Immunotoxicity of 2,3,7,8-Tetrachlorodibenzo-\textit{p}-dioxin (TCDD) and Diethylstilbestrol (DES) in the Fetal Mouse Thymus and Liver

By

Elizabeth Gayle Besteman

Dissertation submitted to the faculty of Virginia Tech

In partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

IN

BIOMEDICAL AND VETERINARY SCIENCES

Advisory Committee

Dr. Steven Holladay, Chair
Dr. Marion Ehrich
Dr. William Huckle
Dr. Anne McNabb
Dr. Bonnie Smith

May 10, 2006
Blacksburg, VA

Keywords: Dioxin, DES, immunotoxicity, fetal, thymus, liver, hematopoietic, mouse, C57/BL6
Immunotoxicity of 2,3,7,8-Tetrachlorodibenzo-\emph{p}-dioxin (TCDD) and Diethylstilbestrol (DES) in the Fetal Mouse Thymus and Liver

Elizabeth Gayle Besteman

Abstract

Diethylstilbestrol (DES) and 2,3,7,8-tetrachlorodibenzo-\emph{p}-dioxin (TCDD) have been identified as immunotoxicants causing thymic atrophy, thymocyte hypocellularity, phenotypic changes detected by CD4 and CD8 surface antigens, and progenitor T-cell targeting in the fetal mouse. We hypothesized that gestational exposure to these two compounds may lead to comparable histologic and gene expression alterations in the fetal mouse thymus and liver. Treatment of pregnant C57Bl/6 mice with doses of 5 or 10 μg/kg TCDD or 48 μg/kg DES by oral gavage on gestation days (gd) 14 and 16 severely depressed day 18 thymic cellularity. Histologic evaluation of day 18 fetal thymuses showed disruption of normal cortico-medullary architecture after TCDD or DES. Decreased thymocytes density was noted primarily in cortical zones where pyknotic cells were increased by either TCDD or DES treatment. Using day 18 thymocyte suspensions and flow cytometry, 7-AAD showed decreases in viable thymocytes from TCDD- or DES-treated fetal mice, and concomitant increases in thymocytes in early apoptosis. When thymocytes were do-identified with CD4 and CD8 cell surface antigen expression, enhanced apoptosis occurred in CD4$^+$CD8$^+$ phenotype after TCDD treatment. After DES exposure, increased apoptosis occurred in CD4$^-$CD8$^-$ and CD4$^-$CD8$^+$ thymocytes. Both TCDD and DES increased liver to body weight ratios and decreased ratios of hematopoietic cells to hepatic cells present. Cytomegaly was seen in hepatocytes of TCDD and DES treated animals, and these cells had more variable features, such as increased cytoplasmic basophilia and more prominent nucleoli. Real time quantitative PCR demonstrated that DES decreased c-jun, bcl-2, and PKCα mRNA expression. These results suggest a shift away from proliferative activity and may reflect alterations noted predominantly in the hematopoietic population. TCDD increased c-jun mRNA expression with modest decreases in PKCα, and marked decreases in p53 also noted. Decreases in p53 suggest a pro-proliferative
status of hepatic cells, while decreases in PKCα may indicated decreases in phosphorylation of substrates required for normal cell cycle progression. The increased c-Jun suggests that this gene may play a role in the hepatocyte hyperplasia, as well as the diminution of hematopoiesis.
DEDICATION

I dedicate this work to my clinical pathology residency advisor, Dr. Bernard F. Feldman, who was a constant source of reassurance and motivation; to my son, Jake, whose presence brought balance to my life; to my mother, Esther, for her words that strengthened my resolve; to Renee and Kurt, Barbara and Margaret, and to the rest of my family and friends for their support and encouragement during this final stage of my academic training.
ACKNOWLEDGEMENTS

I would like to thank my committee members, Drs. Anne McNabb, Marion Ehrich, Bill Huckle, and Bonnie Smith, and my external examiner, Dr. Ralph Smialowicz, for generously offering their expertise. I wish to offer my advisor and committee chair, Dr. Steve Holladay, my most humble gratitude for the many years of guidance and wisdom he has provided me in the development of my research career.

