Title page for ETD etd-06102003-105051

Type of Document Dissertation
Author Wieczorek, Christopher John
Author's Email Address firebug@vt.edu
URN etd-06102003-105051
Title Carbon Monoxide Generation and Transport from Compartment Fires
Degree PhD
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Vandsburger, Uri Committee Chair
Westman, Erik Christian Committee Co-Chair
Floyd, Jason Committee Member
Lattimer, Brian Y. Committee Member
Novak, Thomas Committee Member
  • building fires
  • mining fires
  • species transport
  • species generation
  • carbon monoxide
Date of Defense 2003-05-23
Availability unrestricted
The aim of the present research was to gain a better understanding of the species generation and transport from enclosure fires. The species generation experiments were conducted with a half-scale ISO 9705 enclosure with three different ventilation conditions and heat release rates ranging from 50 kW to 500 kW. The transport study was conducted with a 6.1 m long hallway connected to the compartment in a head-on configuration. All measurements were performed at the compartment or hallway exit plane during the steady-state period of the fire. Measurements included species mole fractions of oxygen, carbon dioxide, carbon monoxide, and unburned hydrocarbons, along with gas pressure (used to determine gas velocities) and gas temperatures.

Species mappings performed at the exit plane of the compartment indicated that the exiting species are not spatially uniform. Horizontal and vertical gradients in the species mole fractions were observed for all ventilation conditions and heat release rates examined.

Predictive techniques developed previously were applied to the data obtained in the present study and were determined to be inappropriate for situations were the plume equivalence ratio was not equal to the global equivalence ratio. A new methodology for predicting species levels at the exit plane of an enclosure was developed. The proposed methodology correlates the species yields based on the combustion within the compartment as a function of a non-dimensional heat release rate. The non-dimensional heat release rate is based on the fuel load and geometrical parameters of the enclosure. The present methodology in applicable to situations where a well-mixed uniform layer is not present and the overall global conditions are of interest.

Species transport to remote locations was also examined. Experiments were conducted with the baseline ventilation at x = 0 m (the compartment/hallway interface) and three different ventilation conditions at x = 6.1 m (end of hallway). The three ventilation conditions consisted of the narrow, baseline, and wide doorways. Experiments were conducted for heat release rates of 85 kW, 127 kW, and 150 kW. The results from the tests indicated that, for over-ventilated compartment fires, the hallway and hallway ventilation had no impact on the species generation within the compartment. This allows the correlations developed from the compartment study to be applied to more complex scenarios.

Differences in species mole fractions between x = 0 m and x = 6.1 m were shown to be a result of air entrainment into the upper layer within the hallway, which acted as a dilutent or as a source of oxygen for further oxidation reactions. For non-dimensional heat release rates less than 1.0, the reduction in carbon monoxide levels along the hallway was a result of dilution, while for non-dimensional heat release rates greater than or equal to 1.0 the reduction in carbon monoxide levels along the hallway was a combination of dilution and further oxidation reactions.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Dissertation_06_16_2003.pdf 4.18 Mb 00:19:20 00:09:56 00:08:42 00:04:21 00:00:22

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.