EVALUATION OF TRAVEL TIME ESTIMATES DERIVED FROM AUTOMATIC VEHICLE IDENTIFICATION TAGS IN SAN ANTONIO, TX

John D. Riley

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
in
Civil Engineering

Michel W. Van Aerde, Chair
Hesham A. Rakha
Wei H. Lin
Antoine G. Hobeika
John Collura

June 11, 1999
Blacksburg, Virginia

Keywords: Automatic Vehicle Identification, Probes, San Antonio, MMDI, ATIS
Copyright 1999, John D. Riley
EVALUATION OF TRAVEL TIME ESTIMATES DERIVED FROM AUTOMATIC VEHICLE IDENTIFICATION TAGS IN SAN ANTONIO, TX

John D. Riley

(ABSTRACT)

The purpose of this research is to examine several aspects of the San Antonio automated vehicle identification (AVI) system, including the reliability and accuracy of the AVI system, travel tag level of market penetration (LMP) trends, and a comparison of aggregated travel time values with probe vehicle travel time values. This thesis serves as a first step toward the modeling of AVI systems in which the effects of travel tag LMP, AVI reader density and AVI reader location are analyzed.

GPS units were first tested as a suitable benchmark for validating AVI reliability and accuracy. A two-part system reliability study was then performed, consisting of overall system reliability and a controlled evaluation of selected AVI reader sites. The accuracy of AVI travel times was also assessed. A LMP analysis was then performed to serve as a reference parameter for the aggregate travel time study. Lastly, the level of aggregation analysis attempted to quantify differences between the individual test vehicle travel times and aggregated travel times of all observed, tag-equipped vehicles.

Overall system reliability was found to be greater than 90%. The controlled reliability study showed that freeway AVI readers slightly outperformed arterial readers for correct tag capture, while total tag capture exceeded the system design parameter of 80%. Tag capture rates were found to be independent of test vehicle speed. The LMP of travel tags at a selected reader site was found to be approximately 0.5% from the morning through the evening peak. Lastly, 5-
minute travel time aggregations provided a better estimate of individual test vehicle travel times than 2-minute or 15-minute aggregations.
This thesis is dedicated especially to my parents, Marriot and David Riley as well as to all my friends and family for their tremendous love and support. God bless you all.
I am most grateful for the guidance, support and encouragement of Dr. Michel W. Van Aerde and Dr. Hesham Rakha. Without their incredible patience and timely wisdom and counsel, my thesis work would have been a frustrating and overwhelming pursuit. Memories of their dedication and selflessness in their research efforts and in their care and concern for students will remain with me long after my days of academia are finished. In addition, I express my appreciation to Dr. Antoine Hobeika, Dr. John Collura and Dr. Wei Lin for having served on my committee. Their thoughtful questions and comments were valued greatly.

I would also like to thank Dr. Jesus M. de la Garza for his help and suggestions as I was first considering pursuit of graduate work, and Dr. Antonio Trani for assisting me in choosing coursework in the Civil Infrastructure Engineering program.

Thanks to the many Texans who filled in all the gaps in my data. I extend my sincerest gratitude to Mr. Joey Baumgartner of Southwest Research Institute in San Antonio, TX, for his constant help and support in answering my frequent questions as I gathered research data. Additionally, thanks go to Mr. Russell Henk and his supporting staff and students at Texas Transportation Institute for their assistance both during and after the data collection phase of my research. Thanks also to Laura Tavitas of TxDOT and Barbara Lorenz and Shawn Turner at Texas A&M. Although we’ve never met face to face, your help in my research is very much appreciated.
To all the fellow graduate students in transportation, it’s been a wonderful ride. Thanks for your advice, care, concern and many laughs along the way. I couldn’t have picked a better group with which to work.

I gratefully acknowledge the funding provided by the Virginia Tech Center for Transportation Research as well as the Via Civil Engineering endowment which has been such a blessing to me during both my undergraduate and graduate years at Virginia Tech.

I would be remiss to not thank Greg Durgin, Eric Anderson and Isaac Farr for their encouragement and help as fellow graduate students. My occasional interaction with each of them spurred me on to finish my thesis work more than they could know. When in graduate thesis misery, find good graduate thesis company.

