Oxidative Stress and Antioxidant Supplementation During Endurance Exercise in the Horse

by

Carey A. Williams

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Animal and Poultry Science (Equine Nutrition)

APPROVED BY:

David S. Kronfeld, Chairman
Michael E. Houston
Rebecca K. Splan
Korinn E Saker
Rhonda M. Hoffman
David S. Sklan

June 12th, 2003
Blacksburg, Virginia

Key Words: Antioxidants, Apoptosis, Equine, Lipoic acid, Oxidative stress, Vitamin E

Copyright 2003, Carey A. Williams
Oxidative Stress and Antioxidant Supplementation During Endurance Exercise in the Horse

Carey A. Williams
Department of Animal and Poultry Sciences

(ABSTRACT)

In these studies antioxidant supplementation and oxidative stress measures were the basis for determining the health and welfare of the equine endurance athlete. The first study determined that lipoic acid (LA) orally administered to horses is effective in diminishing the levels of lipid peroxidation in the plasma, and is non-toxic at a dose of 10-mg/kg body weight. The second study showed muscle leakage measured by plasma creatine kinase (CK) and aspartate aminotransferase (AST) positively correlated to oxidative stress (measured by lipid hydroperoxides) during an endurance race (Research Ride 2001; R1). Also higher plasma ascorbate (ASC) status was found in the vitamin E plus C supplemented group versus the group receiving vitamin E alone. In the third study, the Research Ride 2002 (R2) determined that horses that did not finish the ride had higher CK and AST before, during and after ($P < 0.05$) the ride compared to horses that finished. These results were compared to the finishers of the Old Dominion 2000 (OD) and R1 and found that oxidative stress and muscle enzymes were greater during R2 due to the difficulty of terrain and ambient temperature. A higher level of horses’ fitness in OD also could have explained the diminished oxidative stress. The fourth study calculated that horses at R2 were receiving 2265 ± 114 IU/d of vitamin E in the total diet prior to the race. These levels negatively correlated to plasma CK and AST and positively correlated to plasma α-tocopherol (TOC; $r = 0.21; P = 0.005$) throughout the 80-km race. In the final study the LA supplemented group had similar increases in antioxidant status (TOC, ASC, and total glutathione) as the vitamin E supplemented group of horses exercising for 55 km on a treadmill to simulate an endurance race. Both groups also had lower ($P < 0.050$) white blood cell apoptosis throughout exercise then the control group. These studies prove the need for antioxidant supplementation, specifically vitamin E or LA, during heavy endurance exercise to improve the health and welfare of our equine athlete.

(Key Words: Antioxidants, Apoptosis, Equine, Lipoic acid, Oxidative stress, Vitamin E)
Acknowledgements

Firstly, I would like to show my deepest appreciation to the two most important people in my life, my parents Rich and Sue Williams. Little did Dad know that setting me up to ride Tuffy once would carry on my love for horses for so many years. (OH, and a special thanks to Kim Tassie for letting me ride and lease Tuffy during her pregnancy almost 15 years ago.) From the time I mentioned I wanted to go to school for ‘horses’ I never heard anything negative. I am sure if it weren’t for all their support I wouldn’t have made it this far. Just knowing they are proud of me was more than enough encouragement to make it through some of the rough times. Finally reaching the end and obtaining the type of job I have always wanted I am sure is just as rewarding for them as it is for me.

A special thanks goes to everyone at the MARE Center: Burt Staniar, Tania Cubitt, Tanja Hess, Kibby Trieber, Dr. Rhonda Hoffman, Bobbie Moriarty, Bill Helsel, Scott Gerbich, Alvin Harmon and Tim Parmley. They have helped me out with research when extra hands are needed, and were sometimes there just to listen to me complain. Burt, being the voice of reason he is, was there to calm me down and smooth things out when my feathers got ruffled. Tanja Hess was crucial in the completion of my final treadmill study both in helping with the logistics of endurance exercise, and actually running the treadmill while I was stuck in the lab. Tania and Kibby had to put up with picking up my slack when I was running horses on the treadmill or writing my dissertation. I also can’t thank Tania enough for helping me take care of Mickie when I was doing my study, in Blacksburg or at home writing. Bill and Scott deserve special thanks for helping with the installation of the treadmill and exerciser (even though I never used it), which were crucial in me finishing my doctorate. Dr. Jeannie Waldron also deserves endless gratitude for letting me use her treadmill to train the Arabians before ours was installed, and for all the endurance advice from a clinical prospective. I would also like to thank Louisa Gay, our lab technician, who helped me get all my results on time, especially from the last study, without her I would still be in the lab.

