AN ECONOMIC EVALUATION OF THE
HEALTH AND ENVIRONMENTAL BENEFITS OF THE
IPM PROGRAM (IPM CRSP) IN THE PHILIPPINES

Leah Concepcion Marquez Cuyno

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Agricultural and Applied Economics

George W. Norton, Chair
Daniel B. Taylor
Dixie W. Reaves
Ed Rajotte
Agnes Rola

30 April 1999
Blacksburg, Virginia

Keywords: IPM, Pesticides, Environmental Valuation, Impact Assessment

Copyright 1999, Leah M. Cuyno
Concern about externalities associated with pesticide use in developing countries has motivated the development of integrated pest management (IPM) programs in these areas. In the Philippines, the IPM Collaborative Research Support Program (IPM CRSP) was established to specifically address the widespread misuse of pesticides in the rice-vegetable systems of Nueva Ecija, one of the major rice and onion producing regions in the country. IPM CRSP initiatives include research on the optimal use of pesticides, complementary weed control strategies, and alternative cultural and biological controls. If successful, the program should generate benefits that can be measured in economic terms. These benefits include improvements in water quality, food safety, pesticide applicator safety, and long run sustainability of pest management systems.

This study was designed to measure the health and environmental benefits of the IPM CRSP in the Philippines. A survey questionnaire was administered to 176 onion farmers in five villages in Nueva Ecija to identify farm and farmer characteristics, pesticide usage, pest management practices, perceptions about pesticide hazards, awareness of IPM strategies, and willingness to adopt specific technologies being developed under the IPM CRSP. In addition, a contingent valuation survey was used to elicit farmers’ willingness-to-pay to avoid risks posed by pesticides to different environmental categories.
A comprehensive economic measure of the benefits of IPM CRSP was derived by 1) assessing the hazards associated with pesticide usage, 2) providing an ex ante measure of program impacts on pesticide usage, 3) predicting IPM adoption rates, and 4) estimating society’s willingness-to-pay to avoid the health and environmental risks from pesticides under Philippine conditions. A measure of the amount of risks avoided as a result of IPM CRSP adoption was combined with farmers’ willingness to pay bids for risk avoidance to derive a monetary value of the program benefits. The estimated economic benefits of the IPM CRSP to farmer residents in 5 villages in Nueva Ecija amount to 230,912.00 pesos for one onion season.
ACKNOWLEDGMENTS

Research for this study was made possible by the generous financial support of the United States Agency for International Development (USAID) through the Integrated Pest Management Collaborative Research Support Program (IPM CRSP). The dedication and efforts provided by the IPM CRSP administrators, researchers, and collaborators through the leadership of Dr. S. K. de Datta have established an IPM initiative that has touched and improved many lives throughout the world.

The staff of the Philippine Rice Institute (PhilRice) and Director Santiago Obien have granted invaluable assistance in providing data and support during my fieldwork in Nueva Ecija. I am particularly grateful to Dr. Vic Gapud, Dr. Sergio Francisco, Edwin, Rhoel, Evelyn, Vicky, Clarinda, Roland, and the Social Science group of PhilRice for sharing their time and expertise, as well as for making my stay there very pleasant and entertaining. To Irene, Madonna, Elsie, Paz, Tess, and Lorna, I will always be indebted not only for their help with my fieldwork but also for their friendship.

In all my years of preparing for the completion of this research and my Ph.D. I have incurred many intellectual and personal debts. My professors, colleagues, and friends in the Department of Agricultural and Applied Economics gave me much needed encouragement and have equipped me with the necessary academic and emotional skills and strategies to deal with life after graduate school.

I have benefited from the expertise and guidance of my committee members, Dr. Agnes Rola, Dr. Daniel Taylor, Dr. Ed Rajotte, and Dr. Dixie Reaves. Dr. George Norton, my committee chair, has been an invaluable adviser and counsellor. His encouragement and moral support made it all possible for me to complete my work here in Virginia Tech. I am indeed honored to have him as my adviser and I concur with statements made by his former students—that he is everything a student can ask for in an adviser.
I was also blessed with great friends and a roommate that made my life in Virginia Tech unforgettable. I don’t think I can ever express my gratitude to Ris for all the gourmet meals she prepared for me, for the use of her laptop, and for being a good friend. To Waldo, thank you for caring. To the Filipino Student Association, Dr. John Ballweg, my officemate Mark, and my friend Mike, I am happy to have crossed paths with all of you.