I am so very thankful for my friend and roommate Tim Withers and my friend Whit Roberts for their prayers and fellowship during my graduate school days. Additionally, thank you Kristen Blix for the frequent long-distance encouragement from Richmond.

Mom and Dad, thanks for believing in me from Day 1, and for being my biggest fans. I love you both very deeply. Finally, I would like to acknowledge my Lord and Savior Jesus Christ for His incredible strength, power and love. In Him alone have I found abundant life.

“I can do everything through him who gives me strength.” Philippians 4:13
Table of Contents

ACKNOWLEDGEMENTS ... v
TABLE OF CONTENTS .. vii
LIST OF FIGURES ... x
LIST OF TABLES .. xii

Chapter 1 - Introduction .. 1
1.1 The Problem: Need for Advanced Traveler Information Systems (ATIS) 1
1.2 The Development of Automated Vehicle Identification in San Antonio, TX 3
1.3 Thesis Objectives ... 5
1.4 Thesis Organization ... 6

Chapter 2 – Literature Review .. 8
2.1 Introduction .. 8
2.2 Survey of Research in Traffic Surveillance Technology .. 8
2.3 Potential Advantages of AVI Over Inductance Loop Detection and GPS 10
2.4 Issues in AVI Probe Systems .. 13
2.5 Summary of Literature Review ... 14

Chapter 3 – GPS Data Collection ... 15
3.1 Description of GPS Units ... 15
3.2 March 1998 Data Collection Overview ... 16
 3.2.1 Validation of GPS Data Fidelity ... 17
 3.2.1.1 Qualitative Analysis of GPS Data Fidelity ... 18
 3.2.1.2 Quantitative Analysis of GPS Data Fidelity ... 18
 3.2.1.2.1 Quantitative Analysis Methodology ... 19
 3.2.1.2.2 Quantitative Analysis Results .. 20
3.3 June 1998 Data Collection Overview .. 21
 3.3.1 June Data Collection – Freeway Section ... 21
 3.3.2 June Data Collection – Arterial Section ... 23
 3.3.3 Tabular Summary of June Data Collection ... 24
3.4 Summary ... 25

Chapter 4 – AVI Reader Reliability and Accuracy ... 26
4.1 Functionality of the San Antonio System ... 26
 4.1.1 Passive vs. Active Tags .. 27
4.1.2 Communication from Readers to Operating System 28
4.1.3 Estimation of Link Travel Times 28
4.1.4 Directional Distinction 28
4.2 System Reliability Study 29
4.2.1 Overall System Reliability 29
4.2.2 Controlled System Reliability Study 31
 4.2.2.1 Experimental Design and Data Collection 32
 4.2.2.2 Study Findings 33
 4.2.2.2.1 Arterial vs. Freeway 33
 4.2.2.2.2 Directional Analysis 35
 4.2.2.2.3 Geometric Configurations 36
 4.2.2.2.4 Inclement Weather Performance 40
 4.2.2.2.5 Vehicle Speed 41
4.3 System Fidelity Study 44
 4.3.1 GPS and AVI System Time Standards 44
 4.3.2 Data Collection and Study Findings 45
4.4 Summary 48

Chapter 5 – Market Penetration Study 50
5.1 Introduction 50
5.2 Tag Distribution 50
 5.2.1 Analysis of Tag Distribution Statistics 52
 5.2.1.1 San Antonio Tag Distribution Efforts 52
 5.2.1.2 Influence of Out-of-Town Tag-Equipped Vehicles 53
5.3 AVI Tag Read Trends 54
 5.3.1 Tag Read Trends – Arterial Facility 56
 5.3.2 Tag Read Trends – Freeway Facility 57
5.4 Level of Market Penetration 57
 5.4.1 Single-Day Market Penetration 59
 5.4.2 Multi-Day Market Penetration 60
5.5 Summary 62