My advisor, Dr. David Kronfeld, deserves more than just a thank you. He is a brilliant individual whom I owe a lot of gratitude to for giving me the best possible
graduate career I could attain. His words of wisdom and profound statements are always
engrained in my memory (see line 1 of introduction). I am truly grateful that I was able to
complete my full five years of graduate work with his supervision. Some of my best
qualities were only discovered because a little of his encouragement. I would also like to
thank the rest of my Ph.D. advising committee. They have taken time out of their busy
schedules to assist and advise me during my graduate work.

Dr. Amy Ordakowski has been one of the best friends and mentors a person could
have. Being two years behind Amy I really learned a lot by watching the trials and
tribulations she went through during her Ph.D. (e.g. calling during her Prelims to tell me to
“Quit now and don’t turn back.”). I especially want to thank Amy for all the guidance she
has given me, both professional and personal, in the last couple of years. Amy has always
been there to help, everywhere from showing me how to do my first pasture sample to
dealing with job interviews and negotiations. She was instrumental in my interview
success at Rutgers. I learned a lot from her as a mentor, I just hope that I can be that much
of an influence for someone some day.

My long time friends also deserve special appreciation: Karen Cizek, Eve Miller,
and Ann-Marie Hancock. At times I am surprised that they still call me a friend. They
always seem to understand that there may be times when I seem to fall off the planet.
Other members of my family: brother, Matt; grandma, Joe McCoy; grandma, Ann
Williams; aunts, uncles, and cousins, need special thanks for sticking with me and keeping
interested especially when things got too busy for me to take time to write or call.

Finally, I am saving the best for last, my boyfriend Patrick Carey. The last three
and a half years we have been through our share of ups and downs. With my long work
hours on the farm, many papers due, more meetings to attend, even more presentations to
prepare, and countless trips to Blacksburg any of those could have been a reason to leave,
but you have supported me until the end. Having you there believing in me has been the
driving force through most everything. You have always said, “I know you can do it.”
Well, look at that…you were right. 😊 I have!
Table of Contents

ABSTRACT... ii
ACKNOWLEDGEMENTS... iii
TABLE OF CONTENTS... v
LIST OF TABLES... ix
LIST OF FIGURES.. xi
LIST OF APPENDICES.. xv

INTRODUCTION... 1

LITERATURE REVIEW

Oxidative Stress and Reactive Oxygen Species... 3
Roles of Antioxidants... 4
Vitamin E metabolism and transport.. 5
Measuring Oxidative Stress and Antioxidant Status... 6
Antioxidants.. 6
Oxidative stress markers... 8
Oxidative Stress Effects on Physiological Systems.. 9
Cardiovascular system.. 9
Respiratory system.. 9
Nervous system.. 10
Skeletal muscle and other systems... 10
Antioxidant Effects on Physiological Systems... 11
Cardiovascular system.. 11
Respiratory system.. 12
Immune system.. 12
Nervous system.. 13
Other systems... 14
Reverse Role of ROS and Oxidative Stress.. 15
Oxidative Stress and Exercise... 16
Maximal exercise

- Submaximal exercise

Antioxidant Properties of Lipoic Acid
- Radical scavenging
- Interacting with antioxidants
- Metal chelation
- Solubility characteristics
- Repairing oxidative damage
- Effects on gene expression
- Practical application

Apoptosis and Exercise
- Role of free radicals
- Apoptosis in lymphocytes during exercise
- Apoptosis in skeletal muscle during exercise