Finally, I would like to thank my Papa, Mama, Paolo, and brothers - Noel and Romel - for their prayers and emotional support.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER ONE: INTRODUCTION</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem Statement</td>
<td>1</td>
</tr>
<tr>
<td>Research Objectives</td>
<td>5</td>
</tr>
<tr>
<td>The Study Area</td>
<td>5</td>
</tr>
<tr>
<td>Previous Research and Some Methodological Issues</td>
<td>7</td>
</tr>
<tr>
<td>Organization of the Study</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER TWO: LITERATURE REVIEW</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>State of Knowledge and Previous Studies</td>
<td>11</td>
</tr>
<tr>
<td>Methods Used to Measure Environmental Costs and Benefits</td>
<td>13</td>
</tr>
<tr>
<td>Valuation from the Cost-Side</td>
<td>14</td>
</tr>
<tr>
<td>Valuation from the Benefit-Side</td>
<td>14</td>
</tr>
<tr>
<td>Market-Oriented Approach</td>
<td>15</td>
</tr>
<tr>
<td>Valuation Using Surrogate Markets</td>
<td>15</td>
</tr>
<tr>
<td>Travel Cost Method</td>
<td>15</td>
</tr>
<tr>
<td>Hedonic Pricing Techniques</td>
<td>16</td>
</tr>
<tr>
<td>Marketed Goods as Proxies for Non-marketed Goods</td>
<td>18</td>
</tr>
<tr>
<td>Survey-Oriented Approach</td>
<td>18</td>
</tr>
<tr>
<td>Other Methods of Environmental Assessment</td>
<td>19</td>
</tr>
<tr>
<td>Conclusion</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER THREE: METHODOLOGY</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluating the Benefits of an IPM Program</td>
<td>27</td>
</tr>
<tr>
<td>Step 1: Identification and Classification of the Relevant Environmental</td>
<td>30</td>
</tr>
<tr>
<td>Impacts of Pesticide Use in the Study Area</td>
<td>30</td>
</tr>
<tr>
<td>Impact Categories</td>
<td>30</td>
</tr>
<tr>
<td>Human Health</td>
<td>31</td>
</tr>
<tr>
<td>Beneficial Insects/Natural Pest Enemies</td>
<td>32</td>
</tr>
<tr>
<td>Aquatic Species</td>
<td>33</td>
</tr>
<tr>
<td>Birds/Avian Species</td>
<td>34</td>
</tr>
<tr>
<td>Farm Animals</td>
<td>34</td>
</tr>
</tbody>
</table>
Step 2: Evaluating the Level of Pesticide Impacts on Human Health, Mammalian Farm Animals, Birds, Beneficial Insects, and Aquatic Species

Introduction

Pesticide Impacts Rating Scheme

- Defining the Basis for Rating Pesticide Impacts
- Deciding on a Common Basis for Classifying Pesticides
- Selecting the Indicators or Variables to Use in Measuring
- Pesticide Impacts
- Measuring the Degree of Pesticide Impacts: Scoring System
- Setting the Criteria for Evaluating the Level of Pesticide Impacts

The Criteria for Evaluating Pesticide Impacts

- Human Health Impacts
- Impacts on Aquatic Species
- Effects on Birds
- Effects on Beneficial Insects
- Effects on Mammalian Farm Animals

Environmental Impact Scoring System

Step 3: Measuring the Rate of Adoption of IPM CRSP Technologies

The Model

The Regressors

- Farmer Characteristics
- Managerial Factors
- Farm Structure
- Physical/Locational Factor
- Institutional/Informational Factors
- Experiences/Attitudes about the Health and Environmental Impacts of Pesticides

Impacts of Pesticides

The Dependent Variables

Step 4: Assessing Effects of IPM Adoption on Pesticide Use

The IPM CRSP Research Activities/Technologies Selected for Evaluation

Step 5: Estimating Society’s Willingness to Pay to Reduce Pesticide Risks
Contingent Valuation and Willingness to Pay .. 73
Step 6: Estimating the Economic Value of the Benefits ... 76
of the IPM-CRSP in the Philippines

CHAPTER FOUR: THE SURVEY .. 78
The Challenges: Administration and Design of Survey .. 78
The Respondents ... 80
The Variables ... 84

CHAPTER FIVE: RESULTS AND DISCUSSION .. 86
Survey Results ... 86
 Farm Operations .. 86
 Pest Management ... 89
 Knowledge of IPM in the Region ... 94
 Perceptions about the Environmental Impacts of Pesticide Use 94
 Farmer Characteristics ... 96
 Indicators of Pesticide Exposure ... 96
Summary of Survey Results .. 97
Results of the IPM CRSP Evaluation .. 98
 The Environmental Categories .. 98
 The Pesticide Impact Scores .. 99
 Willingness to Adopt IPM CRSP Technologies ... 101
 Estimated Reduction in Pesticide Use as a Result .. 109
 of IPM CRSP Technologies: Experimental Results
 Estimation of Society’s Willingness-to-Pay for a Reduction 112
 in the Risks Posed by Pesticides to the Five Environmental Categories
 The Economic Benefits of the Health and Environmental 116
 Impacts of IPM CRSP Technologies

CHAPTER SIX: SUMMARY AND CONCLUSIONS ... 119
Major Contributions .. 120
Policy Implications ... 121
Conclusions, Limitations, and Recommendations for Future Research 122
LIST OF REFERENCES ... 125
APPENDIX A: THE SURVEY INSTRUMENT ... 134