Chapter 6 – Level of Aggregation Study 64
6.1 Description of San Antonio Rolling Average Algorithm 64
6.2 Qualitative Analysis of Probe Vehicle Travel Times vs. Aggregate Travel Times 65
 6.2.1 Qualitative Analysis – I-35 Freeway Sections 65
 6.2.1.1 Discussion of Qualitative Analysis – I-35 Freeway Sections 67
 6.2.2 Qualitative Analysis – Fredericksburg Rd. Arterial Section 67
6.2.2.1 Discussion of Qualitative Analysis – Fredericksburg Rd. Arterial Section........................ 68
6.3 Quantitative Analysis of Individual Probe vs. Aggregate Travel Times... 70
 6.3.1 Root Mean Square Error Analysis of Test Vehicle and Aggregated Link Travel Times .. 70
 6.3.1.1 Discussion of RMSE Analysis 75
 6.3.2 Correlation Analysis of Test Vehicle and Aggregated Link Travel Times.. 77
 6.3.2.1 Correlation Analysis by AVI Link 77
 6.3.2.2 Correlation Analysis by Time of Day 81
 6.3.2.3 Correlation Analysis by Direction........................... 85
 6.4 Summary .. 87

Chapter 7 – Summary, Conclusions and Recommendations 89

 7.1 Reliability and Accuracy Study .. 89
 7.2 Level of Market Penetration Study ... 91
 7.3 Level of Aggregation Study.. 92
 7.4 Recommendations for Further Research..................................... 93

References ... 95

Appendix A ... 98

Vita... 103
List of Figures

Figure 1.1 – San Antonio AVI System Antenna Site Map .. 4
Figure 3.1 – Trimble Placer 400 GPS Unit ... 16
Figure 3.2 – Location of GPS Runs Performed by TTI (March 1998) 17
Figure 3.3 – Visual Assessment of Repeatability of GPS Runs 18
Figure 3.4 – Freeway AVI Data Collection Route: I-35 & I-410/35 21
Figure 3.5 – Arterial AVI Data Collection Route: Fredericksburg Rd. 23
Figure 4.1 – Graphical Schematic of San Antonio AVI Hardware
 Architecture ... 27
Figure 4.2 – Location of AVI Reader Sites Experiencing Non-Functionality
 (6/11 – 7/10/98) ... 30
Figure 4.3 – Per-day Percent AVI System Functionality (6/11 – 7/10/98) 31
Figure 4.4 – Freeway AVI Data Collection Route: I-35 & I-410/35 32
Figure 4.5 – I-35 Southbound Weaving Section, AVI Site 44 38
Figure 4.6 – Oblique Mounting Configuration for Southbound Coverage of
 I-35 at AVI Site 44 .. 39
Figure 4.7 – Vertical Mounting Configuration for Southbound Coverage of
 I-35 at AVI Site 45 .. 39
Figure 4.8 – Comparison of Sample Correct Capture Rates with 2 Standard
 Deviations from Population Mean ... 44
Figure 4.9 – AVI-GPS Travel Time Variance Histogram – I-35 46
Figure 4.10 – AVI-GPS Travel Time Variance Histogram – I-35 – Filtered
 Data Set ... 47
Figure 5.1 – San Antonio AVI Tag Distribution Statistics 51
Figure 5.2 – AVI Site # 12 at Blanco Road .. 55
Figure 5.3 – AVI Site # 47 at I-35 ... 55
Figure 5.4 – AVI Site # 12 Tag Read Trend ... 56
Figure 5.5 – AVI Site # 47 Tag Read Trend ... 57
Figure 5.6 – Estimated Single-day market Penetration at AVI Site # 30 59
Figure 5.7 – Estimated Single-day Market Penetration Percentages at
 AVI Site # 30 .. 60
Figure 5.8 – Multi-day Market Penetration Data at AVI Site # 30 61
Figure 5.9 – LMP Forecasting at AVI Site # 30 .. 62
Figure 6.1 – Individual Probe Travel Time vs. 2-, 5- & 15-min Averages
 (I-35 North from AVI Site 43 to 44) ... 66
Figure 6.2 – Individual Probe Travel Time vs. 2-, 5- & 15-min Averages
 (I-35 South from AVI Site 45 to 44) ... 66
Figure 6.3 – Arterial Probe Vehicle Link Travel Time vs. 2-, 5- & 15-min
 Aggregate Travel Times Fredericksburg Rd. Northbound from
 AVI Site 17 to 16 .. 68
Figure 6.4 – Fredericksburg Rd. Arterial Section – 15-min Aggregation
 Point-to-Point Smoothing AVI Site 17 to 16 (Northbound) 69
Figure 6.5 – I-35 Freeway Section – 15-min Aggregation Point-to-Point
Smoothing AVI Site 43 to 44 (Northbound) 69
Figure 6.6 – AVI Antenna Site Locations for I-35 Freeway Link ID Table 73
Figure 6.7 – Percent Root Mean Square Error vs. Level of Aggregation 76
Figure 6.8 – Correlation Plot for Freeway GPS and Aggregate AVI Link
 Travel Times .. 78
Figure 6.9 – GPS vs. 5-min Aggregate Link Travel Times, AVI 42 to 43 79
Figure 6.10 – GPS vs. 15-min Aggregate Link Travel Times, AVI 42 to 43 79
Figure 6.11 – GPS vs. 15-min Aggregate Link Travel Times, AVI 45 to 44 80
Figure 6.12 – AM Correlation Graph, GPS and Aggregate Travel Times 81
Figure 6.13 – Midday Correlation Graph, GPS and Aggregate Travel Times ... 82
Figure 6.14 – PM Correlation Graph, GPS and Aggregate Travel Times 82
Figure 6.15 – Northbound Correlation Graph, GPS and Aggregate
 Travel Times ... 85
Figure 6.16 – Southbound Correlation Graph, GPS and Aggregate
 Travel Times ... 86
List of Tables

