Effects of Organic Soil Amendments on Soil Physiochemical and Crop Physiological Properties of Field Grown Corn (*Zea mays*) and Soybean (*Glycine Max*)

Chandra Lynndell Bowden

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science

In

Crop and Soil Environmental Sciences

Greg Evanylo, Ph.D., Committee Chair
Erik Ervin, Ph.D. Committee Member
John Seiler, Ph.D., Committee Member

April 28, 2006
Blacksburg, Virginia

Keywords: Humic acid, Fulvic acid, Superoxide dismutase, Ascorbate peroxidase, Catalase, Malondiadehyde, Compost, Poultry litter, Nitrogen mineralization
Effects of Organic Soil Amendments on Soil Physiochemical and Crop Physiological Properties of Field Grown Corn (*Zea mays*) and Soybean (*Glycine Max*)

Chandra Lynndell Bowden

Abstract

Water stress is the most critical environmental factor limiting crop production in the US Piedmont. The presence of humic substances in composted organic amendments may increase crop tolerance to water stress through their hormone-like effects on plant metabolism. The objectives of this study were to calculate N mineralization rates of composted and non-composted organic materials used in this long-term field study, and to determine differences in soil physiochemical properties, corn and soybean leaf physical and biochemical properties yield and seed quality between organically amended and inorganically fertilized treatments. Nitrogen mineralization rates were greatest in the poultry litter (21%) and Panorama yard waste compost (4.5%) amended plots. Nitrogen uptake (120 mg/pot, 133 mg/pot, respectively) in these treatments were greater than that in the control (0N) (91.3 mg/pot) treatment. Wolf Creek biosolids compost and Huck’s Hen Blend yard waste compost induced N immobilization (-5.0% and 0.18%, respectively), and had N uptake values similar to the control (92.6 mg/pot and 95.7 mg/pot). Rivanna biosolids compost immobilized N (-14.8%) but N uptake (136 mg/pot) was greater than that in the control due to the relatively high inorganic N content in the amendment. The total N concentration and C:N values were less reliable variables in predicting N mineralization when a significant portion of the total N was in the inorganic form.

The annual application of poultry litter, Rivanna biosolids compost, and Panorama yard waste compost at 100% agronomic nitrogen and 30 % agronomic nitrogen rates in the field study improved soil fertility and increased total organic and humified carbon contents relative to the inorganically fertilized and control treatments. The amended treatments had slightly greater plant available water contents (average 10.0 cm/15 cm) than the control (8.38 cm/15 cm). Leaf water potential measurements revealed that neither crop experienced water stress during the sampling season. Treatment differences in leaf antioxidant activity were only observed in corn. All corn plants that were fertilized
with amendments supplying the crop’s nitrogen needs, regardless of the source, had greater leaf nitrogen (+29%), chlorophyll (+33%), and protein contents (+37%), lower superoxide dismutase (-29%) and ascorbate peroxidase (-17%) activities, and lower malondialdehyde (-33%) contents relative to the control and low nitrogen treatments. There were no observed differences in catalase activity, which was likely due to the evolutionary advantage of C4 metabolism. Yield was strongly related to midseason leaf nitrogen contents ($R^2=0.87$, $p<0.0001$) and not soil humified carbon ($R^2=0.02$, $p=0.0543$). There were no observed treatment differences in soybean leaf physiology and metabolism. Differences, however, were observed over time. As the leaves senesced, leaf chlorophyll, protein, superoxide dismutase and catalase activities decreased, and the malondialdehyde content increased. Ascorbate peroxidase activity slightly increased with time. Catalase activity in soybean was primarily driven by the oxidation of glycolate, a product of photorespiration, and not the formation of reactive oxygen species in the chloroplasts. The organically amended treatments had higher yields (9-21% increase), greater protein contents (4-9% increase), and seed weights (5-14% increase) relative to the fertilizer and control treatments. It was concluded that differences in soybean yield and seed quality were due to non-nutritive benefits of the organic amendments and not available water or plant nutrition.
This study was partially funded by the USDA Sustainable Agriculture Research and Education Graduate Student grant program
This work is dedicated to my mother who raised me, my father who chose to love me, and to all those who came before— thank you for your sacrifice!
Author’s Acknowledgments

This work could not have been completed without the assistance and support of my mentors, colleagues, friends, and family. I’d like to thank my committee members: Greg Evanylo, Erik Ervin, and John Seiler. Greg concerning you, I have so much to be grateful for. Suffice it to say that under your direction, I know first hand how a graduate student should be treated. To Dr. Ervin, thank you for allowing me free use of your lab space and for being available whenever I needed assistance. To Dr. Seiler, thank you for your instruction in Plant and Water Relations, and for sharing your insight on how to critique scientific journals. Thank you, Dr. Mark Ally for your support as graduate coordinator of CSES. Dr. Xunzhong Zhang, thank you for your analytical expertise and patience with me as learned research techniques. To Dr. Nielsen—thank you for being an awesome professor who challenged me in Plant Stress Physiology. Thank you also for free use of your field equipment. I could not have completed this project without you!

