MIXED-METAL RUTHERNIUM-PLATINUM POLYAZINE SUPERMOLECULES:
SYNTHESIS, CHARACTERIZATION AND EXPLORATION OF DNA BINDING

by

Matthew Milkevitch

Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

CHEMISTRY

Dr. Karen J. Brewer, Chair
Dr. Brenda S.J. Winkel, Co-Chair
Dr. Gary L. Long
Dr. Brian E. Hanson
Dr. Mark R. Anderson

June 22, 2001
Blacksburg, Virginia

Keywords: Supermolecules, Electrochemistry, Spectroscopy, DNA Binding, Cisplatin, 1,1/t/t, Gel Electrophoresis, Gel Densitometry

Copyright 2001, Matthew Milkevitch
The goal of this research was to design, prepare and study a new class of supermolecules coupling ruthenium and platinum, which would display covalent binding to DNA. These supermolecules were modular in design, facilitating the use of coordination chemistry to vary individual components within the design. Drawing upon the well-established efficacy of cis-diamminedichloroplatinum(II) (cisplatin) and the DNA-binding properties of select ruthenium polyazine complexes, the approach was to bind the cis-PtCl$_2$ active site of cisplatin to ruthenium light absorbers using the dpq and dpb bridging ligands (where dpq = 2,3-bis(2-pyridyl)quinoxaline, dpb = 2,3-bis(2-pyridyl)benzoquinoxaline). These complexes are potentially bifunctional, capable of DNA intercalation through the bridging ligand and covalent binding to DNA through the cis-PtCl$_2$ site. The use of the ruthenium(II) center allows these complexes to be cationic and provides for enhanced water-solubility relative to the neutral cisplatin. These ruthenium centers function as chromophores leading to efficient light absorption by the Ru-Pt systems throughout the ultraviolet & visible region of the electromagnetic spectrum.
Synthetic methods were developed to prepare the mixed-metal, bimetallic complexes [(bpy)$_2$Ru(BL)PtCl$_2$](CF$_3$SO$_3$)$_2$ and [(phen)$_2$Ru(BL)PtCl$_2$](CF$_3$SO$_3$)$_2$ (where bpy = 2,2$'$-bipyridine, phen = 1,10-phenanthroline) in high purity and good overall yields. These new systems were characterized using electronic absorption spectroscopy, electrochemistry, and FAB-MS. The DNA-binding ability of these complexes was probed by reaction with linearized plasmid DNA and subsequent analysis by native and denaturing gel electrophoresis. The known DNA binders, cisplatin and trans-$[\text{PtCl}($NH$_3$)$_2]\{\mu$-$\text{H}_2\text{N(CH}_2)_6\text{NH}_2}\}^{2+}$ (1,1/t,t), were examined under equivalent conditions and used as positive controls. Native gel electrophoresis was used to show that these complexes strongly bind DNA, retarding the migration of DNA through the gel in a fashion inversely proportional to the ratio of DNA base pairs (bp) to metal complex (mc). Equivalent studies using the ruthenium monometallic synthons, [(bpy)$_2$Ru(BL)](CF$_3$SO$_3$)$_2$ and [(phen)$_2$Ru(BL)](CF$_3$SO$_3$)$_2$, had no effect on DNA migration, suggesting that the Ru-Pt complexes bind to DNA through the PtCl$_2$ site. Analysis by denaturing gel electrophoresis determined that the Ru-Pt complexes bind to DNA in a fashion similar to cisplatin, forming primarily intrastrand adducts. However, these systems also appear to form interstrand adducts at a 10-fold lower metal concentration than cisplatin.

In addition to affecting the migration rate, the bimetallic complexes also significantly reduced the fluorescence of DNA-intercalated ethidium bromide for the Ru-Pt reacted samples at low-DNA bp: mc ratios. This was not observed for the cisplatin and 1,1/t,t treated samples. This observation was quantitated by gel densitometry. Precipitation of the DNA by cisplatin, 1,1/ t,t and all four Ru-Pt complexes was determined not to be the cause of reduced ethidium bromide fluorescence intensity. Homogenous solution fluorescence quenching studies have revealed that the Ru-Pt complexes quench the emission of ethidium bromide even in the absence of DNA, whereas cisplatin and 1,1/t,t do not.

