Acknowledgement

Thanks to Dr John Randolph and Dr Lee R. Skabelund for the guidance in the process of this major paper. The development of this paper is impossible without the topic introduction and reviews from Dr. Randolph. Thanks especially to Dr. Skabelund for the detailed review and helpful suggestions and corrections for this paper.
Table of Contents

Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vi</td>
<td></td>
</tr>
</tbody>
</table>

List of Figures

Chapter One: Introduction

1.1 Background and Problem Statement 1
1.2 Goals, Objectives and Methodology
 1.2.1 Goal 2
 1.2.2 Objectives 2
 1.2.3 Methodology 2
1.3 An Overview of the Paper 2

Chapter Two: Theoretical Background

2.1 Definition 4
2.2 Watershed Restoration/Management 6
2.3 Riparian Restoration 6
2.4 In-stream Restoration 8
2.5 Case Studies 9
 2.5.1 Bluewater Creek Watershed Management, New Mexico 10
 2.5.2 Lititz Run Watershed, City of Lancaster, Pennsylvania 12
 2.5.3 Kingstowne Stream Restoration Project, Fairfax, Virginia 13

Chapter Three: Urban Stream Restoration Planning

3.1 Overview 15
3.2 Organizing the Process 16
3.3 Identifying Problems and Opportunities
 3.3.1 Data Collection 17
 3.3.2 Problem Analysis: The Reference Approach 18
3.4 Developing Goals and Objectives for Stream Restoration/Rehabilitation Efforts
 3.4.1 Define the Desired Future Condition 19
 3.4.2 Identify Scale Considerations 19
 3.4.3 Identify Restoration/Rehabilitation Constraints and Issues 19
 3.4.4 Define Restoration/Rehabilitation Goals and Objectives 20
3.5 Stream Restoration/Rehabilitation Alternatives and Design 20
 3.5.1 Cause Management or Symptom Treatment 21
 3.5.2 Scale Consideration 21
 3.5.3 Other Supporting Analyses for Selecting Alternatives 21
 3.5.4 Alternative Selection Components 22
 3.5.5 Restoration Detailed Design 22
3.6 Restoration/Rehabilitation Implementation 22
 3.6.1 Securing Funding for Restoration/Rehabilitation Implementation 23
 3.6.2 Identifying Tools to Facilitate Restoration/Rehabilitation Implementation 23
 3.6.3 Dividing Restoration/Rehabilitation Responsibilities 24
 3.6.4 Installing Restoration/Rehabilitation Measures 24
3.7 Restoration/Rehabilitation Evaluation, Monitoring, and Management 24
 3.7.1 Define Measurable Objectives 25
 3.7.2 Design Restoration/Rehabilitation Evaluation,

iv
Chapter Four: Stroubles Creek Restoration Process Plan

4.1 The Stroubles Creek Background Information
 4.1.1 The Stroubles Creek Watershed
 4.1.2 Historic Studies on the Stroubles Creek
 4.1.3 Thoughts on the Stroubles Creek

4.2 Process Organization
 4.2.1 Setting Boundaries
 4.2.2 Forming an Advisory Group
 4.2.3 Establishing Technical Teams
 4.2.4 Identifying Funding Sources
 4.2.5 Establishing Points of Contact and a Decision Structure
 4.2.6 Facilitating Involvement and Information Sharing Among Participants
 4.2.7 Documenting the Process

4.3 Problems and Opportunity Analysis
 4.3.1 Data Collection
 4.3.2 Definition of Existing Stream Corridor Conditions and the Causes of Disturbance
 4.3.3 Analyze the Problems of the Stroubles Creek by the Reference Approach
 4.3.4 Determination of Management Role on Stream Recovery
 4.3.5 Problems and Opportunity Statement

4.4 Goals and Objectives
 4.4.1 Define Restoration/Rehabilitation Vision Statement for the Stroubles Creek
 4.4.2 Identify Constraints and Issues.
 4.4.3 Define Goals and Objectives.

4.5 Restoration/Rehabilitation Design
 4.5.1 Design Elements of the Stroubles Creek Restoration/Rehabilitation
 4.5.2 Components of the Stroubles Creek Restoration/Rehabilitation Design

4.6 Implementation and Installation
 4.6.1 Secure Funding for the Stroubles Creek Restoration/Rehabilitation
 4.6.2 Identify Regulatory and Non-Regulatory Tools to Facilitate Implementation
 4.6.3 Assign Restoration/Rehabilitation Responsibilities
 4.6.4 Implementation Considerations

4.7 Evaluation, Monitoring and Management
 4.7.1 Evaluating and Monitoring Success
 4.7.2 Long Term Protection and Management

Chapter Five: Summary and Conclusion

Bibliography
List of Figures

Figure 2-1:	Different Spatial Scales of Stream Systems	7
Figure 2-2:	Porous Fence Revetment Designed To Reduce Bank Failure	11
Figure 2-3:	Porous Fence Revetments After Two Growing Seasons	11
Figure 2-4:	Multiple Elevated Culvert Array At Crossing Of Wet Meadow	11
Figure 2-5:	Location of Lancaster County, PA	12
Figure 2-6:	The Lititz Run Watershed showing project area locations	12
Figure 2-7:	Bank Erosion before Treatment	14
Figure 2-8:	Channel Treatment	14
Figure 3-1:	12 step stream restoration/rehabilitation procedure flow chart	15
Figure 4-1:	The Location of Stroubles Creek Watershed and Town of Blacksburg	29
Figure 4-2:	Stroubles Creek watershed within the Town of Blacksburg	29
Figure 4-3:	Piped Stroubles Creek stream segments in the downtown Blacksburg area	33
Figure 4-4:	Diverted Stroubles Creek stream segment near Price’s Fork Rd	33
Figure 4-5:	Stroubles Creek piped underground in the Virginia Tech Campus	34
Figure 4-6:	Segments of Stroubles Creek covered under Drillfield, Virginia Tech	34
Figure 4-7:	Downstream of Stroubles Creek near Foxridge/Hethwood	34
Figure 4-8:	Downstream of Stroubles Creek near VPI farm	34
Figure 4-9:	Using historical photo as a reference	35
Figure 4-10:	Less disturbed Stroubles Creek segment on West property	35