LITERATURE CITED

GLOSSARY OF ABBREVIATIONS

FIGURES

OBJECTIVES

JOURNAL ARTICLE 1: Lipoic Acid as an Antioxidant in Mature Thoroughbred Geldings: A Preliminary Study

- **Abstract**: 44
- **Introduction**: 45
- **Materials and Methods**: 46
- **Results**: 48
- **Discussion**: 48
- **Implications**: 51
- **Literature Cited**: 52
- **Figures**: 54
JOURNAL ARTICLE 2: Oxidative Stress and Antioxidant Supplementation of Horses During Endurance Exercise

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>56</td>
</tr>
<tr>
<td>Introduction</td>
<td>57</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>58</td>
</tr>
<tr>
<td>Results</td>
<td>61</td>
</tr>
<tr>
<td>Discussion</td>
<td>62</td>
</tr>
<tr>
<td>Implications</td>
<td>67</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>68</td>
</tr>
<tr>
<td>Tables</td>
<td>71</td>
</tr>
<tr>
<td>Figures</td>
<td>72</td>
</tr>
</tbody>
</table>

JOURNAL ARTICLE 3: Oxidative Stress in Horses in Three 80 km Races

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>76</td>
</tr>
<tr>
<td>Introduction</td>
<td>77</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>78</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>79</td>
</tr>
<tr>
<td>Implications</td>
<td>81</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>82</td>
</tr>
<tr>
<td>Tables</td>
<td>83</td>
</tr>
<tr>
<td>Figures</td>
<td>85</td>
</tr>
</tbody>
</table>

JOURNAL ARTICLE 4: Vitamin E Intake and Oxidative Stress in Endurance Horses

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>88</td>
</tr>
<tr>
<td>Introduction</td>
<td>88</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>90</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>91</td>
</tr>
<tr>
<td>Implications</td>
<td>93</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>94</td>
</tr>
</tbody>
</table>
JOURNAL ARTICLE 5: Lipoic Acid and Vitamin E Supplementation of Horses Diminishes Endurance Exercise Induced Oxidative Stress, Muscle Enzyme Leakage, and Apoptosis

Abstract ... 98
Introduction ... 99
Materials and Methods .. 100
Results ... 103
Discussion ... 104
Implications ... 109
Literature Cited ... 110
Tables ... 113
Figures ... 117

OVERALL DISCUSSION AND SUMMARY 121
IMPLICATIONS AND FUTURE STUDIES 124
APPENDICES .. 127
VITA ... 148
List of Tables

Journal Article 2 Tables

Table 1. Plasma lipid hydroperoxides (LPO), alpha-tocopherol (α-TOC), alpha-tocopherol adjusted for albumin (TOCadj), RBC and WBC total glutathione (GSH-T), and RBC and WBC glutathione peroxidase (GPx) for the horses that finished the race (treatment groups combined; n = 34)……………………………………..…… 71

Journal Article 3 Tables

Table 1. Comparisons of changes in oxidative stress measures with distance in the 80-km Research Ride 2001 and 2002 (R1 and R2, respectively) and Old Dominion ride (OD)…………………………………… 83

Table 2. Correlations of indices of oxidative stress (X) and muscle membrane leakage (Y) for the Research Ride 2001 and 2002 (R1 and R2, respectively) and Old Dominion (OD) ride…………………... 84

Journal Article 5 Tables

Table 1. Nutrient composition of feed on a DM basis as analyzed in the DHI Forage Testing Laboratory (Ithaca, NY)…………………………………… 103

Table 2. Information of horses in the control group (CON), vitamin E supplemented group (E), and lipoic acid supplemented group (LA) including horses age, average temperature during exercise, relative humidity during exercise, weight, absolute and relative weight lost during the 55-km of exercise, total time to complete the exercise, water and hay consumed from the first veterinary check through the 30 min recovery sample. Means ± SE are calculated for each group……………………………………………………………….. 114
Table 3. Least squared means ± SEM for the control group (CON), vitamin E group (E), and lipoic acid supplemented group (LA)…… 115