In order to compare the effects on DNA migration produced by cisplatin, 1,1/t,t and the Ru-Pt complexes, $R_f$ values were calculated. This analysis has revealed that all
four Ru-Pt complexes retard DNA migration to approximately the same degree. Calculation of theoretical DNA migration distances, based upon the molecular weight change of DNA caused by metal-complex binding, have revealed that the observed affect on DNA migration cannot be accounted for by an increase in molecular weight alone. This indicates that changes in charge and three-dimensional shape of the DNA upon binding of the Ru-Pt complexes may also contribute.

The Ru-Pt complexes developed in this work represent a successful attempt to design and produce a new class of supermolecules that will covalently bind to DNA. The design of this molecule, coupling a ruthenium light-absorbing unit to a cis-PtCl₂ site, has proven to be synthetically achievable and the complexes prepared display easily tunable light absorbing properties and reversible metal and ligand based redox processes. These molecules have been shown to avidly bind DNA through the PtCl₂ site. A group of in vitro biological assays have been developed to explore and characterize the binding of these molecules to DNA. These molecules therefore have met the goals of this project, and represent a new class of compounds that may find diverse applications in medicine, chemistry, and molecular biology.
Table of Contents

Chapter 1 Introduction.................................................................1

  Cancer: history, incidence, causes..............................................1
  Cancer treatment: focus on chemotherapy....................................2
  Survey of chemotherapeutic agents...........................................3
  Problems with chemotherapy and their consequences..................3
  Cisplatin: anticancer agent targeting DNA.................................5
  Cisplatin: mechanism of action...............................................6
  DNA structure............................................................................7
  Cisplatin: DNA adducts..........................................................7
  Gel electrophoresis: studying drug-DNA adducts.........................11
  Effects of cisplatin-DNA binding...............................................13
  Problems with cisplatin..........................................................14
  Cisplatin analog research.......................................................14
  Other metal-based anticancer agents.........................................16
  DNA intercalators....................................................................17
  Ru(II) based DNA intercalators................................................19
  [Ru(phen)$_3$]$_2^{2+}$: chiral DNA intercalator.................................23
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>[(bpy)₂Ru(dppz)]²⁺ and [(phen)₂Ru(dppz)]²⁺ “molecular light switches for DNA”</td>
<td>25</td>
</tr>
<tr>
<td>Ru(II) bimetallic complexes as DNA intercalators</td>
<td>27</td>
</tr>
<tr>
<td>Project description</td>
<td>28</td>
</tr>
<tr>
<td>Chapter 2: Experimental</td>
<td>34</td>
</tr>
<tr>
<td>Chapter 3: Results and Discussion</td>
<td>49</td>
</tr>
<tr>
<td>Synthesis: Ru-Pt complexes containing the bridging bidentate ligands dpq and dpb</td>
<td>49</td>
</tr>
<tr>
<td>Electrochemistry</td>
<td>50</td>
</tr>
<tr>
<td>Electronic absorption spectroscopy</td>
<td>58</td>
</tr>
<tr>
<td>The interaction of Ru-Pt bimetallic complexes with DNA</td>
<td>64</td>
</tr>
<tr>
<td>Native gel studies: concentration-dependent interaction with DNA</td>
<td>64</td>
</tr>
<tr>
<td>Determination of R_f values</td>
<td>74</td>
</tr>
<tr>
<td>Theoretical modeling of DNA migration, molecular weight effect</td>
<td>80</td>
</tr>
<tr>
<td>Gel densitometry studies: concentration dependent interaction with DNA</td>
<td>83</td>
</tr>
<tr>
<td>DNA precipitation studies</td>
<td>97</td>
</tr>
<tr>
<td>Ethidium bromide fluorescence quenching by Ru-Pt complexes</td>
<td>98</td>
</tr>
<tr>
<td>Denaturing gel studies: concentration-dependent interaction with DNA</td>
<td>111</td>
</tr>
<tr>
<td>Chapter 4: Conclusions and Future Work</td>
<td>126</td>
</tr>
<tr>
<td>Conclusions</td>
<td>126</td>
</tr>
<tr>
<td>Future Work</td>
<td>129</td>
</tr>
<tr>
<td>References</td>
<td>133</td>
</tr>
<tr>
<td>Appendix A-1 Cyclic voltammagram for <a href="CF%E2%82%83SO%E2%82%83">(phen)₂Ru(dpq)PtCl₂</a>₂</td>
<td>143</td>
</tr>
</tbody>
</table>
Appendix B-12 Rf value determination for a [(phen)$_2$Ru(dpdb)PtCl$_2$](CF$_3$SO$_3$)$_2$, – DNA interaction study………………………………………………………………151