LIST OF TABLES

Table III.1.A: Toxicity Indicators by Environmental Category 46
Table III.1.B: Exposure Indicators by Environmental Category 47
Table III.2: Criteria Matrix for WHO Classification of Pesticides 48
 by Acute Hazards
Table III.3: Criteria Matrix for US EPA Classification of Pesticides 48
 by Acute Human Health Hazards
Table III.4: Assignment of Acute Human Health Toxicity Ratings 48
 based on the WHO and the EPA Pesticide Classification Schemes
Table III.5: Assignment of Risk Levels for Human Chronic Toxicity 49
Table III.6: EPA Classification of Chemicals According to the Weight of 49
 Evidence (WOE) from epidemiological and Animal Studies
Table III.7: The IARC Carcinogenicity Classification System 49
Table III.8: Assignment of Surface Water Risk to an Active 50
 Ingredient based on the Surface Water Matrix Developed
 by the USDA-SCS
Table III.9: Surface Water Risk Levels Using Pesticide Characteristics 50
Table III.10: Assigning Groundwater Risk Levels based on 50
 the Pesticide Leaching Matrix
Table III.11: Assignment of Risk Levels based on the 50
 Groundwater Ubiquity Score
Table III.12: Assignment of Hazard Levels to Aquatic Organisms 51
 based on Different Toxicological Endpoints
Table III.13: Assignment of Risks to Beneficial Arthropods 52
 Using EIQ Scores
Table III.14: Pesticide Impacts Scoring Scheme .. 54
Table III.15: Summary Statistics and Definitions of Regressors 63
Table III.16: Willingness to Adopt Responses by Technology 65
Table III.17: The IPM CRSP Experiments and Results 71
Table IV.1: List of Survey Variables by Category 85
Table V.1: Pest Control Methods Used for Rice-Onion System in San Jose, Bongabon, and Munoz, 1996-1997 ... 92
Table V.2: Percentage of Responses about Source of Pest Control Advice by Site ... 93
Table V.3: Percentage Responses by Decision Factor .. 93
Table V.4: Knowledge of IPM Concepts among the Survey Groups ... 94
Table V.5: Onion Farmers’ Perceptions about Pesticide Impacts .. 95
Table V.6: Order of Importance of the Five Impact Categories .. 95
Table V.7: Personal Attributes of Onion Farmers in San Jose, Bongabon, and Munoz, 1997 Producer Survey ... 96
Table V.8: Indicators of Exposure ... 97
Table V.9: Risk/Impact Scores of Onion Pesticides used in the Study Area by Environmental Category .. 100
Table V.10: Farmers’ Willingness to Adopt IPM CRSP Technologies in San Jose, Bongabon, and Munoz, 1997 Survey 102
Table V.11: Mean Values of General Socio-economic Attributes: 1994 Baseline Survey and 1997 Producers’ Survey 103
Table V.12: IPM CRSP Willingness to Adopt Models: Logistic Regression Results .. 106
Table V.13: Goodness of Fit Measures/Predictive Ability of the Logit Models ... 108
Table V.14: Predicted Adoption Rates by Site ... 109
Table V.15: Reduction in Amount of Active Ingredient by Technology ... 111
Table V.16: Summary Statistics for the Choice Variables in the WTP Models .. 113
Table V.17: Summary Statistics for the Dependent Variable .. 113
Table V.18: Estimated and Adjusted Willingness to Pay for Risk Avoidance by Impact Category .. 115
Table V.19: Willingness to Pay Models: Regression Results .. 115
Table V.20: Percentage Changes in Ecological Ratings Induced by the Impact of IPM CRSP on Pesticide Use Patterns 117
for One Cropping Season

Table V.21: The Estimated Benefits of IPM CRSP by Category 117
Table V.22: Cost Savings from Adoption of IPM CRSP Technologies 118

LIST OF FIGURES

Figure III.1: Major Components of a Benefit-Cost Analysis of a................. 26
 Change in Pesticide Use
Figure III.2: An Approach to Evaluating the Economic Value of 29
 the Health and Environmental Benefits of an IPM Program
Figure IV.1: Breakdown of Respondents by Site... 83
Figure V.1: Average Farm Size and Onion Hectarage in San Jose,................. 87
 Bongabon, and Munoz, 1997 Producer Survey
Figure V.2: Average Onion Production in San Jose, Bongabon,................. 88
 and Munoz, 1996-1997 Onion Season
Figure V.3: Average Income Generated from Rice, Onion, and 88
 Off-Farm Sources in San Jose, Bongabon, and
 Munoz, 1996-1997
Figure V.4: Per Hour Farm Wages for Spraying, Handweeding, and 89
 Harvesting in San Jose, Bongabon, and Munoz,
 1996-1997 Cropping Season
Figure V.5: Average Amount of Pesticide Active Ingredients Applied 91
 by Farmers in San Jose, Bongabon, and Munoz (kgs/ha),
 1996-1997 Onion Season
Figure V.6: Proportion of Total Costs Spent on Pesticides per Farm............ 92
 Among Farmers in San Jose, Bongabon,
 and Munoz, 1996-1997 Onion Season