Table 4. Regressions (Y = B + AX) of indices of antioxidant status, oxidative stress, and other variables for all 12 horses (n = 144) in the control (CON), vitamin E (E) and lipoic acid (LA) supplemented groups combined…………………………………… 116

Overall Discussion and Summary Tables

Table 1. Reference ranges for oxidative stress measures, and antioxidant status for horses competing in two 80-km endurance rides (Ride 2001 and 2002) and a 55-km treadmill study (Treadmill). Number of observations used is in parentheses after the variable………… 125
List of Figures

Literature Review Figures

Figure 1. Absorption and transport of tocopherols as proposed by NRC (1989). Adapted from Papas, 1999................................. 38

Figure 2. Lipoic acid structure. An eight-carbon structure that contains a disulfide bond as a part of a dithiolane ring with a five-carbon tail... 39

Figure 3. The apoptotic process. (A) The cytoplasm shrinks and cleavages actin filaments; (B) nuclear condensation and breakdown of chromatin and nuclear structural proteins, the nuclei look like a "horse-shoe"; (C) the cells continue to shrink and pack into a form easy for phagocytosis; and finally (D) the membrane changes start to form “apoptotic bodies” (Kerr et al., 1972)......... 40

Figure 4. Apoptotic ROS sources and defense mechanisms. Sources of ROS include mitochondria, endoplasmic reticulum (ER), plasma membrane and cytosol. The conversion of H2O2 by O2•- relies on the glutathione (GSH) redox cycle for defense, which is present in both the cytosol and mitochondria. Enzymes in the cytosol, NADPH oxidase in the membrane, and cytochrome P450 in the ER also produce O2•-. Bcl-2 and vitamin E (gama-tocopherols; γ-Toc) also act as antioxidants to inhibit this mechanism (Curtain et al., 2002).. 41

Figure 5. Interruption of the apoptotic mechanism. This pathway can be blocked by the exogenous and endogenous antioxidants as well as bcl-2 acting as an antioxidant as well (Chandra et al., 2000)......... 42

Journal Article 1 Figures

Figure 1. Total plasma lipid hydroperoxides (LPO) for horses receiving the control supplement (CON; n = 5) or lipoic acid-containing supplement (LA; n = 5). The LPO baselines are subtracted from 7,
14 and 16 d samples assuming a covariance of 1. Results for ANOVA found time ($P = 0.015$), treatment and time by treatment interaction ($P = 0.031$) significant................................. 54

Figure 2. White blood cell (WBC) glutathione peroxidase (GPx) for horses receiving the control supplement (CON; n = 5) or lipoic acid-containing supplement (LA; n = 5). The white blood cell GPx baselines are subtracted from 7, 14 and 16 d samples assuming a covariance of 1................................. 55

Journal Article 2 Figures

Figure 1. Plasma ascorbate adjusted for albumin (ASCadj) for horses completing the race in the vitamin E group (E; n = 17) and the vitamin E plus vitamin C group (EC; n = 17). ANOVA main effect treatment is significant at $P = 0.045$. *Treatments are significantly different at $P < 0.05$................................. 72

Figure 2. Plasma creatine kinase (CK; A) and aspartate aminotransferase (AST; B) for each horse that completed the race (n = 34). Individual observations are shown by the closed circles, and the mean is indicated by the open diamonds connected by a line. Different subscripts indicate differences between the mean at each distance ($P < 0.001$)................................. 73

Figure 3. Plasma lipid hydroperoxides (LPO) for the horses that finished the race (treatment groups combined), and horses that pulled because of metabolic problems (n = 4). Distance 80 represents 80 km for the finishers and the point in the race where the non-finishers were eliminated. ANOVA main effect of LPO increasing with distance is significant for the finishers at $P = 0.001$.

*Finished vs. metabolic different at $P < 0.05$................................. 74

Figure 4. Red blood cell total glutathione (GSH-T) for the horses that finished the race (treatment groups combined; n = 34), and horses
that pulled from the race (metabolic, lameness, and rider option reasons combined; n = 12). Distance 80 represents 80 km for the finishers and the point in the race where the non-finishers were eliminated. *Finished vs. not finished different at \(P = 0.005 \)………

Journal Article 3 Figures

Figure 1. Natural logarithm transform of plasma creatine kinase (CK) activity for the horses that finished (F; (n = 24) vs did not finish (NF) (n = 16) for each distance in km, the veterinary check the day before the ride (PRE), and the recovery (REC).................................