Appendix C-1 Gel densitometry data for cis-[Pt(NH$_3$)$_2$Cl$_2$] (cisplatin)………………..152

Appendix C-2 Gel densitometry data for trans-[[PtCl(NH$_3$)$_2$]$_2$(μ-H$_2$N(CH$_2$)$_6$NH$_2$)](NO$_3$)$_2$ (1,1/ t,t)…………………………………………………………………………………………………….153

Appendix C-3 Gel densitometry data for [(bpy)$_2$Ru(dpq)PtCl$_2$](CF$_3$SO$_3$)$_2$………………154

Appendix C-4 Gel densitometry data for [(bpy)$_2$Ru(dpdb)PtCl$_2$](CF$_3$SO$_3$)$_2$………………..155

Appendix C-5 Gel densitometry data for [(phen)$_2$Ru(dpq)PtCl$_2$](CF$_3$SO$_3$)$_2$………………156

Appendix C-6 Gel densitometry data for [(phen)$_2$Ru(dpdb)PtCl$_2$](CF$_3$SO$_3$)$_2$………………..157

Appendix C-7 Average IDV values for control samples obtained from metal-DNA experiments……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………
Appendix D-4 Ethidium bromide quenching study for \( \text{cis-[Pt(NH}_3\text{)}_2\text{Cl}_2] } \) (cisplatin) and \( \text{trans-} \{[\text{PtCl(NH}_3\text{)}_2]\text{(}\mu-\text{H}_2\text{N(CH}_2\text{)}_6\text{NH}_2)\text{]} (\text{NO}_3\text{)}_2 \} \) (1,1/ t,t)...............................169

Appendix D-5 Ethidium bromide quenching study for \( \{\text{(bpy)}_2\text{Ru(dpq)PtCl}_2\} (\text{CF}_3\text{SO}_3\text{)}_2 \) and \( \{\text{(bpy)}_2\text{Ru(dpb)PtCl}_2\} (\text{CF}_3\text{SO}_3\text{)}_2 \).................................171

Appendix D-6 Ethidium bromide quenching study for \( \{\text{(phen)}_2\text{Ru(dpq)PtCl}_2\} (\text{CF}_3\text{SO}_3\text{)}_2 \), and \( \{\text{(phen)}_2\text{Ru(dpb)PtCl}_2\} (\text{CF}_3\text{SO}_3\text{)}_2 \).................................173

Appendix E-1 Fast atom bombardment mass spectrum of \( \{\text{(bpy)}_2\text{Ru(dpq)PtCl}_2\} (\text{CF}_3\text{SO}_3\text{)}_2 \)...........................................................................174

Appendix E-2 Fast atom bombardment mass spectrum of \( \{\text{(bpy)}_2\text{Ru(dpb)PtCl}_2\} (\text{CF}_3\text{SO}_3\text{)}_2 \)...........................................................................175

Appendix E-3 Fast atom bombardment mass spectrum of \( \{\text{(phen)}_2\text{Ru(dpq)PtCl}_2\} (\text{CF}_3\text{SO}_3\text{)}_2 \)...........................................................................176