I must extend thanks to the staff of the Northern Piedmont Agriculture Research and Extension Center: Dave Steiner, Alvin Hood, Steve Gulick, and Jan Hazen. Thank you for your assistance during the course of my study. It was always a pleasure to visit you. To Dr. Beshr Sukkariyah—you are my favorite soil chemist. Thank you for sharing your scientific expertise and being a great friend.

To John Spargo, I’m glad we were able to work together at Orange and in the greenhouse. Thank you for your mentorship. To Katie Hearing, thank you for always offering assistance whenever I was short a pair of hands. To Dylan Evanylo, Paul Parker-Clever, Luke Martinkosky, and Nikkida Budrant—thank you for your assistance in the field and lab. Many thanks to the graduate students of CSES, particularly to those of 417 Smyth Hall, whose company kept science motivating and light.

Thank you to the Multicultural Academic Opportunities Program for providing an opportunity to conduct research at Virginia Tech while I was an undergraduate at NC State, and to Dr. John Fike who volunteered to mentor me during that time.

To my parents Linda and Odell Bowden: Thank You for your love and support. To my brother Daniel, I love you.

Peace!
Table of Contents
Thesis Abstract...ii
Dedication...v
Author’s Acknowledgments..vi
Table of Contents..vii
List of Tables...x
List of Figures...xii

1 Introduction
Problem, Rationale, Significance..1
Thesis Objectives..3
Previous Work..4
 Compost May Increase Nutrient Availability.........................4
 The Humification of Compost...6
 Compost May Increase Soil Water Holding Capacity...............9
 Impact of Drought Stress on Photosynthetic Electron Transport...11
 Humic Substances May Ameliorate Crop Drought Stress...........15
Summary and Conclusions...16
References..17

2 Relative N Fertilizer Efficiency and Mineralization of
 Organic Amendments as Assessed by Tall Fescue
 (Festuca arundinacea L.)
 Abstract..31
 Introduction...32
 Materials and Methods..33
 Results and Discussion..36
 Characteristics of Organic By-products..............................36
 Effects of Treatments on Soil Properties...........................36
 Yield and Nitrogen Uptake...37
 N Mineralization and Percent N Fertilizer Value..................37
 Conclusion..38
 References...39
 Tables..42
 Figures..47

3 Effects of Organic Soil Amendments on Soil Physiochemical
 and Crop Physiological Properties of Field Grown Corn (Zea
 mays L.) and Soybean (Glycine Max L.)
 Abstract..50
Materials and Methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Description</td>
<td>54</td>
</tr>
<tr>
<td>Experimental Design</td>
<td>54</td>
</tr>
<tr>
<td>Phase I of Study: 2000-2002</td>
<td>54</td>
</tr>
<tr>
<td>Phase II of Study: 2003-2005</td>
<td>55</td>
</tr>
<tr>
<td>Soil Sampling and Monitoring</td>
<td>57</td>
</tr>
<tr>
<td>Humic Substances Extraction</td>
<td>57</td>
</tr>
<tr>
<td>In Field Plant Measurements</td>
<td>58</td>
</tr>
<tr>
<td>Leaf Laboratory Analyses</td>
<td>59</td>
</tr>
<tr>
<td>Seed Biochemical Analyses</td>
<td>61</td>
</tr>
<tr>
<td>Data Analyses</td>
<td>61</td>
</tr>
</tbody>
</table>