Table 2.1 – Comparison of Loop Detector & AVI Travel Time Collection Technologies ... 11
Table 3.1 – Summary of GPS Test Runs Used to Evaluate GPS Units ... 17
Table 3.2 – GPS coordinate Locations for AVI Sites 50 & 47 ... 19
Table 3.3 – Conversion Factors for GPS x Metric Conversions .. 19
Table 3.4 – RMSE and Correlation Analysis Results of GPS Runs .. 20
Table 3.5 – Sample GPS Unit Display With User Flags to Mark AVI Antenna Locations .. 23
Table 3.6 – June 1998 GPS Data Collection Summary ... 24
Table 4.1 – Freeway Link Characteristics ... 32
Table 4.2 – Summary of GPS Runs Used for AVI Reader Reliability & Accuracy Study ... 33
Table 4.3 – Summary of Reliability Results for I-35 Freeway GPS Runs .. 34
Table 4.4 – Summary of Reliability Results for Fredericksburg Rd. Arterial GPS Runs ... 34
Table 4.5 – Summary of Northbound Reliability Results, Arterial & Freeway .. 35
Table 4.6 – Summary of Southbound Reliability Results, Arterial & Freeway .. 35
Table 4.7 – Tag Capture by Speed: Fredericksburg Rd. Arterial Test Section .. 41
Table 4.8 – Tag Capture by Speed: I-35 Freeway Test Section ... 41
Table 4.9 – Tag Capture by Speed: Combined Results from Freeway & Arterial Runs .. 42
Table 4.10 – Tag Capture by Speed: Combined Results Less Data from AVI Site 44 South ... 43
Table 4.11 – Sample GPS Output With User Flags (’p’s) to Indicate Passage of AVI Antenna ... 45
Table 4.12 – Statistical Data for Original and Modified GPS-AVI Travel Time Data Set .. 47
Table 5.1 – San Antonio Monthly Tag Distribution Statistics ... 52
Table 5.2 – Regional Amtech AVI Tag Distribution Statistics .. 54
Table 6.1 – I-35 Freeway Link ID Table .. 72
Table 6.2 – Summary of Data Available for RMSE Analysis ... 75
Table 6.3 – I-35 Freeway RMSE Analysis for 2-min, 5-min and 15-min Aggregated Travel Time Data 75
Table 6.4 – Freeway GPS/Aggregate AVI Correlation Coefficients By Link .. 78
Table 6.5 – Freeway GPS/Aggregate AVI Correlation Coefficients By Time of Day ... 83
Table 6.6 – Midday Freeway GPS/Aggregate AVI Correlation Coefficients By Link ... 83
Table 6.7 – Average Number of Tag Reads Per Aggregation Window .. 84
Table 6.8 – Freeway GPS/Aggregate AVI Correlation Coefficients