Appendix E-4 Fast atom bombardment mass spectrum of \( \{\text{(phen)}_2\text{Ru(dpb)PtCl}_2\} (\text{CF}_3\text{SO}_3\text{)}_2 \)...........................................................................177
List of Figures

Figure 1.1 *cis*-diaminedichloroplatinum(II) (cisplatin) ......................................................... 5
Figure 1.2 *trans*-diaminedichloroplatinum(II) (transplatin) ................................................... 7
Figure 1.3 Structure of DNA Nucleotides ........................................................................... 8
Figure 1.4 Structure of DNA double helix showing major and minor grooves ............................................................... 8
Figure 1.5 Schematic of cisplatin entering the cell and interacting with DNA, RNA and cellular thiols ................................................................. 10
Figure 1.6 Gel electrophoresis of DNA ............................................................................. 12
Figure 1.7 Structures of cisplatin analogs presently used in the clinic ................................................................. 15
Figure 1.8 Structure of 1,1/2,t,t............................................................................................... 16
Figure 1.9 Chemical structure of BBR 3464 ........................................................................... 16
Figure 1.10 Chemical structures of DNA intercalating dyes ...................................................... 18
Figure 1.11 Structure of 2,2′,2′′-terpyridine (terpy) ................................................................. 18
Figure 1.12 Molecular orbital diagram for a d6 octahedral complex, LCAO based ................. 20
Figure 1.13 Major electronic transitions for Ru(II) polypyridyl compounds ......................... 22
Figure 1.14 Structure of [(bpy)2Ru(dppz)]2+ ........................................................................... 26
Figure 1.15 Structure of [(phen)2Ru(dppz)]2+ ........................................................................... 26
Figure 1.16 Structure of [L2Ru{dppz (11-11′)dppz}RuL2] ..................................................... 28
Figure 3.12 Plot of energies of the lowest energy absorption band (eV) vs. $E_{1/2}(V)$………………………………………………………………………………………………………..63

Figure 3.13 Native agarose gel electrophoresis of interaction of 
$cis$-[Pt(NH$_3$)$_2$Cl$_2$] (cisplatin) and 
$trans$-{$[PtCl(NH$_3$)$_2$]_2(\mu-H_2N(CH$_2$)$_6$NH$_2$)(NO$_3$)$_2$}$ (1,1/t,t)……………………………….65

Figure 3.14 Native agarose gel electrophoresis of interaction of 
{$[(bpy)$_2Ru(dpq)PtCl$_2$](CF$_3$SO$_3$)$_2$} and {$[(bpy)$_2Ru(dpb)PtCl$_2$](CF$_3$SO$_3$)$_2$}……………67

Figure 3.15 Native agarose gel electrophoresis of interaction of 
{$[(phen)$_2Ru(dpq)PtCl$_2$](CF$_3$SO$_3$)$_2$} and {$[(phen)$_2Ru(dpb)PtCl$_2$](CF$_3$SO$_3$)$_2$}……………69

Figure 3.16 Native agarose gel electrophoresis of interaction of 
{$[(bpy)$_2Ru(dpq)](CF$_3$SO$_3$)$_2$} and {$[(bpy)$_2Ru(dpb)](CF$_3$SO$_3$)$_2$}…………………….70

Figure 3.17 Native agarose gel electrophoresis of interaction of 
{$[(phen)$_2Ru(dpq)](CF$_3$SO$_3$)$_2$} and {$[(phen)$_2Ru(dpb)](CF$_3$SO$_3$)$_2$}………………………71