Figure 2. Plasma creatine kinase activity (A; CK), RBC total glutathione content (B; GSH), plasma lipid hydroperoxides (C; LPO), and plasma ascorbate content (C; ASC) during OD, R1, and R2. The x-axis denotes distance in km, the veterinary check the day before the ride (PRE), and the recovery (REC)...

Journal Article 4 Figures

Figure 1. Distribution of vitamin E intake by horse’s race number. Mean ± SE = 2265 ± 114 IU/d...

Figure 2. Vitamin E intake vs. plasma alpha-tocopherol (TOC) adjusted for fluid shifts during exercise using albumin. Pearson’s correlation was used to determine \(r = 0.21 \) (\(P = 0.005 \))...................

Figure 3. Correlation between vitamin E intake and finish time to complete the 80 km race. Only the 24 finishers were used in this correlation. Pearson’s correlation was used to determine \(r = -0.31 \) (\(P = 0.0006 \))...
Journal Article 5 Figures

Figure 1. Endurance exercise test (EET) protocol based on heart rate max (HR$_{\text{max}}$). Blood samples were taken at the start of the EET (1$^{\text{st}}$ PRE), 10, 20 km, start of 2$^{\text{nd}}$ loop (2$^{\text{nd}}$ PRE), 30, 40 km, start of 3$^{\text{rd}}$ loop (3$^{\text{rd}}$ PRE), 47.5, and 55 km, then 0.5, 3, and 18 h of recovery (REC)………………………………………………………………. 117

Figure 2. Plasma alpha-tocopherol (TOC; A) and ascorbate (ASC; B) concentrations for the control (CON; n = 4), vitamin E (E; n = 3), and lipoic acid (LA; n = 4) groups. The E group is graphed without concentrations for horse 2 (TOC = 3.45 ug/mL; 2 SD from mean)……………………………………………………… 118

Figure 3. Plasma creatine kinase (CK; A) and lactate (B) concentrations for the control (CON; n = 4), vitamin E (E; n = 3), and lipoic acid (LA; n = 4) groups. The E group is graphed without concentrations for horse 2……………………………………...… 119

Figure 4. White blood cell apoptosis for the control (CON; n = 3), vitamin E (E; n = 3), and lipoic acid (LA; n = 3) groups. Horses 9, 10, and 11 were removed from their groups (1 CON, 1 E, 1 LA; 2 SD from mean)………………………………………………………………. 120
List of Appendices

APPENDIX I

Figure 1. Plasma alpha-tocopherol (TOC) concentrations for all 46 horses in the vitamin E and vitamin E plus C groups combined. Thin lines depict the highest and lowest values at each sample, the black line with diamonds is the average. Data for Journal Article 2………………………………………………………………….… 127

Figure 2. Plasma lipid hydroperoxide (LPO) concentrations for all 46 horses in the vitamin E and vitamin E plus C groups combined. Thin lines depict the highest and lowest values at each sample, the black line with diamonds is the average. Data for Journal Article 2……………………………………………………………… 128

Figure 3. Plasma creatine kinase (CK) concentrations for all 46 horses in the vitamin E and vitamin E plus C groups combined. Thin lines depict the highest and lowest values at each sample, the black line with diamonds is the average. Data for Journal Article 2………… 129

Figure 4. Plasma aspartate aminotransferase (AST) concentrations for all 46 horses in the vitamin E and vitamin E plus C groups combined. Thin lines depict the highest and lowest values at each sample, the black line with diamonds is the average. Data for Journal Article 2………………………………………..…… 130

Figure 5. Red blood cell total glutathione (RBC GST-T) concentrations for all 46 horses in the vitamin E and vitamin E plus C groups combined. Thin lines depict the highest and lowest values at each