of Curing Cycle Variation 42
 - 5.4.2- Sensitivity of Mix Variation 42
 - 5.4.3- Crossover Affect ... 42
 - 5.4.4- Long-term Camber Affects 43

References .. 44

Appendix A ... 46

Appendix B ... 80