Figure 3.18 Comparison of $R_f$ values for the untreated control……………………………………77

Figure 3.19 Comparison of $R_f$ values for $cis$-[Pt(NH$_3$)$_2$Cl$_2$] (cisplatin), $trans$-
{$[PtCl(NH$_3$)$_2$]_2(\mu-H_2N(CH$_2$)$_6$NH$_2$)}(NO$_3$)$_2$ (1,1/t,t), {$[(bpy)$_2Ru(dpq)PtCl$_2$](CF$_3$SO$_3$)$_2$},
{$[(bpy)$_2Ru(dpb)PtCl$_2$](CF$_3$SO$_3$)$_2$}, {$[(phen)$_2Ru(dpq)PtCl$_2$](CF$_3$SO$_3$)$_2$}, and 
{$[(phen)$_2Ru(dpb)PtCl$_2$](CF$_3$SO$_3$)$_2$}………………………………………………………………………………79

Figure 3.20 Standard curve relating the relationship between the molecular weight of DNA and distance traveled through a native gel……………………………………………………………………….82

Figure 3.21 Comparison of gel densitometry results for the untreated control (no metal added), included with each respective metal-DNA interaction study……………91

Figure 3.22 Comparison of gel densitometry results for 
{$[(bpy)$_2Ru(dpq)PtCl$_2$](CF$_3$SO$_3$)$_2$}, 
{$[(bpy)$_2Ru(dpb)PtCl$_2$](CF$_3$SO$_3$)$_2$}, {$[(phen)$_2Ru(dpq)PtCl$_2$](CF$_3$SO$_3$)$_2$}, 
{$[(phen)$_2Ru(dpb)PtCl$_2$](CF$_3$SO$_3$)$_2$}, $cis$-[Pt(NH$_3$)$_2$Cl$_2$] (cisplatin), and 
$trans$-{$[PtCl(NH$_3$)$_2$]_2(\mu-H_2N(CH$_2$)$_6$NH$_2$)}(NO$_3$)$_2$ (1,1 t,t)………………………………………………..93

Figure 3.23 DNA precipitation study for $cis$-[Pt(NH$_3$)$_2$Cl$_2$] (cisplatin)………………………95

xii
Figure 3.24 DNA precipitation study for 
trans-\{[PtCl(NH_3)_2]_2(\mu-H_2N(CH_2)_6NH_2)\}(NO_3)_2 (1,1/t,t)……………….100

Figure 3.25 DNA precipitation study for \[(bpy)_2Ru(dpq)PtCl_2\](CF_3SO_3)_2………….....101

Figure 3.26 DNA precipitation study for \[(bpy)_2Ru(dpb)PtCl_2\](CF_3SO_3)_2……………..102

Figure 3.27 DNA precipitation study for \[(phen)_2Ru(dpq)PtCl_2\](CF_3SO_3)_2……………..103

Figure 3.28 DNA precipitation study for \[(phen)_2Ru(dpb)PtCl_2\](CF_3SO_3)_2……………..104

Figure 3.29 Ethidium bromide quenching study for cis-[Pt(NH_3)_2Cl_2] (cisplatin) and trans-\{[PtCl(NH_3)_2]_2(\mu-H_2N(CH_2)_6NH_2)\}(NO_3)_2 (1,1/t,t)……………….108

Figure 3.30 Ethidium bromide quenching study for 
\[(bpy)_2Ru(dpq)PtCl_2\](CF_3SO_3)_2 and \[(bpy)_2Ru(dpb)PtCl_2\](CF_3SO_3)_2……………..110

Figure 3.31 Ethidium bromide quenching study for 
\[(phen)_2Ru(dpq)PtCl_2\](CF_3SO_3)_2 and \[(phen)_2Ru(dpb)PtCl_2\](CF_3SO_3)_2……………..113

Figure 3.32 Schematic representation of intrastrand and interstrand crosslinking……...114

Figure 3.33 Denaturing agarose gel electrophoresis of the interaction of 
cis-[Pt(NH_3)_2Cl_2] (cisplatin) with linearized plasmid DNA…………………….……...116

Figure 3.34 Denaturing agarose gel electrophoresis of the interaction of 
\{trans-PtCl(NH_3)_2\}_2(\mu-H_2N(CH_2)_4NH_2)](NO_3)_2 (1,1/t,t) with linearized plasmid DNA……117