In addition, I would like to extend a special thanks to Joan Kalnitsky for assisting with the flow cytometry experiments; to the Histopathology Laboratory at the Veterinary Teaching Hospital, VMRCVM, for preparing all tissue samples for histologic evaluation; and to Susanne Aref, Statistical Consulting Center, for her assistance with the gene expression analysis.
DECLARATION OF WORK PERFORMED

I declare that I, Elizabeth Gayle Besteman, performed all of the work performed in this dissertation except that which is identified below.

Joan Kalnitsky operated the flow cytometer. Steve Holladay and Bonnie Smith assisted in harvesting thymus and liver tissues respectively. The Histopathology Laboratory at the Veterinary Teaching Hospital at Virginia Tech prepared the tissue samples for microscopic evaluation after formalin fixation. Susanne Aref of the Statistical Counseling Center at Virginia Tech performed the analysis of the gene expression data.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Dedication</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>v</td>
</tr>
<tr>
<td>Declaration of Work Performed</td>
<td>vi</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>ix</td>
</tr>
<tr>
<td>List of Figures</td>
<td>x</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>xi</td>
</tr>
<tr>
<td>PART I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 1: INTRODUCTION AND LITERATURE REVIEW</td>
<td>2</td>
</tr>
<tr>
<td>1.1 Immune System as a Target for Toxicity</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Human Exposure to TCDD and DES</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Laboratory Modeling</td>
<td>8</td>
</tr>
<tr>
<td>1.4 Ontogeny of the Thymus</td>
<td>9</td>
</tr>
<tr>
<td>1.5 The Estrogen Receptor</td>
<td>13</td>
</tr>
<tr>
<td>1.6 The Aryl Hydrocarbon Receptor</td>
<td>15</td>
</tr>
<tr>
<td>1.7 Effects of TCDD and DES on the Immune System</td>
<td>18</td>
</tr>
<tr>
<td>1.8 Targets of DES and TCDD: The Thymus and it Hematopoietic Precursors</td>
<td>22</td>
</tr>
<tr>
<td>1.9 Effects of TCDD and DES on the Developing Immune System</td>
<td>31</td>
</tr>
<tr>
<td>1.10 Effects of TCDD and DES Related to Thymic Atrophy</td>
<td>35</td>
</tr>
<tr>
<td>1.11 Molecular Targets of TCDD and DES</td>
<td>39</td>
</tr>
<tr>
<td>1.12 Hypothesis</td>
<td>43</td>
</tr>
<tr>
<td>References</td>
<td>44</td>
</tr>
<tr>
<td>PART II MATERIALS AND METHODS</td>
<td>53</td>
</tr>
<tr>
<td>Chapter 2: MATERIALS AND METHODS</td>
<td>54</td>
</tr>
<tr>
<td>PART III RESULTS</td>
<td>56</td>
</tr>
<tr>
<td>Chapter 3: TETRACHLORODIBENZO-\textit{P}-DIOXIN (TCDD) INHIBITS</td>
<td>57</td>
</tr>
<tr>
<td>DIFFERENTIATION AND INCREASES APOPTOTIC CELL DEATH OF PRECURSOR T-CELLS IN THE FETAL MOUSE THYMUS</td>
<td>58</td>
</tr>
<tr>
<td>3.1 Abstract</td>
<td>58</td>
</tr>
<tr>
<td>3.2 Introduction</td>
<td>59</td>
</tr>
<tr>
<td>3.3 Materials and Methods</td>
<td>60</td>
</tr>
<tr>
<td>3.4 Results</td>
<td>63</td>
</tr>
<tr>
<td>3.5 Discussion</td>
<td>65</td>
</tr>
<tr>
<td>References</td>
<td>70</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Chapter 1
Summary Table 1.1 42