Results and Discussion

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climatological Parameters at the Northern Piedmont Agriculture and</td>
<td>61</td>
</tr>
<tr>
<td>Research Extension Center</td>
<td></td>
</tr>
<tr>
<td>Soil Fertility</td>
<td>62</td>
</tr>
<tr>
<td>Soil Organic Carbon (C)</td>
<td>64</td>
</tr>
<tr>
<td>Fulvic and Humic Acid</td>
<td>65</td>
</tr>
<tr>
<td>Soil Bulk Density, Soil Water Holding Capacity, and Moisture Potential</td>
<td>66</td>
</tr>
<tr>
<td>Statistical Interactions</td>
<td>67</td>
</tr>
<tr>
<td>Corn (2004)</td>
<td>67</td>
</tr>
<tr>
<td>Midseason Leaf Nutrient Content</td>
<td>67</td>
</tr>
<tr>
<td>Leaf Water Potential (Ψ_{leaf})</td>
<td>67</td>
</tr>
<tr>
<td>Total Leaf Protein</td>
<td>67</td>
</tr>
<tr>
<td>Leaf Chlorophyll</td>
<td>68</td>
</tr>
<tr>
<td>Photochemical Efficiency (Fv/Fm)</td>
<td>68</td>
</tr>
<tr>
<td>Superoxide Dismutase (SOD)</td>
<td>68</td>
</tr>
<tr>
<td>Ascorbate Peroxidase (APX)</td>
<td>69</td>
</tr>
<tr>
<td>Catalase (CAT)</td>
<td>69</td>
</tr>
<tr>
<td>Malondialdehyde (MDA)</td>
<td>70</td>
</tr>
<tr>
<td>Yield and Seed Composition</td>
<td>70</td>
</tr>
<tr>
<td>Soybean (2005)</td>
<td>71</td>
</tr>
<tr>
<td>Midseason Leaf Nutrient Content</td>
<td>71</td>
</tr>
<tr>
<td>Leaf Water Potential (Ψ_{leaf})</td>
<td>71</td>
</tr>
<tr>
<td>Total Leaf Protein</td>
<td>71</td>
</tr>
<tr>
<td>Leaf Chlorophyll</td>
<td>71</td>
</tr>
<tr>
<td>Photochemical Efficiency (Fv/Fm)</td>
<td>72</td>
</tr>
<tr>
<td>Delta T</td>
<td>72</td>
</tr>
<tr>
<td>Superoxide Dismutase (SOD)</td>
<td>72</td>
</tr>
<tr>
<td>Ascorbate Peroxidase (APX)</td>
<td>72</td>
</tr>
<tr>
<td>Catalase (CAT)</td>
<td>73</td>
</tr>
<tr>
<td>Malondialdehyde (MDA)</td>
<td>73</td>
</tr>
<tr>
<td>Yield and Seed Composition</td>
<td>73</td>
</tr>
<tr>
<td>Comparison of Corn and Soybean Antioxidant Activities</td>
<td>74</td>
</tr>
<tr>
<td>Conclusion</td>
<td>74</td>
</tr>
</tbody>
</table>
List of Tables
Table 2.1. Chemical and physical properties of five organic amendments.................42
Table 2.2. Fertilization treatment rates applied to the Fauquier silty clay loam used
in the greenhouse study...43
Table 2.3. Soil test analyses by the Virginia Tech Soil Testing Laboratory of
unamended Fauquier silty clay loam..43
Table 2.4. Effects of treatments on pH values of Fauquier silty clay loam 2 and 172
days after liming...44
Table 2.5. Effects of treatments on cumulative tall fescue yields and N uptake grown
in a Fauquier silty clay loam at 42, 84, and 168 days after planting..........44
Table 2.6 Nitrogen uptake and equivalency of organic amendments 42, 84,
and 168 days after planting..45
Table 2.7. Cumulative percent N mineralized and percent N fertilizer values (NFV)
of organic amendments relative to agronomic N fertilizer treatment (45 mg
PAN/kg soil) 42, 84, and 168 days after planting............................45
Table 2.8. Stepwise multiple linear regression of plant available nitrogen against five
variables of N measured from organic amendments..........................45
Table 2.9. Effects of treatments on soil N concentrations in Fauquier silty clay loam
168 days after planting...46
Table 3.1. Treatment descriptions during Phase I of the study, 2000-2002..............82
Table 3.2. Treatment descriptions during Phase II of the study, 2003-2005...........82
Table 3.3. Select chemical properties of the organic residuals applied in 2004........83
Table 3.4. Cumulative application rates and total carbon added of organically amended
treatments from 2000 to 2004..84
Table 3.5. Total macro- and micronutrients added in all treatments in 2004............85
Table 3.6. Climatological parameters at Northern Piedmont Agriculture and Research
Station...86
Table 3.7. Air temperatures at Northern Piedmont Agriculture and Research Station on
sampling dates in 2004 and 2005, respectively.................................86
Table 3.8. Summer 2004 and 2005 end of season soil data.............................87
Table 3.9. Differences in 2004 and 2005 end of season soil data.................................88
Table 3.10. Soil total organic carbon contents in long-term organically amended soil...89
Table 3.11. NaOH extractable carbon from organic amendments..............................89
Table 3.12. NaOH extractable carbon in long-term amended soil............................90
Table 3.13. 2004 Soil bulk density, soil water holding capacity (SWHC), and water
potential of selected treatments...91
Table 3.14. 2005 Soil bulk density, soil water holding capacity (SWHC), and water
potential of selected treatments...91
Table 3.15. 2004 Corn midseason leaf N and P contents...92
Table 3.16. 2004 Corn physiological parameters...93
Table 3.17. 2004 Changes in corn physiological parameters over time......................94
Table 3.18. 2004 Corn yield and seed composition...95
Table 3.19. Stepwise multiple linear regression of corn yield against four variables of soil
nitrogen and humified carbon contents...95
Table 3.20. 2005 Soybean leaf N and P contents...96
Table 3.21. 2005 Soybean physiological parameters..97
Table 3.22. 2005 Changes in soybean physiological parameters over time.................98
Table 3.23. 2005 Soybean yield and seed composition..99
List of Figures
Figure 1.1. The transfer of electrons and protons in the thylakoid membrane.........11
Figure 1.2. Thylakoid in stromal scavenging systems of superoxide and hydrogen
superoxide in chloroplasts...14
Figure 2.1. Effect of inorganic fertilizer N rate on tall fescue biomass accumulation 42,
84, and 168 days after planting...47
Figure 2.2. Effects of inorganic fertilizer N rate on tall fescue N uptake 42, 84, and 168
days after planting...48
Figure 2.3. Cumulative N mineralization at 42, 84, and 168 days after planting as
assessed by N uptake by tall fescue N grown in a Fauquier silty clay loam
amended with NH₄NO₃...49