Three Essays on Measuring the Ex-ante Economic Impacts of Agriculture Technology Innovations

Gentian Kostandini

Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
In
Economics, Agriculture and Life Sciences

Bradford F. Mills, Chair
George W. Norton
Jeffrey R. Alwang
Darrell Bosch

June 6, 2008
Blacksburg, Virginia

Keywords: Biopharming, Imperfect Competition, Drought Resistance, Transgenic, Developing Countries.
Three Essays on Measuring the Ex-ante Economic Impacts of Agriculture Technology Innovations

Gentian Kostandini

ABSTRACT

This dissertation is comprised of three essays that generate methods to measure the ex-ante economic impacts of agriculture technology innovations. The first essay entitled “Valuing Intellectual Property Rights in an Imperfectly Competitive Market: A Biopharming Application” presents a method for valuing the intellectual property rights (IPRs) for an innovation that lowers product production costs below those associated with the patented process of a monopolist. The application to Glucocerebrosidase enzyme from transgenic tobacco suggests an intellectual property rights (IPRs) value of about $1.75 billion. Despite the innovator’s market power, significant surplus gains also accrue to consumers. Further, U.S. antitrust laws that prohibit IPRs acquisition by the current monopolist increase consumer welfare by almost 50 percent.

The second essay entitled “Ex-Ante Analysis of the Benefits of Transgenic Drought Tolerance Research on Cereal Crops in Low-Income Countries” develops a framework to examine the ex-ante benefits of transgenic research on drought in eight low-income countries, including the benefits to producers and consumers from farm income stabilization and the potential magnitude of private sector profits from IPRs. The framework employs country-specific agroecological-drought risk zones and considers both yield increases and yield variance reductions when estimating producer and consumer benefits from research. Benefits from yield variance reductions are shown to be an important component of aggregate drought research benefits, representing 40 percent
of total benefits across the eight countries. Further, estimated annual private sector benefits of $US 178 million suggest that significant incentives exist for private sector participation in transgenic drought tolerance research.

The third essay entitled “Ex-Ante Evaluation of Alternative Strategies to Increase the Stability of Cropping Systems in Eastern and Central Africa” examines the ex-ante economic impact of transgenic drought resistance maize breeding and of conventional maize, millet and sorghum drought resistance breeding in Kenya, Uganda, and the Amhara region in Ethiopia. An expected utility framework is combined with a partial equilibrium model and a spatial drought risk zonation scheme to estimate benefits from mean yield increases and yield variance reductions at the market level as well as at the household level for maize, millet and sorghum producers in the administrative regions of each country. Results suggest that annual ex-ante benefits of $87 million, $6.8 million and $4.8 million can be generated from public sector conventional breeding research on maize, sorghum and millet, respectively. Private sector transgenic drought tolerance research may also generate substantial benefits of $97 million for maize producers and consumers, particularly through the reduction of yield variance arising from drought, and an additional $21 million as profits from intellectual property rights protection.
ACKNOWLEDGMENTS

Looking back at the four years that led to this degree I realize that it wouldn’t be possible without the help of many people that stood beside me during such a difficult but rewarding task.

First of all I would like to thank my advisor, Dr. Bradford Mills, who made this possible. Thank you for your caring advise, encouragement, and support that guided me throughout my graduate student life.

I would also like to thank Dr. Norton, Dr. Alwang, Dr. Bosch, Dr. Salehi-Isfahani, and Dr. Peterson who provided insights and invaluable guidance towards the completion of this dissertation, as well as Dr. Dan Taylor and Marilyn Echols who offered me their advice and service to facilitate my academic path.

Finally, special thanks to my family and friends. I feel lucky to be surrounded by such wonderful and supportive people.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>6</td>
</tr>
<tr>
<td>ESSAY 1: Valuing Intellectual Property Rights in an Imperfectly Competitive Market: A Biopharming Application</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>7</td>
</tr>
<tr>
<td>Background on Biopharming, Gaucher’s Disease and the Cerezyme Market</td>
<td>9</td>
</tr>
<tr>
<td>The Model</td>
<td>11</td>
</tr>
<tr>
<td>Protein Production Process, Unit Cost Reductions and Other Model Data</td>
<td>18</td>
</tr>
<tr>
<td>Results</td>
<td>21</td>
</tr>
<tr>
<td>Concluding Remarks</td>
<td>24</td>
</tr>
<tr>
<td>References</td>
<td>26</td>
</tr>
<tr>
<td>ESSAY 2: Ex-Ante Analysis of the Benefits of Transgenic Drought Tolerance Research on Cereal Crops in Low-Income Countries</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>31</td>
</tr>
<tr>
<td>Biotechnology and Private Sector Investments to Develop Transgenic Drought Tolerant Varieties</td>
<td>34</td>
</tr>
<tr>
<td>Spatial Framework for Evaluation</td>
<td>35</td>
</tr>
</tbody>
</table>
LIST OF TABLES