Chapter 3
Table 3.1 Effect of TCDD on thymic weight and cellularity 77
Table 3.2 Percentage of CD4 and CD8 thymocytes after TCDD 78
Table 3.3 Cellularity of CD4 and CD8 thymocytes after TCDD 79

Chapter 4
Table 4.1 DES effect on thymic weight and cellularity 103
Table 4.2 DES effect on body weight, thymic weight, and weight ratios 103
Table 4.3 Effect of DES on thymocyte CD4 and CD8 populations 104
Table 4.4 Cell number by phenotype defined by CD4 and CD8 104
Table 4.5 Effect of DES on thymocyte viability and apoptosis 105

Chapter 5
Table 5.1 Pooled/individual liver and body weights after TCDD 136
Table 5.2 Hepatocyte and hematopoietic cell counts after TCDD 137

Chapter 6
Table 6.1 Pooled/individual liver and body weights after DES 170
Table 6.2 Hepatocyte and hematopoietic cell counts after DES 171
LIST OF FIGURES

Chapter 3
Figure 3.1 A and B, Representative histograms, control and TCDD 80
Figure 3.2 A and B, GD18 Fetal thymuses, 40x magnification 81
Figure 3.3 A and B, GD18 Fetal thymuses, 100x magnification 82
Figure 3.4 A and B, GD18 Fetal thymuses, 500x magnification 83

Chapter 4
Figure 4.1 A and B, Representative histograms, control and DES 106
Figure 4.2 A and B, GD18 Fetal thymuses, 40x magnification 107
Figure 4.3 A and B, GD18 Fetal thymuses, 100x magnification 108
Figure 4.4 A and B, GD18 Fetal thymuses, 500x magnification 109

Chapter 5
Figure 5.1 A and B, GD18 Fetal livers, 400x magnification 138
Figure 5.2 A and B, GD18 Fetal livers, 600x magnification 139
Figure 5.3 Gene expression normalized to control mRNA 140

Chapter 6
Figure 6.1 A and B, GD18 Fetal livers, 400x magnification 172
Figure 6.2 A and B, GD18 Fetal livers, 600x magnification 173
Figure 6.3 Gene expression normalized to control mRNA 174
ABBREVIATIONS

7-AAD 7-aminoactinomycinD
AhR aryl hydrocarbon receptor
APC antigen presenting cells
ARNT aryl hydrocarbon nuclear translocator protein
BERKO estrogen receptor beta knockout
cDNA complementary deoxyribonucleic acid
CFU-GM colony forming unit-granulocyte macrophage
CT comparative threshold
DC dendritic cell
DERKO double estrogen receptor knockout
DES diethylstilbestrol
DEX dexamethasone
DN double negative
DNA deoxyribonucleic acid
DP double positive
E2 estradiol
ER estrogen receptor
ERKO estrogen receptor alpha knockout
FITC fluorescein isothiocyanate
FTOC fetal thymus organ culture
GD gestation day
HAH halogenated aromatic hydrocarbon
HBSS Hanks buffered salt solution
IL interleukin
mRNA messenger ribonucleic acid
NK natural killer cell
NOAEL no observable adverse effect
OVA ovalbumin
PCDD polychlorinated dibenzodioxin
PCDF polychlorinated dibenzofuran
PCB polychlorinated biphenyl
PCR polymerase chain reaction
PE phycoerythrin
PFC plaque forming cell
RTPCR reverse transcription polymerase chain reaction
SP single positive
SRBC sheep red blood cell
TCD 3, 3’, 4, 4’-tetrachlorobiphenyl
TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin
TcR T cell receptor
Tdt terminal deoxynucleotidyl transferase
TEQ toxic equivalency factors
TG transgenic
TUNEL terminal dUTP nick end labeling
|Abbreviation| Unit\nkg| kilogram\ng| gram\nmg| milligram\nµg| microgram\nmL| milliliter\nµL| microliter