Science Teachers’ Understanding and Use of Instructional Strategies Within the 4 x 4 Block Schedule

Kurt Grosshans

Virginia Polytechnic Institute and State University

Doctor of Education

Curriculum and Instruction

Dissertation submitted to:

George Glasson, Co-Chair
Peter Doolittle, Co-Chair
Susan G. Magliaro
Penny Burge
Brenda Brand

May 1st, 2006

Blacksburg, Virginia.

Teacher beliefs, strategies, 4 x 4 block scheduling, science education.
Science Teachers’ Understanding and Use of Instructional Strategies Within the 4 x 4 Block Schedule

Kurt Grosshans

Abstract

The primary purpose of this researcher was to investigate how science teachers engage students under the 4 x 4 block schedule and how the teachers’ understanding of how they use instructional strategies influenced their lessons. As an inquiry-based approach has been adopted by the National Science Standards, research has suggested that block scheduling provides more time for teachers to incorporate varied strategies such as inquiry-based and cooperative learning teaching which have philosophical roots in a social constructivist philosophy. This research investigated the questions: What instructional strategies do science teachers use to engage students on the 4 x 4 block schedule? How do science teachers understand their use of instructional strategies?

The methodology was qualitative in nature and involved a multiple case study of three high school science teachers at a large rural county high school. Data sources included pre-observation interviews, classroom observations, post-observation interviews, and the collection of documents and artifacts such as lesson plans, student hand-outs, worksheets, laboratory exercises, homework and other document(s) the teacher used to prepare for or implement a lesson.

The evidence observed in this study, suggests that the strategies used by these three science teachers remain mostly didactic in nature. Although the teachers reported in the interview phase of this research that they use a wide variety of strategies, what was
observed within the 4 x 4 block structure was the use of different didactic strategies, not
different holistic strategies. Although the teachers were aware of more holistic strategies
such as inquiry-based and cooperative learning, they were not adopted nor adapted within
the lesson. The three teachers used strategies that were consistent with their scientific
realist views concerning the nature of science. These scientific realist philosophies are
antithetical to a social constructivist approach to teaching and learning, which is what the
National Research Council suggests science teachers adopt.
This dissertation is dedicated to those whom I hold close. First, and with gratitude that is beyond expression, my wife Karin and my two sons, Christian and Casey. You will always inspire me. To my dad, the ultimate educator and mentor. To my mom who supported me and kept me going, to my in-laws John and Lorraine Dunn for helping at every turn, and finally to George N. Porterfield for the time and space to not only try new things within the classroom, but to complete this degree.
I would like to acknowledge the incredible support and help of my two Co-Chairs, Dr. Glasson and Dr. Doolittle. It’s appropriate that my defense is on May 1st, “Mayday,” a term used by pilots before they crash and burn. You two have been my parachute.
TABLE OF CONTENTS

ABSTRACT

INTRODUCTION
- Rationale for the Study
- The connection between teaching strategies and time
- National Standards
- Accountability
- Limitations
- Conceptual Framework
- Summary
- Research Questions

LITERATURE REVIEW
- The Constructivist Landscape
 - Tenets of constructivism
 - The development of the constructivist epistemology
 - Cognitive constructivist epistemology
 - Cognitive constructivist pedagogy
 - Radical constructivist epistemology
 - Radical constructivist pedagogy
 - Social constructivist epistemology
 - Social constructivist pedagogy
 - Connecting radical and social constructivism
 - Constructivist cautions
 - Summary of constructivism
 - Implications for the study
- Block Scheduling
 - Block scheduling and academic achievement
 - Block scheduling and perception
 - Summary of block scheduling
 - Implications for the study
- Science Education
 - National science standards and epistemology
 - Conceptual change theory
 - Inquiry-based learning
 - The nature of science
 - Science and beliefs about learning
 - Teaching strategies in science education
 - Summary of science education
 - Implications for the study
Teacher Beliefs
Factors that influence the beliefs of teachers 57
Teachers’ beliefs about learning 60
Implications for the study 62

Chapter 2 summary 63

METHODOLOGY 65

Purpose of the Study 65
Overview of the Research 66
What the research will show 66
Why the research is important 66
How the research will be conducted 68
What the analysis of the data will show 68
Research Design 69
Qualitative methods 69
Open-ended interviews 70
Types of interview questions: Pre-observation 71
Types of interview questions: Post-observation 72
Participant observation 73
Field notes and observation records 74
Document collection 75
The Setting 75
Defining the multiple case study 76
Data Collection and Analysis 77
Data collecting 80
Conflicting data 83
Data analysis 83
Coding 84
Themes 86
Summary 87
Role of the Researcher 87
Informed Consent Procedures 88
Projected Time Frame 89

RESULTS 91
Introduction 91
Case Studies 92
Carl 93
Introduction 93
Teaching and Learning Strategies in Block Scheduling 93
Day one 93
Day two 94
FIGURES

Figure 1 The conceptual framework connecting teaching strategies, belief structures, and block scheduling