Figure 3.35 Schematic representing the affects of a small, intermediate and large number of interstrand crosslinks on the size and shape of a DNA molecule……………………………………………………………………………...…119

Figure 3.36 Denaturing agarose gel electrophoresis of the interaction of 
\[(bpy)_2Ru(dpq)PtCl_2\](CF_3SO_3)_2 and \[(bpy)_2Ru(dpb)PtCl_2\](CF_3SO_3)_2………………...121
Figure 3.37 Denaturing agarose gel electrophoresis of the interaction of
[(phen)$_2$Ru(dpq)PtCl$_2$](CF$_3$SO$_3$)$_2$ and [(phen)$_2$Ru(dpb)PtCl$_2$](CF$_3$SO$_3$)$_2$
List of Tables

Table 1.1 Risk factors for the development of cancer ............................................2
Table 1.2 Survey of chemotherapeutic drug classes .............................................4
Table 1.3 Absorption and electrochemical data for a series of Ru(II) bridging ligand and related complexes .................................................................24

Table 2.1 FAB mass spectral data for [(bpy)$_2$Ru(dpq)PtCl$_2$](CF$_3$SO$_3$)$_2$ ........41
Table 2.2 FAB mass spectral data for [(bpy)$_2$Ru(dpb)PtCl$_2$](CF$_3$SO$_3$)$_2$ .......41
Table 2.3 FAB mass spectral data for [(phen)$_2$Ru(dpq)PtCl$_2$](CF$_3$SO$_3$)$_2$ .......42
Table 2.4 FAB mass spectral data for [(phen)$_2$Ru(dpb)PtCl$_2$](CF$_3$SO$_3$)$_2$ .......43

Table 3.1 Electrochemical data for a series of ruthenium and ruthenium-platinum complexes incorporating the bidentate bridging ligands dpq and dpb ..........57

Table 3.2 Summary of UV-visible data for the Ru-Pt bimetallics .........................62

Table 3.3 Molecular weights of cis-[Pt(NH$_3$)$_2$Cl$_2$] (cisplatin), trans- {[PtCl(NH$_3$)$_2$]$_2$(µ-H$_2$N(CH$_2$)$_6$NH$_2$)}(NO$_3$)$_2$ (1,1/t,t), [(bpy)$_2$Ru(dpq)PtCl$_2$](CF$_3$SO$_3$)$_2$, [(bpy)$_2$Ru(dpb)PtCl$_2$](CF$_3$SO$_3$)$_2$, [(phen)$_2$Ru(dpq)PtCl$_2$](CF$_3$SO$_3$)$_2$, [(phen)$_2$Ru(dpb)PtCl$_2$](CF$_3$SO$_3$)$_2$ ........................................73

Table 3.4. R$_f$ values for cis-[Pt(NH$_3$)$_2$Cl$_2$] (cisplatin), trans- {[PtCl(NH$_3$)$_2$]$_2$(µ- H$_2$N(CH$_2$)$_6$NH$_2$)}(NO$_3$)$_2$ (1,1/ t,t), [(bpy)$_2$Ru(dpq)PtCl$_2$](CF$_3$SO$_3$)$_2$, [(bpy)$_2$Ru(dpb)PtCl$_2$](CF$_3$SO$_3$)$_2$, [(phen)$_2$Ru(dpq)PtCl$_2$](CF$_3$SO$_3$)$_2$, and [(phen)$_2$Ru(dpb)PtCl$_2$](CF$_3$SO$_3$)$_2$ ..........................................................................................76

Table 3.5 Migration distance data for the 4361, 2322 and 2027 kb bands of the lambda DNA molecular weight standards ......................................................81

Table 3.6 Molecular weight and average migration distance data for 4361, 2322, 2027 kb fragments of lambda molecular weight standards ...............81

Table 3.7 Experimental and theoretical DNA migration distances for the interaction of cis-[Pt(NH$_3$)$_2$Cl$_2$] (cisplatin) with linearized plasmid DNA ........84

