DNA Electronics

Michael Zwolak

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Master of Science

in

Physics

Massimiliano Di Ventra, Chair

Marvin Blecher

Uwe C. Täuber

April 28, 2003

Blacksburg, Virginia

Keywords: DNA, Electronics, Charge Transport, Spin-dependent Transport

Copyright 2003, Michael Zwolak
DNA Electronics

Michael Zwolak

(ABSTRACT)

DNA is a potential component in molecular electronics. To explore this end, there has been an incredible amount of research on how well DNA conducts and by what mechanism. There has also been a tremendous amount of research to find new uses for it in nanoscale electronics. DNA’s self-assembly and recognition properties have found a unique place in this area. We predict, using a tight-binding model, that spin-dependent transport can be observed in short DNA molecules sandwiched between ferromagnetic contacts. In particular, we show that a DNA spin-valve can be realized with magnetoresistance values of as much as 26% for Ni and 16% for Fe contacts. Spin-dependent transport can broaden the possible applications of DNA as a component in molecular electronics and shed new light into the transport properties of this important biological molecule.

This work received support from the National Science Foundation Grant Nos. DMR-01-02277 and DMR-01-33075, Carilion Biomedical Institute, and the Donors of The Petroleum Research Fund (administered by the American Chemical Society).