ESSAY 1

Table 1. Cerezyme Price and Quantity Sold, 1999 -2003 ..28

Table 2. Estimated Surplus Changes from Minimum, Most Likely and Maximum
Expected Unit Cost Reduction under Cournot and Stackelberg
(PV, in thousand U.S.D.) ..29

Table 3. Estimated changes in Profits to Incumbent when Acquiring Innovator’s
IPRs (PV, in thousand U.S.D)..30

ESSAY 2

Table 4. India: Agroecological-Drought Risk Zones ... 64

Table 5. Maize, Rice, and Wheat Production Across the Rainfed
Agroecological-Drought Risk Zones (thousand) .. 65

Table 6. Own-price Demand and Supply Elasticities in Each Country.............................66

Table 7. Producer Income from Maize, Rice and Wheat Income as a Share of
Total Crop Income (percentages) ...67

Table 8. Consumer Expenditure on Maize, Rice, and Wheat as a Share of
Total Expenditure (percentages) .. 68

Table 9. Potential Benefits from Transgenic Research Mean Yield Increases
and Yield Variance Reductions in India (thousand U.S. dollars)................................. 69

Table 10. Potential Annual Benefits from Transgenic Research Mean Yield
Increases and Yield Variance Reductions in All Eight Countries
(thousand U.S.dollars)... 70

Table 11. Potential Annual Benefits from Conventional Breeding Research
Mean Yield Increases and Yield Variance Reductions in All Eight Countries

(thousand U.S. dollars)..71

Table 12. India – Sensitivity Analysis on the Main Parameters

(thousand U.S. dollars)..72

ESSAY 3

Table 13. Maize, Sorghum and Millet Production in Each Administrative Region of
Kenya..115

Table 14. Maize, Sorghum and Millet Production in each Administrative Region of
Uganda ..116

Table 15. Maize, Sorghum and Millet Production in Ethiopia – Amhara Region (Mt) ...117

Table 16. Characteristics of Maize, Sorghum and Millet Producing Households
in Kenya in 2000 in the Central, Eastern and Nyanza Region ..118

Table 17. Characteristics of Maize, Sorghum and Millet Producing Households
in Kenya in 2000 in the Rift Valley, Western and Coastal Region.................................119

Table 18. Characteristics of Maize, Sorghum and Millet Producing Households
in Kenya ..120

Table 19. Characteristics of Maize, Sorghum and Millet Producing Households
in Uganda in 2005/06 in the Central, Eastern, Northern and Western Region..................121

Table 20. Characteristics of Maize, Sorghum and Millet Producing Households
in Amhara Region- Ethiopia in 2000...122

Table 21. Adoption Rates in Each Country (percentages)...123

Table 22. Demand and Supply Elasticities for Each Country ...124
Table 23. Kenya- Annual Market Level Benefits from Drought Resistance Research (thousand $US) ..125

Table 24. Kenya- Annual Representative Producer Household Benefits ($US)126

Table 25. Kenya – Annual Aggregate Benefits based on Producer Household Aggregation (thousand $US) ..127

Table 26. Uganda – Annual Market Level Benefits from Drought Resistance Research (thousand $US)..128

Table 27. Uganda – Annual Representative Producer Household Benefits ($US)129

Table 28. Uganda – Annual Aggregate Producer Benefits based on Household Aggregation (thousand $US) ...130

Table 29. Ethiopia-Amhara Region – Annual Market Level Benefits (thousand $US) ...131

Table 30. Ethiopia-Amhara Region – Annual Representative Producer Household Benefits ($US) ..132

Table 31. Ethiopia – Amhara Region – Annual Aggregated Producer Benefits based on Household Aggregation (thousand $US) ..133

Table 32. Kenya- Sensitivity Analysis on Annual Mean Yield Benefits from Public Sector Research (thousand $US) ...134

Table 33. Kenya- Sensitivity Analysis on Annual Benefits from Private Sector Research in Maize (thousand $US) ...135

Table 34. Kenya- Sensitivity Analysis on Annual Benefits from Yield Variance Reduction Benefits (thousand $US) ...136

Table 35. Kenya- Sensitivity Analysis on Annual Aggregate Benefits based
LIST OF FIGURES

ESSAY 1

Figure 1. Drought Risk, Agroecological Zones and Rainfed Production in India

ESSAY 2

Figure 2. Drought Risk and Agroecological Zones in Kenya