Table 3.8 Experimental and theoretical DNA migration distances for the interaction of trans- {[PtCl(NH$_3$)$_2$]$_2$(µ-H$_2$N(CH$_2$)$_6$NH$_2$)}(NO$_3$)$_2$ (1,1/ t,t) with linearized plasmid DNA ..............................................................................85
Table 3.9 Experimental and theoretical DNA migration distances for the interaction of \([(\text{bpy})_2\text{Ru(dpq)}\text{PtCl}_2](\text{CF}_3\text{SO}_3)_2\)……………………………………..………………86

Table 3.10 Experimental and theoretical DNA migration distance calculations for the interaction of \([(\text{bpy})_2\text{Ru(dpb)}\text{PtCl}_2](\text{CF}_3\text{SO}_3)_2\) with cut plasmid DNA……………..87

Table 3.11 Experimental and theoretical DNA migration distances for the interaction of \([(\text{phen})_2\text{Ru(dpq)}\text{PtCl}_2](\text{CF}_3\text{SO}_3)_2\) with linearized plasmid DNA……………..88

Table 3.12 Experimental and theoretical DNA migration distances for the interaction of \([(\text{phen})_2\text{Ru(dpb)}\text{PtCl}_2](\text{CF}_3\text{SO}_3)_2\) with cut plasmid DNA……………..89

Table 3.13 Percent differences between initial and final absorbance recorded at 260 nm, for each metal-DNA precipitation study………………………………………………105
### Abbreviations

- **bpy**: 2,2'-bipyridine
- **bp**: base pair
- **CT**: charge transfer
- **C**: control
- **DNA**: deoxyribose nucleic acid
- **dpb**: 2,3-bis(2-pyridyl)benzoquinoxaline
- **dppz**: dipyrido[3,2-\(a\):2', 3'-c]phenazine
- **dpq**: 2,3-bis(2-pyridyl)quinoxaline
- **HOMO**: highest occupied molecular orbital
- **Kb**: kilobase pairs
- **LC**: ligand centered
- **LF**: ligand field
- **LUMO**: lowest unoccupied molecular orbital
- **mc**: metal complex
- **MLCT**: metal to ligand charge transfer
- **nt**: nucleotides
- **phen**: 1,10-phenanthroline
- **py**: pyridine
- **Ru-Pt**: ruthenium-platinum complex
- **S**: molecular weight standard
Acknowledgements

This research accomplishment was made possible only through the support and inspiration of numerous people. I owe a debt of gratitude to all of them:

to Almighty God, who endowed me with the strength, dedication and perseverance necessary to see this project through, and to whose glory this work is dedicated;
to my parents, Joe and Carole, and my sisters, Joann and Karen, for always being there for me with support, advice, and prayers;
to my wife Gail, for her unending and immeasurable support, understanding, patience, example, prayers, and above all, love;
to the Reed family, Frank, Lois, Beth, Anne, Allen, Joel, and Mark, for their interest in my work, unwavering support for its completion, and many prayers;
to my research advisor, Dr. Karen J. Brewer, for guidance, advice, and the willingness to work with me in completing this dissertation off-site;
to my co-advisor, Dr. Brenda S.J. Winkel, for her never-ending enthusiasm, advice, and inspiration;
to Dr. Gary L. Long, for sitting for my defense and becoming part of my advising committee at the very last minute;
to Dr. Mark R. Anderson, for advice, discussions, and the willingness to make the long trip back to Blacksburg for my defense;
to Dr. Brian E. Hanson, for advice and encouragement over the years;
to the Brewer research group, past and present, for being my friends, companions and instructors over many years;
to the Winkel research group, most notably Dr. Ian Burbulis, for useful advice, ideas and training;
to Mr. Jeff Clark, for useful conversations, advice, lodging on my many trips back to Blacksburg, and above all, friendship;
to Dr. N.P. Farrell of Virginia Commonwealth University, for his kind gift of the compound, 1,1/t,t;
and to the various funding agencies, among them Virginia Tech, The Jeffress Memorial Trust, and the National Science Foundation (CHE – 9632713) for financial support.